स्टाइनस्प्रिंग फैलाव प्रमेय: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
गणित में, स्टाइनस्प्रिंग का फैलाव प्रमेय, जिसे स्टाइनस्प्रिंग का गुणनखंडन प्रमेय भी कहा जाता है, जिसका नाम डब्ल्यू फॉरेस्ट स्टाइनस्प्रिंग के नाम पर रखा गया है, यह [[ऑपरेटर सिद्धांत|संक्रियक सिद्धांत]] का परिणाम है जो सी*-बीजगणित पर किसी भी [[पूरी तरह से सकारात्मक मानचित्र|पूर्ण रूप से धनात्मक प्रतिचित्र]] का प्रतिनिधित्व करता है, जिसमें से प्रत्येक में दो पूर्ण रूप से धनात्मक प्रतिचित्र होते हैं। एक विशेष रूप: | गणित में, स्टाइनस्प्रिंग का फैलाव प्रमेय, जिसे स्टाइनस्प्रिंग का गुणनखंडन प्रमेय भी कहा जाता है, जिसका नाम डब्ल्यू फॉरेस्ट स्टाइनस्प्रिंग के नाम पर रखा गया है, यह [[ऑपरेटर सिद्धांत|संक्रियक सिद्धांत]] का परिणाम है जो सी*-बीजगणित पर किसी भी [[पूरी तरह से सकारात्मक मानचित्र|पूर्ण रूप से धनात्मक प्रतिचित्र]] का प्रतिनिधित्व करता है, जिसमें से प्रत्येक में दो पूर्ण रूप से धनात्मक प्रतिचित्र होते हैं। एक विशेष रूप: | ||
#A * - कुछ सहायक [[ हिल्बर्ट अंतरिक्ष |हिल्बर्ट समष्टि]] ''K'' पर ''A'' का प्रतिनिधित्व | #A*- कुछ सहायक [[ हिल्बर्ट अंतरिक्ष |हिल्बर्ट समष्टि]] ''K'' पर ''A'' का प्रतिनिधित्व | ||
#रूप ''T'' ↦ ''V*TV'' का संक्रियक प्रतिचित्र। | #रूप ''T'' ↦ ''V*TV'' का संक्रियक प्रतिचित्र। | ||
इसके अतिरिक्त, स्टाइनस्प्रिंग की प्रमेय एक संरचना प्रमेय है जो सी*-बीजगणित से हिल्बर्ट समष्टि पर परिबद्ध संक्रियकों के बीजगणित में है। पूर्ण रूप से धनात्मक प्रतिचित्रों को *-निरूपणों के सरल संशोधनों के रूप में दिखाया जाता है, या कभी-कभी *-समरूपता कहा जाता है। | इसके अतिरिक्त, स्टाइनस्प्रिंग की प्रमेय एक संरचना प्रमेय है जो सी*-बीजगणित से हिल्बर्ट समष्टि पर परिबद्ध संक्रियकों के बीजगणित में है। पूर्ण रूप से धनात्मक प्रतिचित्रों को *-निरूपणों के सरल संशोधनों के रूप में दिखाया जाता है, या कभी-कभी *-समरूपता कहा जाता है। | ||
Line 7: | Line 7: | ||
इकाई बीजगणित सी*-बीजगणित की स्थिति में, परिणाम इस प्रकार है: | इकाई बीजगणित सी*-बीजगणित की स्थिति में, परिणाम इस प्रकार है: | ||
: | : प्रमेय. मान लीजिए A इकाई सी*-बीजगणित है, H हिल्बर्ट समष्टि है, और B (H) H पर परिबद्ध संकारक हैं। प्रत्येक पूर्ण रूप से धनात्मक | ||
::<math>\Phi : A \to B(H)</math> | ::<math>\Phi : A \to B(H)</math> | ||
::के लिए, हिल्बर्ट समष्टि K और इकाई *- समरूपता | ::के लिए, हिल्बर्ट समष्टि K और इकाई *- समरूपता | ||
::<math>\pi : A \to B(K)</math> | ::<math>\pi : A \to B(K)</math> | ||
:स्थित | :स्थित होते है जैसे कि | ||
::<math>\Phi(a) = V^\ast \pi (a) V,</math> | ::<math>\Phi(a) = V^\ast \pi (a) V,</math> | ||
:जहाँ <math>V: H \to K</math> परिबद्ध संकारक है। इसके अतिरिक्त, हमारे निकट | :जहाँ <math>V: H \to K</math> परिबद्ध संकारक है। इसके अतिरिक्त, हमारे निकट | ||
Line 17: | Line 17: | ||
अनौपचारिक रूप से, कोई कह सकता है कि प्रत्येक पूर्ण रूप से धनात्मक प्रतिचित्र <math>\Phi</math> को रूप <math>V^* (\cdot) V</math> के प्रतिचित्र तक "उठाया" जा सकता है। | अनौपचारिक रूप से, कोई कह सकता है कि प्रत्येक पूर्ण रूप से धनात्मक प्रतिचित्र <math>\Phi</math> को रूप <math>V^* (\cdot) V</math> के प्रतिचित्र तक "उठाया" जा सकता है। | ||
प्रमेय का विलोम साधारण रूप से | प्रमेय का विलोम साधारण रूप से उचित है। इसलिए स्टाइनस्प्रिंग का परिणाम पूर्ण रूप से धनात्मक प्रतिचित्रों को वर्गीकृत करता है। | ||
== प्रमाण का रेखाचित्र == | == प्रमाण का रेखाचित्र == | ||
Line 23: | Line 23: | ||
:<math> \langle a \otimes h, b \otimes g \rangle _K := \langle \Phi(b^*a) h, g \rangle _H = \langle h, \Phi(a^*b)g \rangle_H</math> | :<math> \langle a \otimes h, b \otimes g \rangle _K := \langle \Phi(b^*a) h, g \rangle _H = \langle h, \Phi(a^*b)g \rangle_H</math> | ||
को परिभाषित करें और अर्ध-रैखिकता द्वारा सभी K तक विस्तारित करें। यह [[हर्मिटियन ऑपरेटर|हर्मिटियन]] संक्रियक अनुक्रमिक रूप है क्योंकि <math>\Phi</math> * संचालन के साथ संगत है।<math>\Phi</math> की पूर्ण धनात्मकता तब यह दिखाने के लिए प्रयोग किया जाता है कि यह अनुक्रमिक रूप वस्तुतः धनात्मक अर्ध निश्चित है। चूँकि [[सकारात्मक-निश्चित मैट्रिक्स|धनात्मक-निश्चित आव्यूह]] हर्मिटियन अनुक्रमिक रूप कॉची-श्वार्ज़ असमानता को संतुष्ट करते हैं, उपसमुच्चय | को परिभाषित करें और अर्ध-रैखिकता द्वारा सभी K तक विस्तारित करें। यह [[हर्मिटियन ऑपरेटर|हर्मिटियन]] संक्रियक अनुक्रमिक रूप है क्योंकि <math>\Phi</math>* संचालन के साथ संगत है। <math>\Phi</math> की पूर्ण धनात्मकता तब यह दिखाने के लिए प्रयोग किया जाता है कि यह अनुक्रमिक रूप वस्तुतः धनात्मक अर्ध निश्चित है। चूँकि [[सकारात्मक-निश्चित मैट्रिक्स|धनात्मक-निश्चित आव्यूह]] हर्मिटियन अनुक्रमिक रूप कॉची-श्वार्ज़ असमानता को संतुष्ट करते हैं, उपसमुच्चय | ||
:<math>K' = \{x \in K \mid \langle x , x \rangle _K = 0 \} \subset K</math> | :<math>K' = \{x \in K \mid \langle x , x \rangle _K = 0 \} \subset K</math> | ||
Line 31: | Line 31: | ||
:<math>\Phi (a) = P_H \; \pi(a) \Big|_H</math> लिख सकते हैं। | :<math>\Phi (a) = P_H \; \pi(a) \Big|_H</math> लिख सकते हैं। | ||
विस्फार सिद्धांत की भाषा में, यह कहना है कि <math>\Phi(a)</math>, <math>\pi(a)</math> का संपीडन है। इसलिए यह स्टाइनस्प्रिंग के प्रमेय का एक परिणाम है कि प्रत्येक इकाई पूर्ण रूप से धनात्मक प्रतिचित्र कुछ | विस्फार सिद्धांत की भाषा में, यह कहना है कि <math>\Phi(a)</math>, <math>\pi(a)</math> का संपीडन है। इसलिए यह स्टाइनस्प्रिंग के प्रमेय का एक परिणाम है कि प्रत्येक इकाई पूर्ण रूप से धनात्मक प्रतिचित्र कुछ [[* - समरूपता|*- समरूपता]] का संपीड़न है। | ||
== न्यूनतमता == | == न्यूनतमता == | ||
Line 83: | Line 83: | ||
और हमने अवस्थाओं के जीएनएस प्रतिनिधित्व को पुनर्प्राप्त कर लिया है। यह देखने की विधि है कि पूर्ण रूप से धनात्मक प्रतिचित्र, मात्र धनात्मक के अतिरिक्त, [[सकारात्मक कार्यात्मक|धनात्मक कार्यात्मक]] के यथार्थ सामान्यीकरण हैं। | और हमने अवस्थाओं के जीएनएस प्रतिनिधित्व को पुनर्प्राप्त कर लिया है। यह देखने की विधि है कि पूर्ण रूप से धनात्मक प्रतिचित्र, मात्र धनात्मक के अतिरिक्त, [[सकारात्मक कार्यात्मक|धनात्मक कार्यात्मक]] के यथार्थ सामान्यीकरण हैं। | ||
सी * - बीजगणित पर रैखिक धनात्मक कार्यात्मक ऐसे अन्य कार्यात्मक (संदर्भ कार्यात्मक कहा जाता है) के संबंध में [[बिल्कुल निरंतर|पूर्णतः निरंतर]] है यदि यह किसी भी [[सकारात्मक तत्व|धनात्मक अवयव]] पर [[0]] है जिस पर संदर्भ धनात्मक कार्यात्मक शून्य है। यह रैडॉन-निकोडिम प्रमेय के गैर-अनुक्रमिक सामान्यीकरण की ओर जाता है। मानक [[ट्रेस (रैखिक बीजगणित)|निशान (रैखिक बीजगणित]]) के संबंध में [[मैट्रिक्स बीजगणित|आव्यूह बीजगणित]] पर अवस्थाओं का सामान्य [[घनत्व ऑपरेटर|घनत्व]] संक्रियक कुछ भी नहीं है, परन्तु रैडॉन-निकोडिम व्युत्पन्न है जब संदर्भ कार्यात्मक को निशान करने के लिए चुना जाता है। [[व्याचेस्लाव बेलावकिन]] ने दूसरे (संदर्भ) प्रतिचित्र के संबंध में पूर्ण रूप से धनात्मक प्रतिचित्र की पूर्ण निरपेक्ष निरंतरता की धारणा प्रस्तुत की और पूर्ण रूप से धनात्मक प्रतिचित्रों के लिए गैर-अनुवर्ती रेडॉन-निकोडिम प्रमेय के एक संक्रियक संस्करण को सिद्ध किया। आव्यूह बीजगणित पर निशान पूर्ण रूप से धनात्मक संदर्भ प्रतिचित्र के अनुरूप इस प्रमेय की विशेष स्थिति चोई संक्रियक को मानक निशान के संबंध में एक सीपी प्रतिचित्र के रेडॉन-निकोडिम व्युत्पन्न के रूप में ले जाती है (चोई के प्रमेय देखें)। | सी*- बीजगणित पर रैखिक धनात्मक कार्यात्मक ऐसे अन्य कार्यात्मक (संदर्भ कार्यात्मक कहा जाता है) के संबंध में [[बिल्कुल निरंतर|पूर्णतः निरंतर]] है यदि यह किसी भी [[सकारात्मक तत्व|धनात्मक अवयव]] पर [[0]] है जिस पर संदर्भ धनात्मक कार्यात्मक शून्य है। यह रैडॉन-निकोडिम प्रमेय के गैर-अनुक्रमिक सामान्यीकरण की ओर जाता है। मानक [[ट्रेस (रैखिक बीजगणित)|निशान (रैखिक बीजगणित]]) के संबंध में [[मैट्रिक्स बीजगणित|आव्यूह बीजगणित]] पर अवस्थाओं का सामान्य [[घनत्व ऑपरेटर|घनत्व]] संक्रियक कुछ भी नहीं है, परन्तु रैडॉन-निकोडिम व्युत्पन्न है जब संदर्भ कार्यात्मक को निशान करने के लिए चुना जाता है। [[व्याचेस्लाव बेलावकिन]] ने दूसरे (संदर्भ) प्रतिचित्र के संबंध में पूर्ण रूप से धनात्मक प्रतिचित्र की पूर्ण निरपेक्ष निरंतरता की धारणा प्रस्तुत की और पूर्ण रूप से धनात्मक प्रतिचित्रों के लिए गैर-अनुवर्ती रेडॉन-निकोडिम प्रमेय के एक संक्रियक संस्करण को सिद्ध किया। आव्यूह बीजगणित पर निशान पूर्ण रूप से धनात्मक संदर्भ प्रतिचित्र के अनुरूप इस प्रमेय की विशेष स्थिति चोई संक्रियक को मानक निशान के संबंध में एक सीपी प्रतिचित्र के रेडॉन-निकोडिम व्युत्पन्न के रूप में ले जाती है (चोई के प्रमेय देखें)। | ||
=== चोई की प्रमेय === | === चोई की प्रमेय === |
Revision as of 20:15, 25 May 2023
गणित में, स्टाइनस्प्रिंग का फैलाव प्रमेय, जिसे स्टाइनस्प्रिंग का गुणनखंडन प्रमेय भी कहा जाता है, जिसका नाम डब्ल्यू फॉरेस्ट स्टाइनस्प्रिंग के नाम पर रखा गया है, यह संक्रियक सिद्धांत का परिणाम है जो सी*-बीजगणित पर किसी भी पूर्ण रूप से धनात्मक प्रतिचित्र का प्रतिनिधित्व करता है, जिसमें से प्रत्येक में दो पूर्ण रूप से धनात्मक प्रतिचित्र होते हैं। एक विशेष रूप:
- A*- कुछ सहायक हिल्बर्ट समष्टि K पर A का प्रतिनिधित्व
- रूप T ↦ V*TV का संक्रियक प्रतिचित्र।
इसके अतिरिक्त, स्टाइनस्प्रिंग की प्रमेय एक संरचना प्रमेय है जो सी*-बीजगणित से हिल्बर्ट समष्टि पर परिबद्ध संक्रियकों के बीजगणित में है। पूर्ण रूप से धनात्मक प्रतिचित्रों को *-निरूपणों के सरल संशोधनों के रूप में दिखाया जाता है, या कभी-कभी *-समरूपता कहा जाता है।
सूत्रीकरण
इकाई बीजगणित सी*-बीजगणित की स्थिति में, परिणाम इस प्रकार है:
- प्रमेय. मान लीजिए A इकाई सी*-बीजगणित है, H हिल्बर्ट समष्टि है, और B (H) H पर परिबद्ध संकारक हैं। प्रत्येक पूर्ण रूप से धनात्मक
- के लिए, हिल्बर्ट समष्टि K और इकाई *- समरूपता
- स्थित होते है जैसे कि
- जहाँ परिबद्ध संकारक है। इसके अतिरिक्त, हमारे निकट
- है।
अनौपचारिक रूप से, कोई कह सकता है कि प्रत्येक पूर्ण रूप से धनात्मक प्रतिचित्र को रूप के प्रतिचित्र तक "उठाया" जा सकता है।
प्रमेय का विलोम साधारण रूप से उचित है। इसलिए स्टाइनस्प्रिंग का परिणाम पूर्ण रूप से धनात्मक प्रतिचित्रों को वर्गीकृत करता है।
प्रमाण का रेखाचित्र
अब हम संक्षेप में प्रमाण की रूपरेखा तैयार करते हैं। माना । के लिए,
को परिभाषित करें और अर्ध-रैखिकता द्वारा सभी K तक विस्तारित करें। यह हर्मिटियन संक्रियक अनुक्रमिक रूप है क्योंकि * संचालन के साथ संगत है। की पूर्ण धनात्मकता तब यह दिखाने के लिए प्रयोग किया जाता है कि यह अनुक्रमिक रूप वस्तुतः धनात्मक अर्ध निश्चित है। चूँकि धनात्मक-निश्चित आव्यूह हर्मिटियन अनुक्रमिक रूप कॉची-श्वार्ज़ असमानता को संतुष्ट करते हैं, उपसमुच्चय
एक उपसमष्टि है। भागफल समष्टि (रैखिक बीजगणित) पर विचार करके हम पतन (गणित) को दूर कर सकते हैं। इस भागफल समष्टि का समापन (बीजगणित) तब हिल्बर्ट समष्टि है, जिसे के द्वारा भी निरूपित किया जाता है। अगला और परिभाषित करें। कोई यह जांच सकता है कि और में वांछित गुण हैं।
ध्यान दें कि H में K में प्राकृतिक बीजगणितीय अंतःस्थापन है। कोई यह सत्यापित कर सकता है कि धारण करता है। विशेष रूप से धारण करता है ताकि एक समदूरीकता है यदि और मात्र यदि । इस स्थिति में H को हिल्बर्ट समष्टि अर्थ में, K और में अंतः स्थापित किया जा सकता है, K पर कार्य करते हुए, H पर प्रक्षेपण बन जाते है। प्रतीकात्मक रूप से, हम
- लिख सकते हैं।
विस्फार सिद्धांत की भाषा में, यह कहना है कि , का संपीडन है। इसलिए यह स्टाइनस्प्रिंग के प्रमेय का एक परिणाम है कि प्रत्येक इकाई पूर्ण रूप से धनात्मक प्रतिचित्र कुछ *- समरूपता का संपीड़न है।
न्यूनतमता
त्रिक (π, V, K) को Φ का 'स्टाइनस्प्रिंग प्रतिनिधित्व' कहा जाता है। स्वाभाविक प्रश्न अब यह है कि क्या कोई किसी अर्थ में दिए गए स्टाइनस्प्रिंग प्रतिनिधित्व को कम कर सकते है।
K1 को π (A) VH की संवृत रैखिक अवधि होने दें। सामान्य रूप से *-निरूपण के गुण द्वारा, K1 सभी a के लिए π (a) की अपरिवर्तनीय उपसमष्टि है। इसके अतिरिक्त, K1 में VH होते है।
- परिभाषित करें।
हम सीधे
की गणना कर सकते हैं और यदि k और ℓ K1
- में स्थित हैं।
तो (π1, V, K1) भी Φ का स्टाइनस्प्रिंग प्रतिनिधित्व है और इसमें अतिरिक्त गुण है कि K1 π (A) V H की संवृत रैखिक अवधि है। इस प्रकार के एक प्रतिनिधित्व को 'न्यूनतम स्टाइनस्प्रिंग प्रतिनिधित्व' कहा जाता है।
विशिष्टता
मान लीजिए (π1, V1, K1) और (π2, V2, K2) किसी दिए गए Φ के दो स्टाइनस्प्रिंग निरूपण हैं। आंशिक समदूरीकता W : K1 → K2 को
- द्वारा परिभाषित करें।
V1H ⊂ K1 पर, यह परस्पर जुड़ा हुआ संबंध
- देता है।
विशेष रूप से, यदि दोनों स्टाइनस्प्रिंग प्रतिनिधित्व न्यूनतम हैं, तो W एकात्मक संक्रियक है। इस प्रकार एकात्मक परिवर्तन के लिए न्यूनतम स्टाइनस्प्रिंग निरूपण अद्वितीय हैं।
कुछ परिणाम
हम कुछ परिणामों का उल्लेख करते हैं जिन्हें स्टाइनस्प्रिंग प्रमेय के परिणामों के रूप में देखा जा सकता है। ऐतिहासिक रूप से, नीचे दिए गए कुछ परिणाम स्टाइनस्प्रिंग के प्रमेय से पहले के हैं।
जीएनएस निर्माण
गेलफैंड-नैमार्क-सेगल (जीएनएस) निर्माण इस प्रकार है। स्टाइनस्प्रिंग के प्रमेय में H को 1-विमीय, अर्थात जटिल संख्या होने दें। तो Φ अब A पर धनात्मक रैखिक कार्यात्मक है। यदि हम मानते हैं कि Φ अवस्था (कार्यात्मक विश्लेषण) है, अर्थात, Φ का मानदंड 1 है, तो समदूरीकता को इकाई -मानदंड सदिश के कुछ के लिए
द्वारा निर्धारित किया जाता है। तो
और हमने अवस्थाओं के जीएनएस प्रतिनिधित्व को पुनर्प्राप्त कर लिया है। यह देखने की विधि है कि पूर्ण रूप से धनात्मक प्रतिचित्र, मात्र धनात्मक के अतिरिक्त, धनात्मक कार्यात्मक के यथार्थ सामान्यीकरण हैं।
सी*- बीजगणित पर रैखिक धनात्मक कार्यात्मक ऐसे अन्य कार्यात्मक (संदर्भ कार्यात्मक कहा जाता है) के संबंध में पूर्णतः निरंतर है यदि यह किसी भी धनात्मक अवयव पर 0 है जिस पर संदर्भ धनात्मक कार्यात्मक शून्य है। यह रैडॉन-निकोडिम प्रमेय के गैर-अनुक्रमिक सामान्यीकरण की ओर जाता है। मानक निशान (रैखिक बीजगणित) के संबंध में आव्यूह बीजगणित पर अवस्थाओं का सामान्य घनत्व संक्रियक कुछ भी नहीं है, परन्तु रैडॉन-निकोडिम व्युत्पन्न है जब संदर्भ कार्यात्मक को निशान करने के लिए चुना जाता है। व्याचेस्लाव बेलावकिन ने दूसरे (संदर्भ) प्रतिचित्र के संबंध में पूर्ण रूप से धनात्मक प्रतिचित्र की पूर्ण निरपेक्ष निरंतरता की धारणा प्रस्तुत की और पूर्ण रूप से धनात्मक प्रतिचित्रों के लिए गैर-अनुवर्ती रेडॉन-निकोडिम प्रमेय के एक संक्रियक संस्करण को सिद्ध किया। आव्यूह बीजगणित पर निशान पूर्ण रूप से धनात्मक संदर्भ प्रतिचित्र के अनुरूप इस प्रमेय की विशेष स्थिति चोई संक्रियक को मानक निशान के संबंध में एक सीपी प्रतिचित्र के रेडॉन-निकोडिम व्युत्पन्न के रूप में ले जाती है (चोई के प्रमेय देखें)।
चोई की प्रमेय
चोई द्वारा यह दिखाया गया था कि यदि पूर्ण रूप से धनात्मक है, जहां G और H क्रमशः विमा n और m के परिमित-विमीय हिल्बर्ट रिक्त समष्टि की श्रेणी हैं, तोर Φ रूप लेता है:
इसे पूर्ण रूप से धनात्मक प्रतिचित्रों पर चोई का प्रमेय कहा जाता है। चोई ने रेखीय बीजगणित तकनीकों का उपयोग करके इसे सिद्ध किया, परन्तु उनके परिणाम को स्टाइनस्प्रिंग के प्रमेय के एक विशेष स्थिति के रूप में भी देखा जा सकता है: मान लीजिए (π, V, K) Φ का न्यूनतम स्टाइनस्प्रिंग प्रतिनिधित्व है। न्यूनता से, K का विमा से कम है। तो सामान्यता के हानि के बिना, K को
- से पहचाना जा सकता है।
प्रत्येक एन-विमीय हिल्बर्ट समष्टि की एक प्रति है। से, हम देखते हैं कि K की उपरोक्त पहचान को के रूप में व्यवस्थित किया जा सकता है, जहाँ Pi, K से का प्रक्षेपण है। माना । अपने निकट
है और चोई का परिणाम सिद्ध हुआ है।
चोई का परिणाम आव्यूह बीजगणित पर निशान पूर्ण रूप से धनात्मक संदर्भ प्रतिचित्र के अनुरूप पूर्ण रूप से धनात्मक (सीपी) प्रतिचित्रों के लिए गैर-अनुसूचित रेडॉन-निकोडीम प्रमेय की विशेष स्थिति है। दृढ संचालिका रूप में यह सामान्य प्रमेय 1985 में बेलावकिन द्वारा सिद्ध किया गया था जिसने धनात्मक घनत्व संचालिका के अस्तित्व को एक सीपी प्रतिचित्र का प्रतिनिधित्व करते हुए दिखाया था जो संदर्भ सीपी प्रतिचित्र के संबंध में पूर्ण रूप से निरंतर है। स्टाइनस्प्रिंग प्रतिनिधित्व के संदर्भ में इस घनत्व संक्रियक की विशिष्टता मात्र इस प्रतिनिधित्व की न्यूनतमता से होती है। इस प्रकार, चोई का संक्रियक मानक निशान के संबंध में एक परिमित-विमीय सीपी प्रतिचित्र का रेडॉन-निकोडिम व्युत्पन्न है।
ध्यान दें कि, चोई के प्रमेय को सिद्ध करने में, साथ ही स्टाइनस्प्रिंग के सूत्रीकरण से बेलावकिन के प्रमेय, तर्क स्पष्ट रूप से क्राउस संक्रियकों को Vi नहीं देता है, जब तक कि कोई रिक्त समष्टि की विभिन्न पहचान स्पष्ट नहीं करता है। दूसरी ओर, चोई के मूल प्रमाण में उन संक्रियकों की प्रत्यक्ष गणना सम्मिलित है।
नैमार्क का फैलाव प्रमेय
नैमार्क के प्रमेय का कहना है कि प्रत्येक B (H) -मानित, दुर्बलता से गणनीय-योगात्मक उपाय कुछ सघन हौसडॉर्फ समष्टि X पर उठाया जा सकता है ताकि माप वर्णक्रमीय माप बन जाए। इस तथ्य को जोड़कर यह सिद्ध किया जा सकता है कि C (X) क्रमविनिमेय सी*-बीजगणित और स्टाइनस्प्रिंग प्रमेय है।
एसजेड.-नागी का फैलाव प्रमेय
इस परिणाम में कहा गया है कि हिल्बर्ट समष्टि पर प्रत्येक संकुचन (संचालक सिद्धांत) में न्यूनतम गुण के साथ एकात्मक फैलाव होता है।
अनुप्रयोग
क्वांटम सूचना सिद्धांत में, क्वांटम चैनल, या क्वांटम संचालन को सी*-बीजगणित के बीच पूर्ण रूप से धनात्मक प्रतिचित्र के रूप में परिभाषित किया गया है। ऐसे सभी प्रतिचित्रों का वर्गीकरण होने के कारण, स्टाइनस्प्रिंग का प्रमेय उस संदर्भ में महत्वपूर्ण है। उदाहरण के लिए, प्रमेय के अद्वितीय भाग का उपयोग क्वांटम चैनलों के कुछ वर्गों को वर्गीकृत करने के लिए किया गया है।
विभिन्न चैनलों की तुलना और उनकी पारस्परिक निष्ठा और सूचना की गणना के लिए बेलवकिन द्वारा प्रारम्भ किए गए उनके राडोन-निकोडिम व्युत्पन्न द्वारा चैनलों का एक और प्रतिनिधित्व उपयोगी है। परिमित-विमीय स्थिति में, पूर्ण रूप से धनात्मक प्रतिचित्रों के लिए बेलावकिन के रेडॉन-निकोडीम प्रमेय के निशान संस्करण के रूप में चोई का प्रमेय भी प्रासंगिक है। संचालक व्यंजक
- से।
Φ के क्राउस संचालक कहलाते हैं। व्यंजक
को कभी-कभी Φ का संचालक योग निरूपण कहा जाता है।
संदर्भ
- M।-D। Choi, Completely Positive Linear Maps on Complex Matrices, Linear Algebra and its Applications, 10, 285–290 (1975)।
- V। P। Belavkin, P। Staszewski, Radon–Nikodym Theorem for Completely Positive Maps, Reports on Mathematical Physics, v। 24, No 1, 49–55 (1986)।
- V। Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge University Press, 2003।
- W। F। Stinespring, Positive Functions on सी*-algebras, Proceedings of the American Mathematical Society, 6, 211–216 (1955)।