डीबाई शीथ: Difference between revisions
(Created page with "डेबी शीथ (इलेक्ट्रोस्टैटिक शीथ भी) एक प्लाज्मा (भौतिकी) में एक परत...") |
(Work done) |
||
Line 1: | Line 1: | ||
'''डीबाई शीथ''' (जिसे '''वैद्युतस्थैतिक शीथ''' भी कहा जाता है) [[प्लाज्मा (भौतिकी)|प्लाज्मा]] में एक धनात्मक आयनों के अधिकतम घनत्व वाली परत है, अतः संपूर्ण धनात्मक आवेश, जो संपर्क में आए पदार्थ की सतह पर विपरीत ऋणात्मक आवेश को संतुलित करता है। इस प्रकार की परत की मोटाई कई [[डेबी लंबाई|डीबाई लंबाई]] की होती है, जिसका आकर प्लाज्मा की विभिन्न विशेषताओं (जैसे तापमान, घनत्व, आदि) पर निर्भर करता है। | |||
डीबाई शीथ प्लाज्मा में उत्पन्न होती है क्योंकि इलेक्ट्रॉनों का तापमान सामान्यतः आयनों की तुलना में परिमाण की कोटि या उससे अधिक होते हैं और उनका भार बहुत काम होता है। परिणामस्वरूप, वे कम से कम <math>\sqrt{m_\mathrm{i}/m_\mathrm{e}}</math> घटक से आयनों की तुलना में तीव्र होते हैं। इस प्रकार, किसी प्रदार्थ सतह के संपर्क में, अतः, इलेक्ट्रॉन प्लाज्मा से बाहर निकल जाएंगे, जो सतह को स्थूल (बल्क) प्लाज्मा के सापेक्ष ऋणात्मक आवेशित करता है। [[ डेबी परिरक्षण |डीबाई शील्डिंग]] के कारण, संक्रमण क्षेत्र की प्रमाण-लंबाई डीबाई लंबाई <math>\lambda_\mathrm{D}</math> होगी। विभव बढ़ने के साथ, अधिक से अधिक इलेक्ट्रॉन शीथ विभव द्वारा परावर्तित होंगे। अतः इस प्रकार अंततः साम्यावस्था स्थापित होती है जब विभावान्तर, इलेक्ट्रॉन तापमान से कुछ अधिक होता है। | |||
डीबाई शीथ एक प्लाज्मा से ठोस सतह का संक्रमण है। दो प्लाज्मा क्षेत्रों के बीच भी एक ही प्रकार की भौतिकी सम्मिलित होती है; इन क्षेत्रों के बीच संक्रमण को द्विपरत (डबल लेयर) के रूप में जाना जाता है, और इसमें एक धनात्मक और एक ऋणात्मक परत होती है। | |||
== विवरण == | == विवरण == | ||
[[Image:plasma-sheath.svg|thumb|300px|थर्मिओनिक गैस ट्यूब में ग्रिड तारों के चारों ओर धनात्मक आयन | [[Image:plasma-sheath.svg|thumb|300px|थर्मिओनिक गैस ट्यूब में ग्रिड तारों के चारों ओर धनात्मक आयन '''शीथ''' होता है, जहां <span style= font-size:150%;color:red >⊕</span> धनात्मक आवेश (पैमाने पर नहीं) का प्रतिनिधित्व करता है (लैंगम्यूर, 1929 के बाद)]]शीथ का पहली बार वर्णन अमेरिकी भौतिकविद [[इरविंग लैंगमुइर]] द्वारा किया गया। 1923 में उन्होंने लिखा था: | ||
: | : "इलेक्ट्रॉन ऋणात्मक इलेक्ट्रोड द्वारा प्रतिकर्षित होते हैं जबकि धनात्मक आयन उसकी ओर आकर्षित होते हैं। प्रत्येक ऋणात्मक इलेक्ट्रोड के आस-पास इस प्रकार एक निश्चित मोटाई की शीथ होती है जिसमें केवल धनात्मक आयन और उदासीन परमाणु होते हैं। [..] शीथ के बाहरी सतह से इलेक्ट्रॉन परावर्तित होते हैं जबकि शीथ तक पहुंचने वाले सभी धनात्मक आयन इलेक्ट्रोड की ओर आकर्षित होते हैं। [..] इसका सीधा अनुसरण है कि इलेक्ट्रोड तक पहुंचने वाले धनात्मक आयन धारा में कोई परिवर्तन नहीं होता है। वास्तव में, धनात्मक आयन शीथ द्वारा विद्युतविस्फोट से पूर्ण रूप से आवरणित रहता है और इसका विभव आर्क में हो रही परिघटनाओं और इलेक्ट्रोड की ओर प्रवाहित धारा पर प्रभाव नहीं डाल सकती।"<ref>Langmuir, Irving, "[http://adsabs.harvard.edu/abs/1923Sci....58..290L Positive Ion Currents from the Positive Column of Mercury Arcs]" (1923) ''Science'', Volume 58, Issue 1502, pp. 290-291</ref> | ||
लैंगम्यूयर और उनके सह-लेखक अल्बर्ट डब्ल्यू. हुल ने और भी विवरण दिए हैं, जिसमें [[थर्मिओनिक वाल्व|थर्मायनिक वाल्व]] में एक शीथ निर्मित होती है: | |||
: चित्र 1 | : "चित्र 1 में ग्राफिक रूप से दिखाया गया है कि किसी स्थिति में ऐसे ट्यूब जिसमें मर्क्युरी वाष्प विद्यामान होती है। फिलामेंट और प्लेट के बीच का स्थान "प्लाज्मा" के नाम से जाने जाने वाले इलेक्ट्रॉनों और धनात्मक आयनों के मिश्रण से भरा होता है, जो लगभग बराबर संख्या में होते हैं। प्लाज्मा में डूबा एक तार, इसके सापेक्ष शून्य क्षमता पर, प्रत्येक आयन और इलेक्ट्रॉन को अवशोषित कर लेते है जो उस पर टकराते हैं। क्योंकि इलेक्ट्रॉन आयनों की तुलना में लगभग 600 गुना तीव्रता से चलते हैं, अतः तार पर आयनों की तुलना में 600 गुना अधिक इलेक्ट्रॉन टकराएंगे। यदि तार को आवरणयुक्त (इंसुलेट) किया गया है, तो वह उस धनात्मक विभव को धारण करेगा जिससे वह समान संख्या में इलेक्ट्रॉन और आयन प्राप्त करता है, अर्थात ऐसा विभव जिससे उसकी ओर जाने वाले सभी इलेक्ट्रॉनों को प्रतिकर्षित करता है, 600 में से 1 को प्रतिकर्षित करता है।" | ||
: मान लीजिए कि यह तार, जिसे हम | : "मान लीजिए कि यह तार, जिसे हम ग्रिड का भाग मान सकते हैं, विद्युत ट्यूब के माध्यम से धारा नियंत्रित करने की दृष्टि से और भी अधिक ऋणात्मक बनाया जाता है। अतः इसकी ओर आने वाले सभी इलेक्ट्रॉन आकर्षित होंगे, लेकिन यह सभी धनात्मक आयनों को प्राप्त करेगा जो इसकी ओर प्रगामित होते हैं। इस प्रकार, तार के आस-पास एक ऐसा क्षेत्र निर्मित होता है जिसमें धनात्मक आयन होते है और कोई इलेक्ट्रॉन नहीं होता है, जैसा कि चित्र 1 में चित्रित किया गया है। धनात्मक आयनों के निकट आते ही वे तार की ओर तीव्रता से बढ़ने लगते है, इस शीथ में, धनात्मक आयनों की विभव प्रवणता होती है, जैसे कि तार से दूर होने पर विभव कम और कम ऋणात्मक होता है, और एक निश्चित दूरी पर प्लाज्मा के विभव के बराबर होती है। यह दूरी हम इसे शीथ की सीमा के रूप में परिभाषित करते हैं। इस दूरी के पार तार के विभव के कारण कोई प्रभाव नहीं होगा।"<ref name="hull">Albert W. Hull and Irving Langmuir, "[http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=522437 Control of an Arc Discharge by Means of a Grid]", ''Proc Natl Acad Sci USA''. 1929 March 15; 15(3): 218–225</ref> | ||
== गणितीय निरूपण == | |||
== गणितीय | |||
=== प्लानर शीथ समीकरण === | === प्लानर शीथ समीकरण === | ||
डीबाई शीथ के मात्रात्मक भौतिकी को चार प्रक्रियाओं द्वारा निर्धारित किया जाता है: | |||
आयनों का ऊर्जा संरक्षण: यदि हम सरलता के लिए | '''आयनों का ऊर्जा संरक्षण''': यदि हम सरलता के लिए मान लेते हैं कि शीथ में प्रवेश करने वाले <math>m_\mathrm{i}</math> द्रव्यमान के ठंडे आयनों की गति <math>u_0</math> और इलेक्ट्रॉन के विपरीत आवेश वाली होते है, शीथ विभव में ऊर्जा के संरक्षण की आवश्यकता होती है | ||
:<math>\frac{1}{2}m_\mathrm{i}\,u(x)^2 = \frac{1}{2}m_\mathrm{i}\,u_0^2 - e\,\varphi(x)</math>, | :<math>\frac{1}{2}m_\mathrm{i}\,u(x)^2 = \frac{1}{2}m_\mathrm{i}\,u_0^2 - e\,\varphi(x)</math>, | ||
जहाँ <math>e</math> इलेक्ट्रॉन का आवेश है जिसे धनात्मक लिया जाता है, अर्थात् <math>e=1.602</math> x <math>10^{-19}</math> <math>\mathrm{C}</math>। | |||
'''आयन सततता''': स्थिर स्थिति में, आयन कहीं भी नहीं बढ़ते हैं, अतः फ्लक्स हर जगह समान होता है: | |||
:<math>n_0\,u_0 = n_\mathrm{i}(x)\,u(x)</math>. | :<math>n_0\,u_0 = n_\mathrm{i}(x)\,u(x)</math>. | ||
इलेक्ट्रॉनों के लिए [[बोल्ट्जमैन संबंध]]: चूँकि अधिकांश इलेक्ट्रॉन परावर्तित होते हैं, इसलिए उनका घनत्व | '''इलेक्ट्रॉनों के लिए [[बोल्ट्जमैन संबंध]]''': चूँकि अधिकांश इलेक्ट्रॉन परावर्तित होते हैं, इसलिए उनका घनत्व निम्नलिखित प्रकार दिया जाता है | ||
:<math>n_\mathrm{e}(x) = n_0 \exp\Big(\frac{e\,\varphi(x)}{k_\mathrm{B}T_\mathrm{e}}\Big)</math>. | :<math>n_\mathrm{e}(x) = n_0 \exp\Big(\frac{e\,\varphi(x)}{k_\mathrm{B}T_\mathrm{e}}\Big)</math>. | ||
'''पोयसन का समीकरण''': विद्युतस्थैतिक विभव की वक्रता नेट आवेश घनत्व से निम्न रूप में संबंधित होती है: | |||
:<math>\frac{d^2\varphi(x)}{dx^2} = \frac{e (n_\mathrm{e}(x)-n_\mathrm{i}(x))}{\epsilon_0} </math>. | :<math>\frac{d^2\varphi(x)}{dx^2} = \frac{e (n_\mathrm{e}(x)-n_\mathrm{i}(x))}{\epsilon_0} </math>. | ||
इन समीकरणों | इन समीकरणों को संयोजित करके और इन्हें विमाहीन विभव, स्थान और आयन की गति के अवधारणाओं के रूप में लिखने पर, | ||
:<math>\chi(\xi) = -\frac{e\varphi(\xi)}{k_\mathrm{B}T_\mathrm{e}}</math> | :<math>\chi(\xi) = -\frac{e\varphi(\xi)}{k_\mathrm{B}T_\mathrm{e}}</math> | ||
:<math>\xi = \frac{x}{\lambda_\mathrm{D}}</math> | :<math>\xi = \frac{x}{\lambda_\mathrm{D}}</math> | ||
:<math>\mathfrak{M} = \frac{u_\mathrm{o}}{(k_\mathrm{B}T_\mathrm{e}/m_\mathrm{i})^{1/2}}</math> | :<math>\mathfrak{M} = \frac{u_\mathrm{o}}{(k_\mathrm{B}T_\mathrm{e}/m_\mathrm{i})^{1/2}}</math> | ||
हमें शीथ समीकरण पर प्राप्त होता हैं: | |||
:<math>\chi'' = \left( 1 + \frac{2\chi}{\mathfrak{M}^2} \right)^{-1/2} - e^{-\chi}</math>. | :<math>\chi'' = \left( 1 + \frac{2\chi}{\mathfrak{M}^2} \right)^{-1/2} - e^{-\chi}</math>. | ||
=== | === बोह्म शीथ मापदंड === | ||
शीथ समीकरण को एक बार <math>\chi'</math> से गुणा करके समाकलित किया जा सकता है: | |||
:<math>\int_0^\xi \chi' \chi''\,d\xi_1 = | :<math>\int_0^\xi \chi' \chi''\,d\xi_1 = | ||
Line 53: | Line 50: | ||
\int_0^\xi e^{-\chi} \chi'\,d\xi_1 | \int_0^\xi e^{-\chi} \chi'\,d\xi_1 | ||
</math> | </math> | ||
शीथ एज (<math>\xi = 0</math>) पर, हम विभव को शून्य (<math>\chi = 0</math>) के रूप में परिभाषित कर सकते हैं और मान सकते हैं कि विद्युत क्षेत्र भी शून्य (<math>\chi'=0</math>) है। इन सीमा स्थितियों के साथ, समाधान को मिलाने से निम्न प्राप्त होता है: | |||
:<math>\frac{1}{2}\chi'^2 = \mathfrak{M}^2 \left[ \left( 1 + \frac{2\chi}{\mathfrak{M}^2} \right)^{1/2} - 1 \right] + e^{-\chi} - 1</math> | :<math>\frac{1}{2}\chi'^2 = \mathfrak{M}^2 \left[ \left( 1 + \frac{2\chi}{\mathfrak{M}^2} \right)^{1/2} - 1 \right] + e^{-\chi} - 1</math> | ||
यह आसानी से संवृत रूप में एक पूर्णांक के रूप में पुनर्लेखित किया जा सकता है, हालांकि इसे केवल संख्यात्मक रूप से हल किया जा सकता है। फिर भी, एक महत्वपूर्ण जानकारी की विश्लेषणात्मक रूप से प्राप्त किया जा सकता है। चूँकि बायीं ओर का भाग एक वर्ग है, अतः दायीं ओर का भाग भी <math>\chi</math> के प्रत्येक मान के लिए गैर-ऋणात्मक होना चाहिए, विशेषकर छोटे मानों के लिए। <math>\chi = 0</math> के आस-पास के टेलर विस्तार को देखते हुए, हम देखते हैं कि जो पहला लुप्त नहीं होता है, वह द्विघातीय पद होता है, ताकि हमें आवश्यकता हो | |||
:<math>\frac{1}{2}\chi^2\left( -\frac{1}{\mathfrak{M}^2} + 1 \right) \ge 0</math>, | :<math>\frac{1}{2}\chi^2\left( -\frac{1}{\mathfrak{M}^2} + 1 \right) \ge 0</math>, | ||
Line 68: | Line 65: | ||
:<math>u_0 \ge (k_\mathrm{B}T_\mathrm{e}/m_\mathrm{i})^{1/2}</math>. | :<math>u_0 \ge (k_\mathrm{B}T_\mathrm{e}/m_\mathrm{i})^{1/2}</math>. | ||
इस असमानता को इसके खोजकर्ता [[डेविड बोहम]] के नाम पर | इस असमानता को इसके खोजकर्ता [[डेविड बोहम]] के नाम पर '''बोह्म शीथ मापदंड''' के रूप में जाना जाता है। यदि आयन शीथ में बहुत धीमी गति से प्रवेश कर रहे हों, तो शीथ पोटेंशियल प्लाज्मा में अपना "ईट" पथ बनाएगा ताकि उन्हें तेजी से गतिशील करें। अंत में एक ऐसी तथाकथित '''प्री-शीथ''' विकसित होगी जिसमें <math>(k_\mathrm{B}T_\mathrm{e}/2e)</math> के क्रमांक पर विभव पात होगा और एक माप उत्पन्न होगी जो आयन स्रोत के भौतिकी द्वारा निर्धारित होगी (प्रायः प्लाज्मा की विमाओं के समान होती है)। सामान्यतः बोह्म मापदंड बराबरी के साथ प्रभारित होगा, लेकिन कुछ स्थितियों में ऐसी स्थिति होती है जहां आयन शीथ में अध्यावेगशील गति के साथ प्रवेश करते हैं। | ||
=== | === द चाइल्ड-लैंगम्यूर नियम === | ||
यद्यपि शीथ मापदंड को सामान्यतः संख्यात्मक रूप से अंकीय रूप से निर्धारित किया जाना चाहिए, लेकिन हम <math>e^{-\chi}</math> पद की उपेक्षा करके एक उपायुक्त समाधान निर्धारित कर सकते हैं। इसका अर्थ है कि शीथ में इलेक्ट्रॉन घनत्व की उपेक्षा किया जाता है, या केवल उस भाग का विश्लेषण किया जाता है जहां इलेक्ट्रॉन नहीं होते हैं। "फ्लोटिंग" सतह के लिए, जिसे किसी भी प्लाज्मा से कोई नेट धारा प्रवाहित नहीं होती है, यह उपयुक्त लेकिन अविस्मरणीय अनुमान है। सतह के लिए दृढ़ता से ऋणात्मक पूर्वाग्रहित है ताकि यह '''आयन संतृप्ति धारा''' को आकर्षित कर सके, सन्निकटन बहुत अच्छा है। सामान्यतः, हालांकि यह पूरी तरह से आवश्यक नहीं होता है, समीकरण को आगे और आसान रूप में साधारित करने के लिए <math>2\chi/\mathfrak{M}^2</math> को अत्यधिक संख्यात्मक मान लेने के द्वारा और अपेक्षित रूप लेता है। इसके बाद शीथ मापदंड का सरल रूप लेता है। | |||
:<math>\chi'' = \frac{\mathfrak{M}}{(2\chi)^{1/2}}</math>. | :<math>\chi'' = \frac{\mathfrak{M}}{(2\chi)^{1/2}}</math>. | ||
पहले | जैसे पहले, हम <math>\chi'</math> से गुणा करते हैं और समाकलित करते हैं ताकि हमें निम्नलिखित प्राप्त हो: | ||
:<math>\frac{1}{2}\chi'^2 = \mathfrak{M} (2\chi)^{1/2}</math>, | :<math>\frac{1}{2}\chi'^2 = \mathfrak{M} (2\chi)^{1/2}</math>, | ||
Line 84: | Line 81: | ||
:<math>\chi^{-1/4}\chi' = 2^{3/4} \mathfrak{M}^{1/2}</math>. | :<math>\chi^{-1/4}\chi' = 2^{3/4} \mathfrak{M}^{1/2}</math>. | ||
यह | यह आसानी से ξ पर एकीकृत किया जा सकता है और निम्नलिखित प्राप्त होता है: | ||
:<math>\frac{4}{3}\chi_\mathrm{w}^{3/4} = 2^{3/4} \mathfrak{M}^{1/2} d</math>, | :<math>\frac{4}{3}\chi_\mathrm{w}^{3/4} = 2^{3/4} \mathfrak{M}^{1/2} d</math>, | ||
जहां <math>\chi_\mathrm{w}</math> वॉल के प्रति (शीथ की किनारे के सापेक्षिक) संयुक्त प्रायोजित) संभावना है, और d शीथ की मोटाई है। फिर से चरणों <math>u_0</math> और <math>\varphi</math> में बदलने और ध्यान देने के लिए कि वॉल में आयन की धारा <math>J=e\,n_0\,u_0</math> है, निम्नलिखित प्राप्त होता है: | |||
:<math>J = \frac{4}{9} \left(\frac{2e}{m_i}\right)^{1/2} \frac{|\varphi_w|^{3/2}}{4\pi d^2}</math>. | :<math>J = \frac{4}{9} \left(\frac{2e}{m_i}\right)^{1/2} \frac{|\varphi_w|^{3/2}}{4\pi d^2}</math>. | ||
यह समीकरण '''चाइल्ड के नियम''' के रूप में जाना जाता है, क्योंकि क्लेमेंट डी. चाइल्ड (1868–1933) ने इसे 1911 में सर्वप्रथम प्रकाशित किया, या फिर '''चाइल्ड-लैंगम्यूर के नियम''' के रूप में जाना जाता है, जो आदर्श लैंगम्यूर, जिन्होंने इसे स्वतंत्र रूप से खोजा और 1913 में प्रकाशित किया। यह पहली बार वैक्यूम डायोड में स्थान-आवेश सीमित धारा को देने के लिए उपयोग किया गया जिसमें इलेक्ट्रोड अंतराल d होता है। इसे विभव पात के आधार पर डीबाई शीथ की मोटाई को प्राप्त करने के लिए भी व्युत्क्रम किया जा सकता है जिसमें <math>J=j_\mathrm{ion}^\mathrm{sat}</math> को सेट करके: | |||
:<math> | :<math> | ||
d = \frac{2}{3} \left(\frac{2e}{m_\mathrm{i}}\right)^{1/4} \frac{|\varphi_\mathrm{w}|^{3/4}}{2\sqrt{\pi j_\mathrm{ion}^\mathrm{sat}}}</math>. | d = \frac{2}{3} \left(\frac{2e}{m_\mathrm{i}}\right)^{1/4} \frac{|\varphi_\mathrm{w}|^{3/4}}{2\sqrt{\pi j_\mathrm{ion}^\mathrm{sat}}}</math>. | ||
हाल के वर्षों में, | हाल के वर्षों में, चाइल्ड-लैंगम्यूर (सीएल) का नियम दो समीक्षा पत्रों में रिपोर्ट के अनुसार संशोधित किया गया है।<ref> | ||
<ref> | |||
{{cite journal | {{cite journal | ||
| author1= P. Zhang, A. Valfells, L. K. Ang, J. W. Luginsland and Y. Y. Lau | | author1= P. Zhang, A. Valfells, L. K. Ang, J. W. Luginsland and Y. Y. Lau | ||
Line 110: | Line 106: | ||
| url=https://doi.org/10.1063/1.4978231 | | url=https://doi.org/10.1063/1.4978231 | ||
}} | }} | ||
</ref>, | </ref>,<ref> | ||
<ref> | |||
{{cite journal | {{cite journal | ||
| author1= P Zhang, Y. S. Ang, A. L. Garner, A. Valfells, J. L. Luginsland, and L. K. Ang | | author1= P Zhang, Y. S. Ang, A. L. Garner, A. Valfells, J. L. Luginsland, and L. K. Ang | ||
Line 127: | Line 122: | ||
}} | }} | ||
</ref> | </ref> | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[एंबिपोलर प्रसार]] | * [[एंबिपोलर प्रसार]] | ||
* | * द्विक परत (प्लाज्मा), विशेष रूप से एकल, शून्य तापमान बीम द्वारा बनाई गई धारा-ले जाने वाली द्विक परत | ||
* [[प्लाज्मा (भौतिकी) अनुप्रयोगों के लेखों की सूची]] | * [[प्लाज्मा (भौतिकी) अनुप्रयोगों के लेखों की सूची]] | ||
Revision as of 16:01, 3 June 2023
डीबाई शीथ (जिसे वैद्युतस्थैतिक शीथ भी कहा जाता है) प्लाज्मा में एक धनात्मक आयनों के अधिकतम घनत्व वाली परत है, अतः संपूर्ण धनात्मक आवेश, जो संपर्क में आए पदार्थ की सतह पर विपरीत ऋणात्मक आवेश को संतुलित करता है। इस प्रकार की परत की मोटाई कई डीबाई लंबाई की होती है, जिसका आकर प्लाज्मा की विभिन्न विशेषताओं (जैसे तापमान, घनत्व, आदि) पर निर्भर करता है।
डीबाई शीथ प्लाज्मा में उत्पन्न होती है क्योंकि इलेक्ट्रॉनों का तापमान सामान्यतः आयनों की तुलना में परिमाण की कोटि या उससे अधिक होते हैं और उनका भार बहुत काम होता है। परिणामस्वरूप, वे कम से कम घटक से आयनों की तुलना में तीव्र होते हैं। इस प्रकार, किसी प्रदार्थ सतह के संपर्क में, अतः, इलेक्ट्रॉन प्लाज्मा से बाहर निकल जाएंगे, जो सतह को स्थूल (बल्क) प्लाज्मा के सापेक्ष ऋणात्मक आवेशित करता है। डीबाई शील्डिंग के कारण, संक्रमण क्षेत्र की प्रमाण-लंबाई डीबाई लंबाई होगी। विभव बढ़ने के साथ, अधिक से अधिक इलेक्ट्रॉन शीथ विभव द्वारा परावर्तित होंगे। अतः इस प्रकार अंततः साम्यावस्था स्थापित होती है जब विभावान्तर, इलेक्ट्रॉन तापमान से कुछ अधिक होता है।
डीबाई शीथ एक प्लाज्मा से ठोस सतह का संक्रमण है। दो प्लाज्मा क्षेत्रों के बीच भी एक ही प्रकार की भौतिकी सम्मिलित होती है; इन क्षेत्रों के बीच संक्रमण को द्विपरत (डबल लेयर) के रूप में जाना जाता है, और इसमें एक धनात्मक और एक ऋणात्मक परत होती है।
विवरण
शीथ का पहली बार वर्णन अमेरिकी भौतिकविद इरविंग लैंगमुइर द्वारा किया गया। 1923 में उन्होंने लिखा था:
- "इलेक्ट्रॉन ऋणात्मक इलेक्ट्रोड द्वारा प्रतिकर्षित होते हैं जबकि धनात्मक आयन उसकी ओर आकर्षित होते हैं। प्रत्येक ऋणात्मक इलेक्ट्रोड के आस-पास इस प्रकार एक निश्चित मोटाई की शीथ होती है जिसमें केवल धनात्मक आयन और उदासीन परमाणु होते हैं। [..] शीथ के बाहरी सतह से इलेक्ट्रॉन परावर्तित होते हैं जबकि शीथ तक पहुंचने वाले सभी धनात्मक आयन इलेक्ट्रोड की ओर आकर्षित होते हैं। [..] इसका सीधा अनुसरण है कि इलेक्ट्रोड तक पहुंचने वाले धनात्मक आयन धारा में कोई परिवर्तन नहीं होता है। वास्तव में, धनात्मक आयन शीथ द्वारा विद्युतविस्फोट से पूर्ण रूप से आवरणित रहता है और इसका विभव आर्क में हो रही परिघटनाओं और इलेक्ट्रोड की ओर प्रवाहित धारा पर प्रभाव नहीं डाल सकती।"[1]
लैंगम्यूयर और उनके सह-लेखक अल्बर्ट डब्ल्यू. हुल ने और भी विवरण दिए हैं, जिसमें थर्मायनिक वाल्व में एक शीथ निर्मित होती है:
- "चित्र 1 में ग्राफिक रूप से दिखाया गया है कि किसी स्थिति में ऐसे ट्यूब जिसमें मर्क्युरी वाष्प विद्यामान होती है। फिलामेंट और प्लेट के बीच का स्थान "प्लाज्मा" के नाम से जाने जाने वाले इलेक्ट्रॉनों और धनात्मक आयनों के मिश्रण से भरा होता है, जो लगभग बराबर संख्या में होते हैं। प्लाज्मा में डूबा एक तार, इसके सापेक्ष शून्य क्षमता पर, प्रत्येक आयन और इलेक्ट्रॉन को अवशोषित कर लेते है जो उस पर टकराते हैं। क्योंकि इलेक्ट्रॉन आयनों की तुलना में लगभग 600 गुना तीव्रता से चलते हैं, अतः तार पर आयनों की तुलना में 600 गुना अधिक इलेक्ट्रॉन टकराएंगे। यदि तार को आवरणयुक्त (इंसुलेट) किया गया है, तो वह उस धनात्मक विभव को धारण करेगा जिससे वह समान संख्या में इलेक्ट्रॉन और आयन प्राप्त करता है, अर्थात ऐसा विभव जिससे उसकी ओर जाने वाले सभी इलेक्ट्रॉनों को प्रतिकर्षित करता है, 600 में से 1 को प्रतिकर्षित करता है।"
- "मान लीजिए कि यह तार, जिसे हम ग्रिड का भाग मान सकते हैं, विद्युत ट्यूब के माध्यम से धारा नियंत्रित करने की दृष्टि से और भी अधिक ऋणात्मक बनाया जाता है। अतः इसकी ओर आने वाले सभी इलेक्ट्रॉन आकर्षित होंगे, लेकिन यह सभी धनात्मक आयनों को प्राप्त करेगा जो इसकी ओर प्रगामित होते हैं। इस प्रकार, तार के आस-पास एक ऐसा क्षेत्र निर्मित होता है जिसमें धनात्मक आयन होते है और कोई इलेक्ट्रॉन नहीं होता है, जैसा कि चित्र 1 में चित्रित किया गया है। धनात्मक आयनों के निकट आते ही वे तार की ओर तीव्रता से बढ़ने लगते है, इस शीथ में, धनात्मक आयनों की विभव प्रवणता होती है, जैसे कि तार से दूर होने पर विभव कम और कम ऋणात्मक होता है, और एक निश्चित दूरी पर प्लाज्मा के विभव के बराबर होती है। यह दूरी हम इसे शीथ की सीमा के रूप में परिभाषित करते हैं। इस दूरी के पार तार के विभव के कारण कोई प्रभाव नहीं होगा।"[2]
गणितीय निरूपण
प्लानर शीथ समीकरण
डीबाई शीथ के मात्रात्मक भौतिकी को चार प्रक्रियाओं द्वारा निर्धारित किया जाता है:
आयनों का ऊर्जा संरक्षण: यदि हम सरलता के लिए मान लेते हैं कि शीथ में प्रवेश करने वाले द्रव्यमान के ठंडे आयनों की गति और इलेक्ट्रॉन के विपरीत आवेश वाली होते है, शीथ विभव में ऊर्जा के संरक्षण की आवश्यकता होती है
- ,
जहाँ इलेक्ट्रॉन का आवेश है जिसे धनात्मक लिया जाता है, अर्थात् x ।
आयन सततता: स्थिर स्थिति में, आयन कहीं भी नहीं बढ़ते हैं, अतः फ्लक्स हर जगह समान होता है:
- .
इलेक्ट्रॉनों के लिए बोल्ट्जमैन संबंध: चूँकि अधिकांश इलेक्ट्रॉन परावर्तित होते हैं, इसलिए उनका घनत्व निम्नलिखित प्रकार दिया जाता है
- .
पोयसन का समीकरण: विद्युतस्थैतिक विभव की वक्रता नेट आवेश घनत्व से निम्न रूप में संबंधित होती है:
- .
इन समीकरणों को संयोजित करके और इन्हें विमाहीन विभव, स्थान और आयन की गति के अवधारणाओं के रूप में लिखने पर,
हमें शीथ समीकरण पर प्राप्त होता हैं:
- .
बोह्म शीथ मापदंड
शीथ समीकरण को एक बार से गुणा करके समाकलित किया जा सकता है:
शीथ एज () पर, हम विभव को शून्य () के रूप में परिभाषित कर सकते हैं और मान सकते हैं कि विद्युत क्षेत्र भी शून्य () है। इन सीमा स्थितियों के साथ, समाधान को मिलाने से निम्न प्राप्त होता है:
यह आसानी से संवृत रूप में एक पूर्णांक के रूप में पुनर्लेखित किया जा सकता है, हालांकि इसे केवल संख्यात्मक रूप से हल किया जा सकता है। फिर भी, एक महत्वपूर्ण जानकारी की विश्लेषणात्मक रूप से प्राप्त किया जा सकता है। चूँकि बायीं ओर का भाग एक वर्ग है, अतः दायीं ओर का भाग भी के प्रत्येक मान के लिए गैर-ऋणात्मक होना चाहिए, विशेषकर छोटे मानों के लिए। के आस-पास के टेलर विस्तार को देखते हुए, हम देखते हैं कि जो पहला लुप्त नहीं होता है, वह द्विघातीय पद होता है, ताकि हमें आवश्यकता हो
- ,
या
- ,
या
- .
इस असमानता को इसके खोजकर्ता डेविड बोहम के नाम पर बोह्म शीथ मापदंड के रूप में जाना जाता है। यदि आयन शीथ में बहुत धीमी गति से प्रवेश कर रहे हों, तो शीथ पोटेंशियल प्लाज्मा में अपना "ईट" पथ बनाएगा ताकि उन्हें तेजी से गतिशील करें। अंत में एक ऐसी तथाकथित प्री-शीथ विकसित होगी जिसमें के क्रमांक पर विभव पात होगा और एक माप उत्पन्न होगी जो आयन स्रोत के भौतिकी द्वारा निर्धारित होगी (प्रायः प्लाज्मा की विमाओं के समान होती है)। सामान्यतः बोह्म मापदंड बराबरी के साथ प्रभारित होगा, लेकिन कुछ स्थितियों में ऐसी स्थिति होती है जहां आयन शीथ में अध्यावेगशील गति के साथ प्रवेश करते हैं।
द चाइल्ड-लैंगम्यूर नियम
यद्यपि शीथ मापदंड को सामान्यतः संख्यात्मक रूप से अंकीय रूप से निर्धारित किया जाना चाहिए, लेकिन हम पद की उपेक्षा करके एक उपायुक्त समाधान निर्धारित कर सकते हैं। इसका अर्थ है कि शीथ में इलेक्ट्रॉन घनत्व की उपेक्षा किया जाता है, या केवल उस भाग का विश्लेषण किया जाता है जहां इलेक्ट्रॉन नहीं होते हैं। "फ्लोटिंग" सतह के लिए, जिसे किसी भी प्लाज्मा से कोई नेट धारा प्रवाहित नहीं होती है, यह उपयुक्त लेकिन अविस्मरणीय अनुमान है। सतह के लिए दृढ़ता से ऋणात्मक पूर्वाग्रहित है ताकि यह आयन संतृप्ति धारा को आकर्षित कर सके, सन्निकटन बहुत अच्छा है। सामान्यतः, हालांकि यह पूरी तरह से आवश्यक नहीं होता है, समीकरण को आगे और आसान रूप में साधारित करने के लिए को अत्यधिक संख्यात्मक मान लेने के द्वारा और अपेक्षित रूप लेता है। इसके बाद शीथ मापदंड का सरल रूप लेता है।
- .
जैसे पहले, हम से गुणा करते हैं और समाकलित करते हैं ताकि हमें निम्नलिखित प्राप्त हो:
- ,
या
- .
यह आसानी से ξ पर एकीकृत किया जा सकता है और निम्नलिखित प्राप्त होता है:
- ,
जहां वॉल के प्रति (शीथ की किनारे के सापेक्षिक) संयुक्त प्रायोजित) संभावना है, और d शीथ की मोटाई है। फिर से चरणों और में बदलने और ध्यान देने के लिए कि वॉल में आयन की धारा है, निम्नलिखित प्राप्त होता है:
- .
यह समीकरण चाइल्ड के नियम के रूप में जाना जाता है, क्योंकि क्लेमेंट डी. चाइल्ड (1868–1933) ने इसे 1911 में सर्वप्रथम प्रकाशित किया, या फिर चाइल्ड-लैंगम्यूर के नियम के रूप में जाना जाता है, जो आदर्श लैंगम्यूर, जिन्होंने इसे स्वतंत्र रूप से खोजा और 1913 में प्रकाशित किया। यह पहली बार वैक्यूम डायोड में स्थान-आवेश सीमित धारा को देने के लिए उपयोग किया गया जिसमें इलेक्ट्रोड अंतराल d होता है। इसे विभव पात के आधार पर डीबाई शीथ की मोटाई को प्राप्त करने के लिए भी व्युत्क्रम किया जा सकता है जिसमें को सेट करके:
- .
हाल के वर्षों में, चाइल्ड-लैंगम्यूर (सीएल) का नियम दो समीक्षा पत्रों में रिपोर्ट के अनुसार संशोधित किया गया है।[3],[4]
यह भी देखें
- एंबिपोलर प्रसार
- द्विक परत (प्लाज्मा), विशेष रूप से एकल, शून्य तापमान बीम द्वारा बनाई गई धारा-ले जाने वाली द्विक परत
- प्लाज्मा (भौतिकी) अनुप्रयोगों के लेखों की सूची
फुटनोट्स
- ↑ Langmuir, Irving, "Positive Ion Currents from the Positive Column of Mercury Arcs" (1923) Science, Volume 58, Issue 1502, pp. 290-291
- ↑ Albert W. Hull and Irving Langmuir, "Control of an Arc Discharge by Means of a Grid", Proc Natl Acad Sci USA. 1929 March 15; 15(3): 218–225
- ↑
P. Zhang, A. Valfells, L. K. Ang, J. W. Luginsland and Y. Y. Lau (2017). "100 years of the physics of diodes". Applied Physics Reviews. 4 (1): 011304. Bibcode:2017ApPRv...4a1304Z. doi:10.1063/1.4978231.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ↑
P Zhang, Y. S. Ang, A. L. Garner, A. Valfells, J. L. Luginsland, and L. K. Ang (2021). "Space–charge limited current in nanodiodes: Ballistic, collisional, and dynamical effects". Journal of Applied Physics. 129 (10): 100902. Bibcode:2021JAP...129j0902Z. doi:10.1063/5.0042355. hdl:20.500.11815/2643. S2CID 233643434.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)
श्रेणी:प्लाज्मा भौतिकी श्रेणी:पीटर डेबी