प्रक्षेपण-मूल्यांकन माप: Difference between revisions
No edit summary |
No edit summary |
||
Line 16: | Line 16: | ||
E \mapsto \langle \pi(E)\xi \mid \eta \rangle | E \mapsto \langle \pi(E)\xi \mid \eta \rangle | ||
</math> | </math> | ||
पर एक [[जटिल उपाय|जटिल माप]] | पर एक [[जटिल उपाय|जटिल माप]] <math>M</math>(अर्थात, एक जटिल-मान [[ सिग्मा योगात्मकता ]] फलन) है। | ||
हम इस माप को निरूपित करते हैं | हम इस माप को निरूपित करते हैं | ||
Line 40: | Line 40: | ||
\psi \mapsto \chi_E \psi | \psi \mapsto \chi_E \psi | ||
</math> | </math> | ||
[[सूचक समारोह]] द्वारा गुणन के संचालिका बनें <math>1_E</math> एलपी समष्टि पर ''L''<sup>2</sup>(''X''). तब <math>\pi</math> एक प्रक्षेप-मान माप है। उदाहरण के लिए, यदि <math>X = \mathbb{R}</math>, <math>E = (0,1)</math>, और <math>\phi,\psi \in L^2(\mathbb{R})</math> इसके बाद संबंधित जटिल माप है <math>S_{(0,1)}(\phi,\psi)</math> जो एक मापने योग्य कार्य करता है <math>f: \mathbb{R} \to \mathbb{R}</math> और समाकल देता है <math>S_{(0,1)}(\phi,\psi)(f) = \int_{(0,1)}f(x)\psi(x)\overline{\phi}(x)dx</math> | [[सूचक समारोह]] द्वारा गुणन के संचालिका बनें <math>1_E</math> एलपी समष्टि पर ''L''<sup>2</sup>(''X''). तब <math>\pi</math> एक प्रक्षेप-मान माप है। उदाहरण के लिए, यदि <math>X = \mathbb{R}</math>, <math>E = (0,1)</math>, और <math>\phi,\psi \in L^2(\mathbb{R})</math> इसके बाद संबंधित जटिल माप है ,<math>S_{(0,1)}(\phi,\psi)</math> जो एक मापने योग्य कार्य करता है <math>f: \mathbb{R} \to \mathbb{R}</math> और समाकल देता है <math>S_{(0,1)}(\phi,\psi)(f) = \int_{(0,1)}f(x)\psi(x)\overline{\phi}(x)dx</math> | ||
== प्रक्षेप-मान मापों, अभिन्न और वर्णक्रमीय प्रमेय का विस्तार == | == प्रक्षेप-मान मापों, अभिन्न और वर्णक्रमीय प्रमेय का विस्तार == | ||
Line 71: | Line 71: | ||
एक रिंग समरूपता है। | एक रिंग समरूपता है। | ||
एक अभिन्न संकेतन अधिकांशत: के लिए | एक अभिन्न संकेतन अधिकांशत: के लिए <math>\operatorname{T}_\pi(f)</math>, के रूप में प्रयोग किया जाता है: | ||
: <math>\operatorname{T}_\pi(f)=\int_X f(x) \, d \pi(x) = \int_X f \, d \pi.</math> | : <math>\operatorname{T}_\pi(f)=\int_X f(x) \, d \pi(x) = \int_X f \, d \pi.</math> | ||
Line 124: | Line 124: | ||
* ''''R'''<sup>3</sup> (तीन आयामों में स्थिति या संवेग के लिए), | * ''''R'''<sup>3</sup> (तीन आयामों में स्थिति या संवेग के लिए), | ||
* एक असतत सेट (कोणीय गति के लिए, एक बाध्य अवस्था की ऊर्जा, आदि), | * एक असतत सेट (कोणीय गति के लिए, एक बाध्य अवस्था की ऊर्जा, आदि), | ||
* Φ के बारे में एक यादृच्छिक प्रस्ताव के सत्य-मान के लिए 2-बिंदु सेट सत्य और | * Φ के बारे में एक यादृच्छिक प्रस्ताव के सत्य-मान के लिए 2-बिंदु सेट सत्य और असत्य है। | ||
बता दें कि E औसत दर्जे का समष्टि X और Φ H में एक सामान्यीकृत सदिश-स्थिति का एक औसत दर्जे का उपसमुच्चय है, जिससे कि इसका हिल्बर्ट मानदंड एकात्मक हो, ||Φ|| = 1. संभावना है कि अवलोकन योग्य उपसमुच्चय E में अपना मान लेता है, स्थिति Φ में प्रणाली दिया जाता है, | बता दें कि E औसत दर्जे का समष्टि X और Φ H में एक सामान्यीकृत सदिश-स्थिति का एक औसत दर्जे का उपसमुच्चय है, जिससे कि इसका हिल्बर्ट मानदंड एकात्मक हो, ||Φ|| = 1. संभावना है कि अवलोकन योग्य उपसमुच्चय E में अपना मान लेता है, स्थिति Φ में प्रणाली दिया जाता है, |
Revision as of 15:38, 30 May 2023
गणित में, विशेष रूप से कार्यात्मक विश्लेषण में, एक प्रक्षेप-मान माप (पीवीएम) एक निश्चित सेट के कुछ उपसमुच्चय पर परिभाषित एक फलन है और जिसका मान एक निश्चित हिल्बर्ट समष्टि पर स्व-आसन्न प्रक्षेप (गणित) है। प्रक्षेप-मान माप औपचारिक रूप से वास्तविक-मान माप (गणित) के समान हैं, सिवाय इसके कि उनके मान वास्तविक संख्या के अतिरिक्त स्व-संलग्न अनुमान हैं। सामान्य मापों कि स्थिति में, पीवीएम के संबंध में जटिल-मान कार्यों को एकीकृत करना संभव है; इस तरह के एकीकरण का नतीजा दिए गए हिल्बर्ट समष्टि पर एक रैखिक संकारक है।
प्रक्षेप-मान मापों का उपयोग मानावलीय सिद्धांत में परिणाम व्यक्त करने के लिए किया जाता है, जैसे स्व-संलग्न संकारक के लिए महत्वपूर्ण वर्णक्रमीय सिद्धांत पीवीएम के संबंध में समाकल का उपयोग करके स्व-संलग्न संकारक के लिए बोरेल कार्यात्मक कलन का निर्माण किया गया है। क्वांटम यांत्रिकी में, पीवीएम क्वांटम मापन का गणितीय वर्णन है।[clarification needed] वे POVM (POVMs) द्वारा उसी अर्थ में सामान्यीकृत किए जाते हैं कि एक मिश्रित अवस्था (भौतिकी) या घनत्व मैट्रिक्स एक शुद्ध अवस्था की धारणा को सामान्य करता है।
औपचारिक परिभाषा
एक प्रक्षेप-मान माप मापने योग्य समष्टि पर
, जहाँ के उपसमुच्चय का σ-बीजगणित है , एक फलन (गणित) है हिल्बर्ट समष्टि पर स्वसंलग्न प्रक्षेप सक्रियक के सेट के लिए (अर्थात लंबकोणीय प्रक्षेप) ऐसा है
(जहाँ का पहचान सक्रियक है ) और प्रत्येक के लिए , निम्न कार्य
पर एक जटिल माप (अर्थात, एक जटिल-मान सिग्मा योगात्मकता फलन) है।
हम इस माप को निरूपित करते हैं
.
ध्यान दें कि एक वास्तविक-मान माप है, और एक प्रायिकता माप जब लंबाई एक है।
यदि एक प्रक्षेप-मान माप है और
फिर छवियां , एक दूसरे के लिए लंबकोणीय हैं। इससे यह पता चलता है कि सामान्य तौर पर,
और वे आवागमन करते हैं।
उदाहरण:- कल्पना करना एक माप समष्टि है। माना, हर मापने योग्य उपसमुच्चय के लिए में ,
सूचक समारोह द्वारा गुणन के संचालिका बनें एलपी समष्टि पर L2(X). तब एक प्रक्षेप-मान माप है। उदाहरण के लिए, यदि , , और इसके बाद संबंधित जटिल माप है , जो एक मापने योग्य कार्य करता है और समाकल देता है
प्रक्षेप-मान मापों, अभिन्न और वर्णक्रमीय प्रमेय का विस्तार
यदि π मापने योग्य समष्टि (X, M) पर प्रक्षेप-मान माप है, फिर मैप
X पर सोपान फलन के सदिश समष्टि पर एक रैखिक मैप तक फैला हुआ है। वास्तव में, यह जांचना आसान है कि यह मैप एक रिंग समरूपता है। यह मैप X पर सभी बंधे हुए जटिल-मान औसत दर्जे के कार्यों के लिए एक विहित तरीके से फैला हुआ है, और हमारे पास निम्नलिखित हैं।
'प्रमेय' X पर किसी भी बंधे M-मापने योग्य फलन f के लिए, एक अद्वितीय बाध्य रैखिक संकारक सम्मलित है
ऐसा है कि
सभी के लिए कहाँ जटिल माप को दर्शाता है
की परिभाषा से .
वो मैप
एक रिंग समरूपता है।
एक अभिन्न संकेतन अधिकांशत: के लिए , के रूप में प्रयोग किया जाता है:
प्रमेय असीमित औसत दर्जे के कार्य f के लिए भी सही है, लेकिन तब हिल्बर्ट समष्टि H पर एक असीमित रैखिक संकारक होगा।
वर्णक्रमीय प्रमेय कहता है कि प्रत्येक स्व-आसन्न संकारक एक संबद्ध प्रक्षेप-मान माप है वास्तविक धुरी पर परिभाषित किया गया है, जैसे कि
- है।
यह ऐसे संकारक के लिए बोरेल कार्यात्मक कलन को परिभाषित करने की अनुमति देता है: यदि एक मापने योग्य कार्य है, हम सेट करते हैं:
प्रक्षेप-मान मापों की संरचना
पहले हम प्रत्यक्ष समाकलों पर आधारित प्रक्षेप-मान माप का एक सामान्य उदाहरण प्रदान करते हैं। मान लीजिए (X, एम, μ) एक माप समष्टि है और {Hx}x ∈ X वियोज्य हिल्बर्ट समष्टि का एक μ-मापने योग्य श्रेणी बनें। प्रत्येक E ∈ M के लिए, मान लीजिए π(ई) 1 से गुणन का संचालक E हिल्बर्ट समष्टि पर है:
तब π (X, M) पर प्रक्षेप-मान माप है।
कल्पना करना π, ρ H, K के अनुमानों में मानों के साथ (X, M) पर प्रक्षेप-मान माप हैं। π, ρ एकात्मक रूप से समतुल्य हैं यदि और केवल यदि एक एकात्मक संकारक U:H → K ऐसा है कि
हर E ∈ M के लिए है।
'प्रमेय' यदि (X, M) एक बोरेल बीजगणित # मानक बोरेल समष्टि और कुराटोस्की प्रमेय है, तो प्रत्येक प्रक्षेप-मान माप के लिए π पर (X, M) एक वियोज्य हिल्बर्ट समष्टि के अनुमानों में मान लेते हुए, एक बोरेल माप μ और हिल्बर्ट समष्टि का एक μ-मापने योग्य श्रेणी है {Hx}x ∈ X , ऐसा है कि π एकात्मक रूप से 1 से गुणा करने के समतुल्य E हिल्बर्ट समष्टि पर है:
μ का माप वर्ग [स्पष्टीकरण आवश्यक] और बहुलता फलन x → मंद Hx का माप तुल्यता वर्ग पूरी तरह से एकात्मक तुल्यता तक प्रक्षेप-मान माप की विशेषता है।
एक प्रक्षेप-मान माप π बहुलता n का सजातीय है यदि और केवल यदि बहुलता फलन का मान n स्थिर है। स्पष्ट रूप से,
'प्रमेय' कोई प्रक्षेप-मान माप π एक वियोज्य हिल्बर्ट समष्टि के अनुमानों में मान लेना सजातीय प्रक्षेप-मान मापों का एक लंबकोणीय प्रत्यक्ष योग है:
जहाँ
और
क्वांटम यांत्रिकी में अनुप्रयोग
क्वांटम यांत्रिकी में, एक हिल्बर्ट समष्टि H पर निरंतर अंतराकारिता के समष्टि के लिए मापने योग्य समष्टि X के प्रक्षेप मान माप को देखते हुए,
- हिल्बर्ट समष्टि H के प्रक्षेपात्मक समष्टि को क्वांटम प्रणाली के संभावित स्थिति Φ के सेट के रूप में व्याख्या किया गया है,
- मापने योग्य समष्टि X प्रणाली की कुछ क्वांटम संपत्ति के लिए मान समष्टि है (एक अवलोकन योग्य),
- प्रक्षेप-मान माप π इस संभावना को व्यक्त करता है कि अवलोकनीय विभिन्न मानों पर ले जाता है।
X के लिए एक सामान्य वास्तविक रेखा है, लेकिन यह भी हो सकती है
- 'R3 (तीन आयामों में स्थिति या संवेग के लिए),
- एक असतत सेट (कोणीय गति के लिए, एक बाध्य अवस्था की ऊर्जा, आदि),
- Φ के बारे में एक यादृच्छिक प्रस्ताव के सत्य-मान के लिए 2-बिंदु सेट सत्य और असत्य है।
बता दें कि E औसत दर्जे का समष्टि X और Φ H में एक सामान्यीकृत सदिश-स्थिति का एक औसत दर्जे का उपसमुच्चय है, जिससे कि इसका हिल्बर्ट मानदंड एकात्मक हो, ||Φ|| = 1. संभावना है कि अवलोकन योग्य उपसमुच्चय E में अपना मान लेता है, स्थिति Φ में प्रणाली दिया जाता है,
जहां भौतिकी में बाद वाले अंकन को प्राथमिकता दी जाती है।
इसका विश्लेषण हम दो प्रकार से कर सकते हैं।
सबसे पहले, प्रत्येक निश्चित E के लिए, प्रक्षेप π(E) H पर एक स्व-संबद्ध संचालिका है जिसका 1-ईजेन्ससमष्टि Φ स्थिति है जिसके लिए अवलोकनीय का मान हमेशा E में निहित होता है, और जिसका 0-ईजेनसमष्टि स्थिति Φ है जिसके लिए अवलोकनीय का मान कभी झूठ नहीं होता E में,
दूसरा, प्रत्येक निश्चित सामान्यीकृत सदिश स्थिति के लिए , संगठन
प्रेक्षण योग्य के मानों को एक यादृच्छिक चर में बनाने पर X पर एक प्रायिकता माप है।
एक माप जो प्रक्षेप-मान माप द्वारा किया जा सकता है π को प्रक्षेपी माप कहा जाता है।
यदि X वास्तविक संख्या रेखा है, तो इससे जुड़ा हुआ सम्मलित है π, एक हर्मिटियन सक्रियक A द्वारा H पर परिभाषित किया गया है
जो अधिक पठनीय रूप लेता है
यदि π का समर्थन R का असतत उपसमुच्चय है।
उपरोक्त सक्रियक A को वर्णक्रमीय माप से जुड़े अवलोकन योग्य कहा जाता है।
इस प्रकार प्राप्त किसी संकारक को क्वांटम यांत्रिकी में प्रेक्षणीय कहा जाता है।
सामान्यीकरण
प्रक्षेप-मान माप का विचार सकारात्मक सक्रियक-मान माप (पीओवीएम) द्वारा सामान्यीकृत किया जाता है, जहां प्रक्षेप संकारक द्वारा निहित लंबकोणीयता की आवश्यकता को संकारक के एक सेट के विचार से बदल दिया जाता है जो एकता का गैर-लंबकोणीय विभाजन है।[clarification needed]. यह सामान्यीकरण क्वांटम सूचना सिद्धांत के अनुप्रयोगों से प्रेरित है।
यह भी देखें
- स्पेक्ट्रल प्रमेय
- कॉम्पैक्ट संकारक का वर्णक्रमीय सिद्धांत
- सामान्य सी * - बीजगणित का वर्णक्रमीय सिद्धांत
संदर्भ
- Moretti, V. (2018), Spectral Theory and Quantum Mechanics Mathematical Foundations of Quantum Theories, Symmetries and Introduction to the Algebraic Formulation, vol. 110, Springer, ISBN 978-3-319-70705-1
- Hall, B.C. (2013), Quantum Theory for Mathematicians, Graduate Texts in Mathematics, vol. 267, Springer, ISBN 978-1461471158
- Mackey, G. W., The Theory of Unitary Group Representations, The University of Chicago Press, 1976
- M. Reed and B. Simon, Methods of Mathematical Physics, vols I–IV, Academic Press 1972.
- Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
- Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
- G. Teschl, Mathematical Methods in Quantum Mechanics with Applications to Schrödinger Operators, https://www.mat.univie.ac.at/~gerald/ftp/book-schroe/, American Mathematical Society, 2009.
- Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
- Varadarajan, V. S., Geometry of Quantum Theory V2, Springer Verlag, 1970.