लाइमन श्रृंखला: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
भौतिकी और [[रसायन विज्ञान]] में, लाइमन श्रृंखला संक्रमणों की [[हाइड्रोजन]] वर्णक्रमीय श्रृंखला है और [[इलेक्ट्रॉन]] के रूप में हाइड्रोजन परमाणु की [[पराबैंगनी]] [[उत्सर्जन रेखा|उत्सर्जन रेखाएँ]] ''n'' ≥ 2 से ''n'' =1 (जहाँ ''n' प्रमुख क्वांटम संख्या है), इलेक्ट्रॉन का निम्नतम ऊर्जा स्तर। संक्रमणों को [[ग्रीक वर्णमाला]] द्वारा क्रमिक रूप से नाम दिया गया है: ''n'' = 2 से ''n'' = 1 को [[लाइमन-अल्फा रेखा]] कहा जाता है, 3 से 1 को लाइमन-बीटा, 4 से 1 को लाइमन- गामा, और इसी प्रकार आगे भी। श्रृंखला का नाम इसके खोजकर्ता थिओडोर लिमन IV के नाम पर रखा गया है। प्रमुख क्वांटम संख्याओं में जितना अधिक अंतर होगा, विद्युत चुम्बकीय उत्सर्जन की ऊर्जा उतनी ही अधिक होगी।''
भौतिकी और [[रसायन विज्ञान]] में, लाइमन श्रृंखला संक्रमणों की [[हाइड्रोजन]] वर्णक्रमीय श्रृंखला है और [[इलेक्ट्रॉन]] के रूप में हाइड्रोजन परमाणु की [[पराबैंगनी]] [[उत्सर्जन रेखा|उत्सर्जन रेखाएँ]] ''n'' ≥ 2 से ''n'' =1 (जहाँ ''n' प्रमुख क्वांटम संख्या है), इलेक्ट्रॉन का निम्नतम ऊर्जा स्तर। संक्रमणों को [[ग्रीक वर्णमाला]] द्वारा क्रमिक रूप से नाम दिया गया है: ''n'' = 2 से ''n'' = 1 को [[लाइमन-अल्फा रेखा]] कहा जाता है, 3 से 1 को लाइमन-बीटा, 4 से 1 को लाइमन- गामा, और इसी प्रकार आगे भी है। श्रृंखला का नाम इसके खोजकर्ता थिओडोर लिमन IV के नाम पर रखा गया है। प्रमुख क्वांटम संख्याओं में जितना अधिक अंतर होगा, विद्युत चुम्बकीय उत्सर्जन की ऊर्जा उतनी ही अधिक होगी।''


== इतिहास ==
== इतिहास ==
[[File:LymanSeries.svg|thumb|upright=1.3|लाइमन श्रृंखला]]लाइमन श्रृंखला के वर्णक्रम में पहली पंक्ति की खोज 1906 में भौतिक विज्ञानी थिओडोर लाइमन IV द्वारा की गई थी, जो विद्युतीय रूप से उत्साहित हाइड्रोजन गैस के पराबैंगनी वर्णक्रम का अध्ययन कर रहे थे। 1906-1914 तक लिमैन द्वारा वर्णक्रम की शेष पंक्तियों (सभी पराबैंगनी में) की खोज की गई थी। हाइड्रोजन द्वारा उत्सर्जित विकिरण का वर्णक्रम क्वान्टीकरण (भौतिकी) या असतत है। यहाँ हाइड्रोजन उत्सर्जन लाइनों की पहली श्रृंखला का उदाहरण दिया गया है:
[[File:LymanSeries.svg|thumb|upright=1.3|लाइमन श्रृंखला]]लाइमन श्रृंखला के वर्णक्रम में पहली पंक्ति की खोज 1906 में भौतिक विज्ञानी थिओडोर लाइमन IV द्वारा की गई थी, जो विद्युतीय रूप से उत्साहित हाइड्रोजन गैस के पराबैंगनी वर्णक्रम का अध्ययन कर रहे थे। 1906-1914 तक लिमैन द्वारा वर्णक्रम की शेष पंक्तियों (सभी पराबैंगनी में) की खोज की गई थी। हाइड्रोजन द्वारा उत्सर्जित विकिरण का वर्णक्रम क्वान्टीकरण (भौतिकी) या असतत है। यहाँ हाइड्रोजन उत्सर्जन पंक्ति की पहली श्रृंखला का उदाहरण दिया गया है:


ऐतिहासिक रूप से, हाइड्रोजन वर्णक्रम की प्रकृति की व्याख्या भौतिकी में अत्यधिक समस्या थी। 1885 तक कोई भी हाइड्रोजन लाइनों की [[तरंग दैर्ध्य]] की भविष्यवाणी नहीं कर सकता था जब [[बामर सूत्र]] ने दृश्यमान हाइड्रोजन वर्णक्रम के लिए अनुभवजन्य सूत्र दिया था। पांच वर्षों के भीतर [[जोहान्स रिडबर्ग]] [[अनुभवजन्य संबंध]] के साथ आए जिसने समस्या को हल किया, 1888 में पहली बार प्रस्तुत किया और 1890 में अंतिम रूप दिया। रिडबर्ग ज्ञात [[बामर श्रृंखला]] उत्सर्जन लाइनों से मिलान करने के लिए सूत्र खोजने में प्रबन्धित रहे, और उन लोगों की भी भविष्यवाणी की जो अभी तक खोजे नहीं गए हैं। अलग-अलग सरल संख्याओं के साथ रिडबर्ग सूत्र के विभिन्न संस्करण अलग-अलग श्रृंखलाओं को उत्पन्न करने के लिए पाए गए।
ऐतिहासिक रूप से, हाइड्रोजन वर्णक्रम की प्रकृति की व्याख्या भौतिकी में अत्यधिक समस्या थी। 1885 तक कोई भी हाइड्रोजन पंक्ति की [[तरंग दैर्ध्य]] की भविष्यवाणी नहीं कर सकता था जब [[बामर सूत्र]] ने दृश्यमान हाइड्रोजन वर्णक्रम के लिए अनुभवजन्य सूत्र दिया था। पांच वर्षों के भीतर [[जोहान्स रिडबर्ग]] [[अनुभवजन्य संबंध]] के साथ आए जिसने समस्या को हल किया, 1888 में पहली बार प्रस्तुत किया और 1890 में अंतिम रूप दिया। रिडबर्ग ज्ञात [[बामर श्रृंखला]] उत्सर्जन पंक्ति से मिलान करने के लिए सूत्र खोजने में प्रबन्धित रहे, और उन लोगों की भी भविष्यवाणी की जो अभी तक खोजे नहीं गए हैं। अलग-अलग सरल संख्याओं के साथ रिडबर्ग सूत्र के विभिन्न संस्करण अलग-अलग श्रृंखलाओं को उत्पन्न करने के लिए पाए गए।


1 दिसंबर, 2011 को, यह घोषणा की गई थी कि [[मल्लाह 1|वॉयेजर 1]] ने आकाशगंगा [[आकाशगंगा|तारा समूह]] से उत्पन्न होने वाले पहले लाइमन-अल्फा विकिरण का पता लगाया था। लाइमन-अल्फा विकिरण का पता पहले अन्य आकाशगंगाओं से लगाया गया था, परन्तु सूर्य के व्यतिकरण के कारण मिल्की वे से विकिरण का पता नहीं चल पाया था।<ref>{{cite web|url=http://news.nationalgeographic.com/news/2011/12/111201-voyager-probes-milky-way-light-hydrogen-sun-nasa-space|title=वोयाजर जांच "अदृश्य" मिल्की वे ग्लो का पता लगाता है|publisher=National Geographic|date=December 1, 2011|accessdate=2013-03-04}}</ref>
1 दिसंबर, 2011 को, यह घोषणा की गई थी कि [[मल्लाह 1|वॉयेजर 1]] ने आकाशगंगा [[आकाशगंगा|तारा समूह]] से उत्पन्न होने वाले पहले लाइमन-अल्फा विकिरण का पता लगाया था। लाइमन-अल्फा विकिरण का पता पहले अन्य आकाशगंगाओं से लगाया गया था, परन्तु सूर्य के व्यतिकरण के कारण मिल्की वे से विकिरण का पता नहीं चल पाया था।<ref>{{cite web|url=http://news.nationalgeographic.com/news/2011/12/111201-voyager-probes-milky-way-light-hydrogen-sun-nasa-space|title=वोयाजर जांच "अदृश्य" मिल्की वे ग्लो का पता लगाता है|publisher=National Geographic|date=December 1, 2011|accessdate=2013-03-04}}</ref>
Line 55: Line 55:
:<math> \lambda = \frac{hc}{E_\text{i} - E_\text{f}} </math> के तरंग दैर्ध्य के साथ विकिरण उत्सर्जित करना चाहिए।
:<math> \lambda = \frac{hc}{E_\text{i} - E_\text{f}} </math> के तरंग दैर्ध्य के साथ विकिरण उत्सर्जित करना चाहिए।
[[इलेक्ट्रॉन वोल्ट]] की इकाइयों में ऊर्जा और [[एंगस्ट्रॉम]],
[[इलेक्ट्रॉन वोल्ट]] की इकाइयों में ऊर्जा और [[एंगस्ट्रॉम]],
:<math> \lambda = \frac{12398.4\,\text{eV}}{E_\text{i} - E_\text{f}} </math> Å की इकाइयों में तरंग दैर्ध्य से निपटने के समय एक अधिक आरामदायक संकेतन भी है।
:<math> \lambda = \frac{12398.4\,\text{eV}}{E_\text{i} - E_\text{f}} </math> Å की इकाइयों में तरंग दैर्ध्य से निपटने के समय अधिक पर्याप्त संकेतन भी है।


उपरोक्त सूत्र में ऊर्जा को हाइड्रोजन परमाणु में ऊर्जा के लिए अभिव्यक्ति के साथ प्रतिस्थापित करना जहां प्रारंभिक ऊर्जा ऊर्जा स्तर n से मेल खाती है और अंतिम ऊर्जा ऊर्जा स्तर m,
उपरोक्त सूत्र में ऊर्जा को हाइड्रोजन परमाणु में ऊर्जा के लिए अभिव्यक्ति के साथ प्रतिस्थापित करना जहां प्रारंभिक ऊर्जा ऊर्जा स्तर n से मेल खाती है और अंतिम ऊर्जा ऊर्जा स्तर m,

Revision as of 10:57, 26 May 2023

भौतिकी और रसायन विज्ञान में, लाइमन श्रृंखला संक्रमणों की हाइड्रोजन वर्णक्रमीय श्रृंखला है और इलेक्ट्रॉन के रूप में हाइड्रोजन परमाणु की पराबैंगनी उत्सर्जन रेखाएँ n ≥ 2 से n =1 (जहाँ n' प्रमुख क्वांटम संख्या है), इलेक्ट्रॉन का निम्नतम ऊर्जा स्तर। संक्रमणों को ग्रीक वर्णमाला द्वारा क्रमिक रूप से नाम दिया गया है: n = 2 से n = 1 को लाइमन-अल्फा रेखा कहा जाता है, 3 से 1 को लाइमन-बीटा, 4 से 1 को लाइमन- गामा, और इसी प्रकार आगे भी है। श्रृंखला का नाम इसके खोजकर्ता थिओडोर लिमन IV के नाम पर रखा गया है। प्रमुख क्वांटम संख्याओं में जितना अधिक अंतर होगा, विद्युत चुम्बकीय उत्सर्जन की ऊर्जा उतनी ही अधिक होगी।

इतिहास

लाइमन श्रृंखला

लाइमन श्रृंखला के वर्णक्रम में पहली पंक्ति की खोज 1906 में भौतिक विज्ञानी थिओडोर लाइमन IV द्वारा की गई थी, जो विद्युतीय रूप से उत्साहित हाइड्रोजन गैस के पराबैंगनी वर्णक्रम का अध्ययन कर रहे थे। 1906-1914 तक लिमैन द्वारा वर्णक्रम की शेष पंक्तियों (सभी पराबैंगनी में) की खोज की गई थी। हाइड्रोजन द्वारा उत्सर्जित विकिरण का वर्णक्रम क्वान्टीकरण (भौतिकी) या असतत है। यहाँ हाइड्रोजन उत्सर्जन पंक्ति की पहली श्रृंखला का उदाहरण दिया गया है:

ऐतिहासिक रूप से, हाइड्रोजन वर्णक्रम की प्रकृति की व्याख्या भौतिकी में अत्यधिक समस्या थी। 1885 तक कोई भी हाइड्रोजन पंक्ति की तरंग दैर्ध्य की भविष्यवाणी नहीं कर सकता था जब बामर सूत्र ने दृश्यमान हाइड्रोजन वर्णक्रम के लिए अनुभवजन्य सूत्र दिया था। पांच वर्षों के भीतर जोहान्स रिडबर्ग अनुभवजन्य संबंध के साथ आए जिसने समस्या को हल किया, 1888 में पहली बार प्रस्तुत किया और 1890 में अंतिम रूप दिया। रिडबर्ग ज्ञात बामर श्रृंखला उत्सर्जन पंक्ति से मिलान करने के लिए सूत्र खोजने में प्रबन्धित रहे, और उन लोगों की भी भविष्यवाणी की जो अभी तक खोजे नहीं गए हैं। अलग-अलग सरल संख्याओं के साथ रिडबर्ग सूत्र के विभिन्न संस्करण अलग-अलग श्रृंखलाओं को उत्पन्न करने के लिए पाए गए।

1 दिसंबर, 2011 को, यह घोषणा की गई थी कि वॉयेजर 1 ने आकाशगंगा तारा समूह से उत्पन्न होने वाले पहले लाइमन-अल्फा विकिरण का पता लगाया था। लाइमन-अल्फा विकिरण का पता पहले अन्य आकाशगंगाओं से लगाया गया था, परन्तु सूर्य के व्यतिकरण के कारण मिल्की वे से विकिरण का पता नहीं चल पाया था।[1]


लाइमन श्रृंखला

लाइमन श्रृंखला उत्पन्न करने वाले रिडबर्ग सूत्र का संस्करण था:[2]

जहाँ n एक प्राकृतिक संख्या है जो 2 से अधिक या उसके बराबर है (अर्थात, n = 2, 3, 4, ...)।

इसलिए, ऊपर की प्रतिचित्र में दिखाई देने वाली रेखाएं तरंग दैर्ध्य हैं जो दाईं ओर n = 2, बाईं ओर n = ∞ के अनुरूप हैं। अनंततः कई वर्णक्रमीय रेखाएँ हैं, परन्तु जैसे-जैसे वे n = ∞ (लाइमन सीमा) तक पहुँचती हैं, वे बहुत सघन हो जाती हैं, इसलिए मात्र पहली और अंतिम पंक्तियों में से कुछ ही दिखाई देती हैं।

लाइमन श्रृंखला में तरंग दैर्ध्य सभी पराबैंगनी हैं:

n तरंग दैर्घ्य (nm)
2 121.56701[3]
3 102.57220[3]
4 97.253650[3]
5 94.974287[3]
6 93.780331[3]
7 93.0748142[3]
8 92.6225605[3]
9 92.3150275[3]
10 92.0963006[3]
11 91.9351334[3]
∞, लाइमन सीमा 91.1753


स्पष्टीकरण और व्युत्पत्ति

1914 में, जब नील्स बोह्र ने अपने बोहर मॉडल सिद्धांत का निर्माण किया, तो हाइड्रोजन वर्णक्रमीय रेखाएँ रिडबर्ग के सूत्र के अनुकूल होने का कारण बताया गया। बोह्र ने पाया कि हाइड्रोजन परमाणु से बंधे इलेक्ट्रॉन में निम्न सूत्र,

द्वारा वर्णित मात्राबद्ध ऊर्जा स्तर होना चाहिए।

बोर की तीसरी मान्यता के अनुसार, जब भी कोई इलेक्ट्रॉन प्रारंभिक ऊर्जा स्तर Ei से अंतिम ऊर्जा स्तर Ef पर गिरता है, तो परमाणु को

के तरंग दैर्ध्य के साथ विकिरण उत्सर्जित करना चाहिए।

इलेक्ट्रॉन वोल्ट की इकाइयों में ऊर्जा और एंगस्ट्रॉम,

Å की इकाइयों में तरंग दैर्ध्य से निपटने के समय अधिक पर्याप्त संकेतन भी है।

उपरोक्त सूत्र में ऊर्जा को हाइड्रोजन परमाणु में ऊर्जा के लिए अभिव्यक्ति के साथ प्रतिस्थापित करना जहां प्रारंभिक ऊर्जा ऊर्जा स्तर n से मेल खाती है और अंतिम ऊर्जा ऊर्जा स्तर m,

से मेल खाती है।

जहां RH रिडबर्ग के लंबे ज्ञात सूत्र से हाइड्रोजन के लिए एक ही रिडबर्ग स्थिरांक है। इसका यह भी अर्थ है कि रिडबर्ग स्थिरांक का व्युत्क्रम लाइमन सीमा के बराबर है।

बोह्र, रिडबर्ग और लाइमन के बीच संबंध के लिए,

प्राप्त करने के लिए m को 1 से बदलना होगा जो कि लाइमन श्रृंखला के लिए रिडबर्ग का सूत्र है। इसलिए, उत्सर्जन रेखाओं की प्रत्येक तरंग दैर्ध्य एक निश्चित ऊर्जा स्तर (1 से अधिक) से पहले ऊर्जा स्तर तक गिरने वाले इलेक्ट्रॉन से मेल खाती है।

यह भी देखें

  • बोह्र मॉडल
  • एच-अल्फा
  • हाइड्रोजन वर्णक्रमीय श्रृंखला
  • के-अल्फा
  • लाइमन-अल्फा रेखा
  • लाइमन सततिफोटॉन
  • मोसले का नियम
  • रिडबर्ग सूत्र
  • बामर श्रृंखला

संदर्भ

  1. "वोयाजर जांच "अदृश्य" मिल्की वे ग्लो का पता लगाता है". National Geographic. December 1, 2011. Retrieved 2013-03-04.
  2. Brehm, John; Mullin, William (1989). पदार्थ की संरचना का परिचय. John Wiley & Sons. p. 156. ISBN 0-471-60531-X.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 Kramida, A., Ralchenko, Yu., Reader, J., and NIST ASD Team (2019). NIST Atomic Spectra Database (ver. 5.7.1), [Online]. Available: https://physics.nist.gov/asd [2020, April 11]. National Institute of Standards and Technology, Gaithersburg, MD. DOI: https://doi.org/10.18434/T4W30F