डेबी लंबाई: Difference between revisions
(Created page with "{{Short description|Measure of electrostatic effect}} प्लाज्मा (भौतिकी) और इलेक्ट्रोलाइट्स में,...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Measure of electrostatic effect}} | {{Short description|Measure of electrostatic effect}} | ||
[[प्लाज्मा (भौतिकी)]] और [[इलेक्ट्रोलाइट]] | [[प्लाज्मा (भौतिकी)]] और [[इलेक्ट्रोलाइट|इलेक्ट्रोलाइट्स]] में '''डेबी की लंबाई''' जिसे <math>\lambda_{\rm D}</math>Debye त्रिज्या या Debye-Hückel स्क्रीनिंग लंबाई के रूप में प्रदर्शित करते हैं, इसका रासायनिक विज्ञान में उचित [[समाधान (रसायन विज्ञान)|समाधान]] के लिए आवेश वाहक के शुद्ध विद्युत स्थैतिक प्रभाव का उपाय है और इसका विद्युत स्थैतिक प्रभाव कितनी दूर तक बना रहता है।<ref>{{cite journal |url=http://digital.library.wisc.edu/1793/79225 |last1=Debye |first1=P. |last2=Hückel |first2=E. |orig-year=1923 |trans-title=The theory of electrolytes. I. Freezing point depression and related phenomenon |title=इलेक्ट्रोलाइट्स के सिद्धांत पर। I. हिमांक बिंदु अवसाद और संबंधित घटना|journal=[[Physikalische Zeitschrift]] |volume=24 |issue=9 |pages=185–206 |translator-first=Michael J. |translator-last=Braus |year=2019 }}</ref> इस प्रकार प्रत्येक डेबी लंबाई के साथ आवेश तेजी से विद्युत-क्षेत्र स्क्रीनिंग कर रहे हैं और विद्युत क्षमता परिमाण में 1/E का गणितीय निरंतर घट जाता है। इस डेबी क्षेत्र का उचित आयतन होता है जिसकी त्रिज्या डेबी लंबाई के समान होती है। इस प्रकार [[प्लाज्मा भौतिकी]], [[इलेक्ट्रोलाइट्स]] और [[कोलाइड|कोलाइड्स]] ([[डीएलवीओ सिद्धांत]]) में डेबी की लंबाई का विशेष महत्वपूर्ण पैरामीटर है। इसी डेबी स्क्रीनिंग तरंग सदिश <math>k_{\rm D}=1/\lambda_{\rm D}</math> घनत्व के कणों के लिए <math>n</math>, मान वाले <math>q</math> आवेश पर उचित तापमान <math>T</math> द्वारा दिया गया है। जिसके फलस्वरूप<math> k_{\rm D}^2=4\pi n q^2/(k_{\rm B}T) </math> गॉसियन इकाई में प्राप्त होता हैं। इस प्रकार एमकेएस इकाइयों में भाव नीचे दिए जाएंगे। इसके कारण बहुत कम तापमान पर समान मात्रा में (<math>T \to 0</math>) को थॉमस-फर्मी स्क्रीनिंग या थॉमस-फर्मी लंबाई और थॉमस-फर्मी तरंग सदिश के रूप में जाना जाता है। जो कमरे के तापमान पर धातुओं में इलेक्ट्रॉनों के व्यवहार का वर्णन करता हैं। | ||
डेबी लंबाई का नाम डच-अमेरिकी भौतिक विज्ञानी और रसायनज्ञ [[पीटर डेबी]] (1884-1966) के नाम पर रखा गया है, जो रसायन विज्ञान में नोबेल पुरस्कार विजेता हैं। | डेबी लंबाई का नाम डच-अमेरिकी भौतिक विज्ञानी और रसायनज्ञ [[पीटर डेबी]] (1884-1966) के नाम पर रखा गया है, जो रसायन विज्ञान में नोबेल पुरस्कार विजेता हैं। | ||
== भौतिक उत्पत्ति == | == भौतिक उत्पत्ति == | ||
डेबी की लंबाई स्वाभाविक रूप से मोबाइल आवेश की बड़ी प्रणालियों के ऊष्मागतिकी विवरण में उत्पन्न होती है। जिसकी इस व्यवस्था में <math>N</math> विभिन्न प्रकार के मान <math>j</math> प्रजाति वाले आवेश के रूप में वहन करती है, जो <math>n_j(\mathbf{r})</math> स्थिति पर <math>\mathbf{r}</math> के लिए <math>q_j</math> और [[एकाग्रता]] पर वहन करती है, इस प्रकार तथाकथित इस संरचना के अनुसार इन आवेशों को एक सतत माध्यम में वितरित किया जाता है, जिसकी विशेषता केवल इसकी सापेक्ष स्थैतिक पारगम्यता <math>\varepsilon_r</math> होती है, इस माध्यम के भीतर आवेशों का यह वितरण एक विद्युत क्षमता को जन्म देता है <math>\Phi(\mathbf{r})</math> पोइसन के समीकरण को संतुष्ट करता है: | |||
इस माध्यम के भीतर आवेशों का यह वितरण एक विद्युत क्षमता को जन्म देता है <math>\Phi(\mathbf{r})</math> पोइसन के समीकरण को संतुष्ट करता है: | |||
<math display="block"> \varepsilon \nabla^2 \Phi(\mathbf{r}) = -\, \sum_{j = 1}^N q_j \, n_j(\mathbf{r}) - \rho_{\rm ext}(\mathbf{r}),</math> | <math display="block"> \varepsilon \nabla^2 \Phi(\mathbf{r}) = -\, \sum_{j = 1}^N q_j \, n_j(\mathbf{r}) - \rho_{\rm ext}(\mathbf{r}),</math> | ||
जहाँ <math>\varepsilon \equiv \varepsilon_r \varepsilon_0</math>, <math>\varepsilon_0</math> [[विद्युत स्थिरांक]] है, और <math>\rho_{\rm ext}</math> माध्यम का आवेश घनत्व बाहरी तार्किक रूप से, स्थानिक रूप से नहीं है। | |||
<math>\Phi(\mathbf{r})</math> मोबाइल मान न केवल स्थापित करने में योगदान करते हैं लेकिन संबंधित कूलम्ब के नियम <math>- q_j \, \nabla \Phi(\mathbf{r})</math> के उत्तर में भी आगे बढ़ते हैं, इस प्रकार यदि हम यह मानते हैं कि प्रणाली पूर्ण तापमान पर उत्पन्न होने वाली [[गर्मी स्नान|तापमान]] <math>T</math> के साथ [[थर्मोडायनामिक संतुलन|ऊष्मागतिकी संतुलन]] में है, तो इस स्थ्ति में फिर असतत आवेशों की सांद्रता, <math>n_j(\mathbf{r})</math> ऊष्मागतिकी (पहनावा) औसत और संबंधित विद्युत क्षमता को ऊष्मागतिकी माध्य क्षेत्र सिद्धांत माना जा सकता है। इन धारणाओं के साथ इसकी एकाग्रता <math>j</math> आवेश प्रजाति का वर्णन बोल्ट्जमान वितरण द्वारा किया गया है, | |||
इन धारणाओं के साथ | |||
<math display="block"> n_j(\mathbf{r}) = n_j^0 \, \exp\left( - \frac{q_j \, \Phi(\mathbf{r})}{k_{\rm B} T} \right),</math> | <math display="block"> n_j(\mathbf{r}) = n_j^0 \, \exp\left( - \frac{q_j \, \Phi(\mathbf{r})}{k_{\rm B} T} \right),</math> | ||
जहाँ <math>k_{\rm B}</math> [[बोल्ट्जमैन स्थिरांक]] है और जहाँ है <math>n_j^0</math> अर्थ है, जिसके लिए इन संस्करणों के आरोपों की एकाग्रता <math>j</math> द्वारा प्रदर्शित होती हैं। | |||
पोइसन समीकरण में तात्क्षणिक सांद्रता और क्षमता की पहचान बोल्ट्जमैन वितरण में उनके माध्य-क्षेत्र समकक्षों के साथ पॉसॉन-बोल्ट्जमान समीकरण प्राप्त करता है: | पोइसन समीकरण में तात्क्षणिक सांद्रता और क्षमता की पहचान बोल्ट्जमैन वितरण में उनके माध्य-क्षेत्र समकक्षों के साथ पॉसॉन-बोल्ट्जमान समीकरण प्राप्त करता है: | ||
Line 28: | Line 24: | ||
</math> | </math> | ||
जिसे डेबी-हुकेल समीकरण के रूप में भी जाना जाता है:<ref name=Kirby>{{cite book |last=Kirby |first=B. J. |title=Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices |location=New York |publisher=Cambridge University Press |year=2010 |isbn=978-0-521-11903-0 }}</ref><ref name=DLi>{{cite book |last=Li |first=D. | title=माइक्रोफ्लुइडिक्स में इलेक्ट्रोकाइनेटिक्स|publisher=Academic Press |isbn=0-12-088444-5 |year=2004 }}</ref><ref name=Clemmow>{{cite book |title=कणों और प्लाज़्मा के इलेक्ट्रोडायनामिक्स|url=https://books.google.com/books?id=SBNNzUrTjecC&q=particles+plasmas+inauthor:Clemmow&pg=PP1 | author=PC Clemmow & JP Dougherty | isbn=978-0-201-47986-7 |year=1969 |publisher=[[Addison-Wesley]] |location=Redwood City CA|pages=§ 7.6.7, p. 236 ff}}</ref><ref name=Robinson>{{cite book |title=इलेक्ट्रोलाइट समाधान|page=76 |url=https://books.google.com/books?id=6ZVkqm-J9GkC&pg=PR3 |author=RA Robinson &RH Stokes| isbn=978-0-486-42225-1 |publisher=[[Dover Publications]] |location=Mineola, NY |year=2002}}</ref><ref name=Brydges>See {{cite journal| last1=Brydges|first1=David C.| last2=Martin|first2=Ph. A.|journal=Journal of Statistical Physics|volume=96|issue=5/6| year=1999|pages=1163–1330|doi=10.1023/A:1004600603161|title=Coulomb Systems at Low Density: A Review|arxiv = cond-mat/9904122 |bibcode = 1999JSP....96.1163B |s2cid=54979869}}</ref> | जिसे डेबी-हुकेल समीकरण के रूप में भी जाना जाता है:<ref name=Kirby>{{cite book |last=Kirby |first=B. J. |title=Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices |location=New York |publisher=Cambridge University Press |year=2010 |isbn=978-0-521-11903-0 }}</ref><ref name=DLi>{{cite book |last=Li |first=D. | title=माइक्रोफ्लुइडिक्स में इलेक्ट्रोकाइनेटिक्स|publisher=Academic Press |isbn=0-12-088444-5 |year=2004 }}</ref><ref name=Clemmow>{{cite book |title=कणों और प्लाज़्मा के इलेक्ट्रोडायनामिक्स|url=https://books.google.com/books?id=SBNNzUrTjecC&q=particles+plasmas+inauthor:Clemmow&pg=PP1 | author=PC Clemmow & JP Dougherty | isbn=978-0-201-47986-7 |year=1969 |publisher=[[Addison-Wesley]] |location=Redwood City CA|pages=§ 7.6.7, p. 236 ff}}</ref><ref name=Robinson>{{cite book |title=इलेक्ट्रोलाइट समाधान|page=76 |url=https://books.google.com/books?id=6ZVkqm-J9GkC&pg=PR3 |author=RA Robinson &RH Stokes| isbn=978-0-486-42225-1 |publisher=[[Dover Publications]] |location=Mineola, NY |year=2002}}</ref><ref name=Brydges>See {{cite journal| last1=Brydges|first1=David C.| last2=Martin|first2=Ph. A.|journal=Journal of Statistical Physics|volume=96|issue=5/6| year=1999|pages=1163–1330|doi=10.1023/A:1004600603161|title=Coulomb Systems at Low Density: A Review|arxiv = cond-mat/9904122 |bibcode = 1999JSP....96.1163B |s2cid=54979869}}</ref> | ||
दायीं ओर का दूसरा शब्द उन प्रणालियों के लिए | दायीं ओर का दूसरा शब्द उन प्रणालियों के लिए विलुप्त हो जाती है जो विद्युत रूप से तटस्थ हैं। कोष्ठक में शब्द द्वारा विभाजित <math>\varepsilon</math>, एक व्युत्क्रम लंबाई वर्ग और द्वारा की इकाइयाँ हैं, इसके फलस्वरूप [[आयामी विश्लेषण]] विशेषता लंबाई पैमाने की परिभाषा की ओर जाता है।<math display="block"> \lambda_{\rm D} = | ||
[[आयामी विश्लेषण]] विशेषता लंबाई पैमाने की परिभाषा की ओर जाता | |||
<math display="block"> \lambda_{\rm D} = | |||
\left(\frac{\varepsilon \, k_{\rm B} T}{\sum_{j = 1}^N n_j^0 \, q_j^2}\right)^{1/2}</math> | \left(\frac{\varepsilon \, k_{\rm B} T}{\sum_{j = 1}^N n_j^0 \, q_j^2}\right)^{1/2}</math> | ||
जिसे | |||
<math display="block"> \nabla^2 \Phi(\mathbf{r}) = | |||
जिसे सामान्यतः डेबी हुकेल लंबाई के रूप में जाना जाता है। डेबी हुकेल समीकरण में एकमात्र विशेषता लंबाई पैमाने के रूप में, <math>\lambda_D</math> संभावित और आवेशित संस्करणों की सांद्रता में भिन्नता के लिए पैमाना निर्धारित करता है। सभी आवेशित प्रजातियाँ डेबी-हुकेल लंबाई में उसी तरह से योगदान करती हैं, भले ही उनके आरोपों के संकेत कुछ भी हों। विद्युत रूप से तटस्थ प्रणाली के लिए, पॉसों समीकरण बन जाता है<math display="block"> \nabla^2 \Phi(\mathbf{r}) = | |||
\lambda_{\rm D}^{-2} \Phi(\mathbf{r}) - \frac{\rho_{\rm ext}(\mathbf{r})}{\varepsilon} | \lambda_{\rm D}^{-2} \Phi(\mathbf{r}) - \frac{\rho_{\rm ext}(\mathbf{r})}{\varepsilon} | ||
</math> | </math>डेबी स्क्रीनिंग को स्पष्ट करने के लिए, बाहरी बिंदु आवेश द्वारा उत्पन्न क्षमता <math>\rho_{\rm ext} = Q\delta(\mathbf{r})</math> है<math display="block"> \Phi(\mathbf{r}) = \frac{Q}{4\pi\varepsilon r} e^{-r/\lambda_{\rm D}}</math> | ||
डेबी स्क्रीनिंग को स्पष्ट करने के लिए, बाहरी बिंदु आवेश द्वारा उत्पन्न क्षमता <math>\rho_{\rm ext} = Q\delta(\mathbf{r})</math> है | |||
<math display="block"> \Phi(\mathbf{r}) = \frac{Q}{4\pi\varepsilon r} e^{-r/\lambda_{\rm D}}</math> | |||
डेबी लंबाई की दूरी पर नंगे कूलम्ब क्षमता को माध्यम द्वारा घातीय रूप से जांचा जाता है: इसे डेबी स्क्रीनिंग या परिरक्षण विद्युत क्षेत्रीय स्क्रीनिंग करने के लिए उपयोग जाता है। | |||
डेबी-हुकेल की लंबाई बजरम की लंबाई <math>\lambda_{\rm B}</math> के संदर्भ में व्यक्त की जा सकती है, जो इस प्रकार हैं-<math display="block"> \lambda_{\rm D} = | |||
\left(4 \pi \, \lambda_{\rm B} \, \sum_{j = 1}^N n_j^0 \, z_j^2\right)^{-1/2},</math>जहाँ <math>z_j = q_j/e</math> पूर्णांक आवेश संख्या है जो पर आवेश से संबंधित है <math>j</math>-वाँ आयनिक [[प्राथमिक शुल्क|प्राथमिक मान]] के लिए <math>e</math> प्रजातियां उपलब्ध हैं। | |||
== प्लाज्मा == | |||
कमजोर संपार्श्विक प्लाज्मा के लिए, इस तरह के प्लाज्मा के दानेदार करेक्टर को ध्यान में रखते हुए डेबी परिरक्षण को बहुत सहज तरीके से प्रस्तुत किया जा सकता है। आइए हम इसके एक इलेक्ट्रॉन के बारे में एक गोले की कल्पना करें, और कूलम्ब प्रतिकर्षण के साथ और बिना इस गोले को पार करने वाले इलेक्ट्रॉनों की संख्या की तुलना करें। प्रतिकर्षण के साथ, यह संख्या छोटी होती है। इसलिए, गॉस प्रमेय के अनुसार, पहले इलेक्ट्रॉन का आभासी आवेश प्रतिकर्षण की अनुपस्थिति की तुलना में छोटा होता है। गोलाकार त्रिज्या जितनी बड़ी होगी, विक्षेपित इलेक्ट्रॉनों की संख्या उतनी ही अधिक होगी, और आभासी आवेश जितना छोटा होगा: यह डेबी परिरक्षण है। चूंकि कणों के वैश्विक विक्षेपण में कई अन्य लोगों का योगदान सम्मिलित है, इसलिए [[लैंगमुइर जांच]] ([[ डेबी म्यान | डेबी म्यान]] ) के बगल में कार्य पर ढाल के साथ भिन्नता पर इलेक्ट्रॉनों का घनत्व नहीं बदलता है। विपरीत चिह्नों वाले आवेशों के आकर्षक कूलम्बियन विक्षेपण के कारण, आयन परिरक्षण में समान योगदान देते हैं। | |||
डेबी | यह सहज ज्ञान युक्त तस्वीर डेबी शील्डिंग की एक प्रभावी गणना की ओर ले जाती है (देखें खंड II.A.2 <ref> Meyer-Vernet N (1993) Aspects of Debye shielding. American journal of physics 61, 249-257</ref>). इस गणना में बोल्ट्जमैन वितरण की धारणा आवश्यक नहीं है: यह किसी भी कण वितरण फलन के लिए कार्य करता है। इस प्रकार गणना निरंतर मीडिया के रूप में कमजोर रूप से टकराने वाले प्लास्मा के अनुमान से भी बचती है। एक एन-बॉडी गणना से पता चलता है कि एक कण के नंगे कूलम्ब त्वरण को अन्य सभी कणों द्वारा मध्यस्थता वाले योगदान द्वारा संशोधित किया जाता है, डेबी शील्डिंग का एक हस्ताक्षर (धारा 8 देखें) <ref> Escande, D. F., Bénisti, D., Elskens, Y., Zarzoso, D., & Doveil, F. (2018). Basic microscopic plasma physics from N-body mechanics, A tribute to Pierre-Simon de Laplace, Reviews of Modern Plasma Physics, 2, 1-68 </ref>). यादृच्छिक कण स्थितियों से प्रारंभ होने पर, परिरक्षण के लिए विशिष्ट समय-पैमाना एक तापीय कण के लिए एक डेबी लंबाई को पार करने का समय होता है, अर्थात प्लाज्मा आवृत्ति का व्युत्क्रम हैं। इसलिए कमजोर संपार्श्विक प्लाज्मा में, टकराव एक सहकारी स्व-संगठन प्रक्रिया लाकर एक आवश्यक भूमिका निभाते हैं: जो डेबी परिरक्षण के फलस्वरूप उपयोग में लाया जाता हैं। इस प्रकार कूलम्ब स्कैटरिंग कूलॉम्ब संघट्ट की गणना में परिमित प्रसार गुणांक प्राप्त करने के लिए यह परिरक्षण महत्वपूर्ण है। | ||
< | |||
किसी गैर समतापीय प्लाज़्मा में, इलेक्ट्रॉनों और भारी संस्करणों के लिए तापमान भिन्न हो सकते हैं, जबकि पृष्ठभूमि माध्यम को निर्वात के रूप में माना जा सकता है। {{nowrap|(<math>\varepsilon_r = 1</math>),}} और डेबी की लंबाई है<math display="block"> \lambda_{\rm D} = \sqrt{\frac{\varepsilon_0 k_{\rm B}/q_e^2}{n_e/T_e+\sum_j z_j^2n_j/T_i}}</math> | |||
जहाँ | |||
* | * L<sub>D</sub> डेबी लंबाई है, | ||
* ε<sub>0</sub> मुक्त स्थान की पारगम्यता है, | * ε<sub>0</sub> मुक्त स्थान की पारगम्यता है, | ||
* | * K<sub>B</sub> बोल्ट्जमैन स्थिरांक है, | ||
* | * Q<sub>''e''</sub> प्राथमिक मान है, | ||
* | * T<sub>e</sub>और T<sub>i</sub>क्रमशः इलेक्ट्रॉनों और आयनों के तापमान हैं, | ||
* | * N<sub>e</sub>इलेक्ट्रॉनों का घनत्व है, | ||
* | * N<sub>j</sub>धनात्मक [[आयन|आयनिक]] आवेश z के साथ परमाणु प्रजाति j<sub>j</sub>q<sub>e</sub> का घनत्व है, यहां तक कि क्वासिन्यूट्रल कोल्ड प्लाज़्मा में, जहां आयन का योगदान वस्तुतः कम आयन तापमान के कारण बड़ा लगता है, आयन शब्द वास्तव में अधिकांशतः गिरा दिया जाता है, जिससे | ||
<math display="block"> \lambda_{\rm D} = \sqrt{\frac{\varepsilon_0 k_{\rm B} T_e}{n_e q_e^2}}</math> | <math display="block"> \lambda_{\rm D} = \sqrt{\frac{\varepsilon_0 k_{\rm B} T_e}{n_e q_e^2}}</math> | ||
चूंकि यह केवल तभी मान्य होता है जब प्रक्रिया की समय-सीमा की तुलना में आयनों की गतिशीलता नगण्य हो।<ref>I. H. Hutchinson ''Principles of plasma diagnostics'' {{ISBN|0-521-38583-0}}</ref> | |||
=== विशिष्ट मूल्य === | === विशिष्ट मूल्य === | ||
अंतरिक्ष प्लास्मा में जहां इलेक्ट्रॉन घनत्व अपेक्षाकृत कम है, डेबी की लंबाई मैक्रोस्कोपिक मूल्यों तक पहुंच सकती है, जैसे मैग्नेटोस्फीयर, सौर हवा, इंटरस्टेलर माध्यम और इंटरगैलेक्टिक | अंतरिक्ष प्लास्मा में जहां इलेक्ट्रॉन घनत्व अपेक्षाकृत कम है, डेबी की लंबाई मैक्रोस्कोपिक मूल्यों तक पहुंच सकती है, जैसे मैग्नेटोस्फीयर, सौर हवा, इंटरस्टेलर माध्यम और इंटरगैलेक्टिक माध्यम से उपयोग की जाती हैं। यहां नीचे दी गई तालिका देखें:<ref>{{cite book | chapter=Chapter 20: The Particle Kinetics of Plasma |title=शास्त्रीय भौतिकी के अनुप्रयोग|author=Kip Thorne |date=2012 |url=http://www.pmaweb.caltech.edu/Courses/ph136/yr2012/ |chapter-url=http://www.pmaweb.caltech.edu/Courses/ph136/yr2012/1220.1.K.pdf |access-date=September 7, 2017}}</ref> | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! | ! प्लाज्मा | ||
! | ! घनत्व<br />{{nobold|''n''<sub>e</sub>(m<sup>−3</sup>)}} | ||
! | ! इलेक्ट्रान का तापमान<br />{{nobold|''T''(K)}} | ||
! | ! चुंबकीय क्षेत्र<br />{{nobold|''B''(T)}} | ||
! | ! डेबी की लंबाई<br />{{nobold|''λ''<sub>D</sub>(m)}} | ||
|- align=center | |- align=center | ||
! style="text-align:left" | | ! style="text-align:left" | सौर्य कोर | ||
| 10<sup>32</sup> | | 10<sup>32</sup> | ||
| 10<sup>7</sup> | | 10<sup>7</sup> | ||
Line 83: | Line 74: | ||
| 10<sup>−11</sup> | | 10<sup>−11</sup> | ||
|- align=center | |- align=center | ||
! style="text-align:left" | | ! style="text-align:left" | टोडामार्क | ||
| 10<sup>20</sup> | | 10<sup>20</sup> | ||
| 10<sup>8</sup> | | 10<sup>8</sup> | ||
Line 89: | Line 80: | ||
| 10<sup>−4</sup> | | 10<sup>−4</sup> | ||
|- align=center | |- align=center | ||
! style="text-align:left" | | ! style="text-align:left" | गैस का डिस्चार्ज | ||
| 10<sup>16</sup> | | 10<sup>16</sup> | ||
| 10<sup>4</sup> | | 10<sup>4</sup> | ||
Line 95: | Line 86: | ||
| 10<sup>−4</sup> | | 10<sup>−4</sup> | ||
|- align=center | |- align=center | ||
! style="text-align:left" | | ! style="text-align:left" | आयनोस्फेयर | ||
| 10<sup>12</sup> | | 10<sup>12</sup> | ||
| 10<sup>3</sup> | | 10<sup>3</sup> | ||
Line 101: | Line 92: | ||
| 10<sup>−3</sup> | | 10<sup>−3</sup> | ||
|- align=center | |- align=center | ||
! style="text-align:left" | | ! style="text-align:left" | मैग्नेटोस्फेयर | ||
| 10<sup>7</sup> | | 10<sup>7</sup> | ||
| 10<sup>7</sup> | | 10<sup>7</sup> | ||
Line 107: | Line 98: | ||
| 10<sup>2</sup> | | 10<sup>2</sup> | ||
|- align=center | |- align=center | ||
! style="text-align:left" | | ! style="text-align:left" | सौर्य हवा | ||
| 10<sup>6</sup> | | 10<sup>6</sup> | ||
| 10<sup>5</sup> | | 10<sup>5</sup> | ||
Line 113: | Line 104: | ||
| 10 | | 10 | ||
|- align=center | |- align=center | ||
! style="text-align:left" | | ! style="text-align:left" | इंटरस्टेलर माध्यम | ||
| 10<sup>5</sup> | | 10<sup>5</sup> | ||
| 10<sup>4</sup> | | 10<sup>4</sup> | ||
Line 119: | Line 110: | ||
| 10 | | 10 | ||
|- align=center | |- align=center | ||
! style="text-align:left" | | ! style="text-align:left" | इंटरगैलेक्टिक माध्यम | ||
| 1 | | 1 | ||
| 10<sup>6</sup> | | 10<sup>6</sup> | ||
Line 128: | Line 119: | ||
|} | |} | ||
== इलेक्ट्रोलाइट समाधान में == | |||
== | इलेक्ट्रोलाइट या कोलाइड्स में, डेबी लंबाई<ref name="ISO">International Standard ISO 13099-1, 2012, "Colloidal systems – Methods for Zeta potential determination- Part 1: Electroacoustic and Electrokinetic phenomena"</ref><ref name="Dukhin">{{cite book |last1=Dukhin |first1=A. S. |last2=Goetz |first2=P. J. |title=अल्ट्रासाउंड का उपयोग करते हुए तरल पदार्थ, नैनो- और सूक्ष्म कण और झरझरा शरीर की विशेषता|publisher=Elsevier |year=2017 |isbn=978-0-444-63908-0 }}</ref><ref>{{cite book |last1=Russel |first1=W. B. |last2=Saville |first2=D. A. |last3=Schowalter |first3=W. R. |title=कोलाइडल फैलाव|publisher=Cambridge University Press |year=1989 |isbn=0-521-42600-6 }}</ref> एक मोनोवैलेंट इलेक्ट्रोलाइट के लिए आमतौर पर प्रतीक κ के साथ निरूपित किया जाता है<sup>-1</sup> | ||
इलेक्ट्रोलाइट या कोलाइड्स में, | |||
<math display="block"> \kappa^{-1} = \sqrt{\frac{\varepsilon_{\rm r} \varepsilon_0 k_{\rm B} T}{2 e^2 I}}</math> | <math display="block"> \kappa^{-1} = \sqrt{\frac{\varepsilon_{\rm r} \varepsilon_0 k_{\rm B} T}{2 e^2 I}}</math> | ||
जहाँ | |||
* I संख्या/m | * I संख्या/m<sup>3</sup> इकाइयों में इलेक्ट्रोलाइट की आयनिक शक्ति है, | ||
* | * E<sub>0</sub> [[वैक्यूम परमिटिटिविटी]] है, | ||
* ε<sub>r</sub> सापेक्ष स्थैतिक पारगम्यता है, | * ε<sub>r</sub> सापेक्ष स्थैतिक पारगम्यता है, | ||
* | * K<sub>B</sub> बोल्ट्जमैन स्थिरांक है, | ||
* | * T [[केल्विन]] में पूर्ण तापमान है, | ||
* <math>e</math> प्राथमिक | * <math>e</math> प्राथमिक मान है, | ||
या, एक सममित मोनोवालेंट इलेक्ट्रोलाइट के लिए, | या, एक सममित मोनोवालेंट इलेक्ट्रोलाइट के लिए, | ||
<math display="block"> \kappa^{-1} = \sqrt{\frac{\varepsilon_{\rm r} \varepsilon_0 R T}{2\times10^3 F^2 C_0}}</math> | <math display="block"> \kappa^{-1} = \sqrt{\frac{\varepsilon_{\rm r} \varepsilon_0 R T}{2\times10^3 F^2 C_0}}</math> | ||
जहाँ | |||
* R गैस नियतांक है, | * R गैस नियतांक है, | ||
* | * F [[फैराडे स्थिरांक]] है, | ||
* | * C<sub>0</sub> [[दाढ़ एकाग्रता]] इकाइयों (एम या मोल / एल) में इलेक्ट्रोलाइट एकाग्रता है। | ||
वैकल्पिक रूप से, | वैकल्पिक रूप से, | ||
<math display="block"> \kappa^{-1} = \frac{1}{\sqrt{8\pi \lambda_{\rm B} N_{\rm A} \times 10^{-24} I}} </math> | <math display="block"> \kappa^{-1} = \frac{1}{\sqrt{8\pi \lambda_{\rm B} N_{\rm A} \times 10^{-24} I}} </math> | ||
जहाँ <math>\lambda_{\rm B}</math> एनएम में माध्यम की बजरम लंबाई और कारक <math> 10^{-24} </math> इकाई आयतन को क्यूबिक डीएम से क्यूबिक एनएम में होने वाले परिर्वतन से प्राप्त होता है। | |||
और कारक <math> 10^{-24} </math> इकाई आयतन को क्यूबिक डीएम से क्यूबिक एनएम में | |||
पीएच = 7, λ पर कमरे के तापमान पर विआयनीकृत पानी के लिए | पीएच = 7, λ<sub>B</sub> ≈ 1μm पर कमरे के तापमान पर विआयनीकृत पानी के लिए हैं। | ||
कमरे के तापमान पर ({{convert|20|°C|-1|disp=or}}), कोई पानी में संबंध पर विचार कर सकता है:<ref>{{cite book |last=Israelachvili |first=J. |title=इंटरमॉलिक्युलर और सरफेस फोर्स|publisher=Academic Press |year=1985 |isbn=0-12-375181-0 }}</ref> | कमरे के तापमान पर ({{convert|20|°C|-1|disp=or}}), कोई पानी में संबंध पर विचार कर सकता है:<ref>{{cite book |last=Israelachvili |first=J. |title=इंटरमॉलिक्युलर और सरफेस फोर्स|publisher=Academic Press |year=1985 |isbn=0-12-375181-0 }}</ref> | ||
<math display="block"> \kappa^{-1}(\mathrm{nm}) = \frac{0.304}{\sqrt{I(\mathrm{M})}}</math> | <math display="block"> \kappa^{-1}(\mathrm{nm}) = \frac{0.304}{\sqrt{I(\mathrm{M})}}</math> | ||
जहाँ | |||
* κ<sup>−1</sup> [[नैनोमीटर]] (एनएम) में व्यक्त किया जाता है | * κ<sup>−1</sup> [[नैनोमीटर]] (एनएम) में व्यक्त किया जाता है | ||
* | * I मोलर सांद्रता (M या mol/L) में व्यक्त की गई आयनिक शक्ति है | ||
चालकता का उपयोग करके तरल पदार्थों में | चालकता का उपयोग करके तरल पदार्थों में डेबी लंबाई के अनुमानित मूल्य का अनुमान लगाने की एक विधि है, जो आईएसओ मानक और किताब में वर्णित है,<ref name="ISO"/><ref name="Dukhin" /> | ||
== अर्धचालकों में == | == अर्धचालकों में == | ||
ठोस अवस्था उपकरणों के मॉडलिंग में डेबी की लंबाई तेजी से महत्वपूर्ण हो गई है क्योंकि लिथोग्राफिक प्रौद्योगिकियों में सुधार ने छोटे ज्यामिति को सक्षम किया है।<ref>{{cite journal| doi = 10.1021/nl071792z| volume = 7| issue = 11| pages = 3405–3409| last = Stern| first = Eric|author2=Robin Wagner |author3=Fred J. Sigworth |author4=Ronald Breaker |author5=Tarek M. Fahmy |author6=Mark A. Reed | title = नैनोवायर फील्ड इफेक्ट ट्रांजिस्टर सेंसर पर डेबी स्क्रीनिंग लंबाई का महत्व| journal = Nano Letters| date = 2007-11-01|bibcode = 2007NanoL...7.3405S | pmid=17914853 | pmc=2713684}}</ref><ref>{{cite journal|last=Guo|first=Lingjie|author2=Effendi Leobandung|author3=Stephen Y. Chou|year=199|title=A room-temperature silicon single-electron metal–oxide–semiconductor memory with nanoscale floating-gate and ultranarrow channel|journal=Applied Physics Letters|volume=70|issue=7|pages=850|bibcode=1997ApPhL..70..850G|doi=10.1063/1.118236}}<!--| access-date = 2010-10-25--></ref><ref>{{cite journal |last=Tiwari| first=Sandip| author2=Farhan Rana| author3=Kevin Chan|author4=Leathen Shi| author5=Hussein Hanafi|year=1996 |title=नैनो-क्रिस्टल मेमोरी में सिंगल चार्ज और एकांतवास प्रभाव| journal=Applied Physics Letters |volume=69 |issue=9|pages=1232|bibcode=1996ApPhL..69.1232T|doi=10.1063/1.117421}}<!--| access-date = 2010-10-25--></ref> | ठोस अवस्था उपकरणों के मॉडलिंग में डेबी की लंबाई तेजी से महत्वपूर्ण हो गई है क्योंकि लिथोग्राफिक प्रौद्योगिकियों में सुधार ने छोटे ज्यामिति को सक्षम किया है।<ref>{{cite journal| doi = 10.1021/nl071792z| volume = 7| issue = 11| pages = 3405–3409| last = Stern| first = Eric|author2=Robin Wagner |author3=Fred J. Sigworth |author4=Ronald Breaker |author5=Tarek M. Fahmy |author6=Mark A. Reed | title = नैनोवायर फील्ड इफेक्ट ट्रांजिस्टर सेंसर पर डेबी स्क्रीनिंग लंबाई का महत्व| journal = Nano Letters| date = 2007-11-01|bibcode = 2007NanoL...7.3405S | pmid=17914853 | pmc=2713684}}</ref><ref>{{cite journal|last=Guo|first=Lingjie|author2=Effendi Leobandung|author3=Stephen Y. Chou|year=199|title=A room-temperature silicon single-electron metal–oxide–semiconductor memory with nanoscale floating-gate and ultranarrow channel|journal=Applied Physics Letters|volume=70|issue=7|pages=850|bibcode=1997ApPhL..70..850G|doi=10.1063/1.118236}}<!--| access-date = 2010-10-25--></ref><ref>{{cite journal |last=Tiwari| first=Sandip| author2=Farhan Rana| author3=Kevin Chan|author4=Leathen Shi| author5=Hussein Hanafi|year=1996 |title=नैनो-क्रिस्टल मेमोरी में सिंगल चार्ज और एकांतवास प्रभाव| journal=Applied Physics Letters |volume=69 |issue=9|pages=1232|bibcode=1996ApPhL..69.1232T|doi=10.1063/1.117421}}<!--| access-date = 2010-10-25--></ref> | ||
[[अर्धचालक]] | |||
[[अर्धचालक|अर्धचालकों]] की डेबी लंबाई दी गई है: | |||
<math display="block"> L_{\rm D} = \sqrt{\frac{\varepsilon k_{\rm B} T}{q^2 N_{\rm dop}}}</math> | <math display="block"> L_{\rm D} = \sqrt{\frac{\varepsilon k_{\rm B} T}{q^2 N_{\rm dop}}}</math> | ||
जहाँ | |||
* ε परावैद्युतांक है, | * ε परावैद्युतांक है, | ||
* | * K<sub>B</sub> बोल्ट्जमैन स्थिरांक है, | ||
* | * T केल्विन में पूर्ण तापमान है, | ||
* | * Q प्राथमिक प्रभार है, और | ||
* | * N<sub>dop</sub> डोपेंट (या तो दाता या स्वीकारकर्ता) का शुद्ध घनत्व है। | ||
जब डोपिंग प्रोफाइल डेबी लंबाई से अधिक हो जाता है, तो अधिकांश वाहक अब डोपेंट के वितरण के अनुसार व्यवहार नहीं करते हैं। इसके | जब डोपिंग प्रोफाइल डेबी लंबाई से अधिक हो जाता है, तो अधिकांश वाहक अब डोपेंट के वितरण के अनुसार व्यवहार नहीं करते हैं। इसके अतिरिक्त डोपिंग ग्रेडिएंट्स के प्रोफाइल का एक उपाय एक प्रभावी प्रोफाइल प्रदान करता है जो बहुमत वाहक घनत्व के प्रोफाइल से उत्तम स्थिति में मेल खाता है। | ||
ठोस पदार्थों के संदर्भ में, डेबी लंबाई के | ठोस पदार्थों के संदर्भ में, डेबी लंबाई के अतिरिक्त थॉमस-फर्मी स्क्रीनिंग लंबाई की आवश्यकता हो सकती है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 183: | Line 171: | ||
* [[प्लाज्मा दोलन]] | * [[प्लाज्मा दोलन]] | ||
* [[परिरक्षण प्रभाव]] | * [[परिरक्षण प्रभाव]] | ||
* | * विद्युत क्षेत्रीय स्क्रीनिंग | ||
== संदर्भ == | == संदर्भ == |
Revision as of 07:36, 2 June 2023
प्लाज्मा (भौतिकी) और इलेक्ट्रोलाइट्स में डेबी की लंबाई जिसे Debye त्रिज्या या Debye-Hückel स्क्रीनिंग लंबाई के रूप में प्रदर्शित करते हैं, इसका रासायनिक विज्ञान में उचित समाधान के लिए आवेश वाहक के शुद्ध विद्युत स्थैतिक प्रभाव का उपाय है और इसका विद्युत स्थैतिक प्रभाव कितनी दूर तक बना रहता है।[1] इस प्रकार प्रत्येक डेबी लंबाई के साथ आवेश तेजी से विद्युत-क्षेत्र स्क्रीनिंग कर रहे हैं और विद्युत क्षमता परिमाण में 1/E का गणितीय निरंतर घट जाता है। इस डेबी क्षेत्र का उचित आयतन होता है जिसकी त्रिज्या डेबी लंबाई के समान होती है। इस प्रकार प्लाज्मा भौतिकी, इलेक्ट्रोलाइट्स और कोलाइड्स (डीएलवीओ सिद्धांत) में डेबी की लंबाई का विशेष महत्वपूर्ण पैरामीटर है। इसी डेबी स्क्रीनिंग तरंग सदिश घनत्व के कणों के लिए , मान वाले आवेश पर उचित तापमान द्वारा दिया गया है। जिसके फलस्वरूप गॉसियन इकाई में प्राप्त होता हैं। इस प्रकार एमकेएस इकाइयों में भाव नीचे दिए जाएंगे। इसके कारण बहुत कम तापमान पर समान मात्रा में () को थॉमस-फर्मी स्क्रीनिंग या थॉमस-फर्मी लंबाई और थॉमस-फर्मी तरंग सदिश के रूप में जाना जाता है। जो कमरे के तापमान पर धातुओं में इलेक्ट्रॉनों के व्यवहार का वर्णन करता हैं।
डेबी लंबाई का नाम डच-अमेरिकी भौतिक विज्ञानी और रसायनज्ञ पीटर डेबी (1884-1966) के नाम पर रखा गया है, जो रसायन विज्ञान में नोबेल पुरस्कार विजेता हैं।
भौतिक उत्पत्ति
डेबी की लंबाई स्वाभाविक रूप से मोबाइल आवेश की बड़ी प्रणालियों के ऊष्मागतिकी विवरण में उत्पन्न होती है। जिसकी इस व्यवस्था में विभिन्न प्रकार के मान प्रजाति वाले आवेश के रूप में वहन करती है, जो स्थिति पर के लिए और एकाग्रता पर वहन करती है, इस प्रकार तथाकथित इस संरचना के अनुसार इन आवेशों को एक सतत माध्यम में वितरित किया जाता है, जिसकी विशेषता केवल इसकी सापेक्ष स्थैतिक पारगम्यता होती है, इस माध्यम के भीतर आवेशों का यह वितरण एक विद्युत क्षमता को जन्म देता है पोइसन के समीकरण को संतुष्ट करता है:
मोबाइल मान न केवल स्थापित करने में योगदान करते हैं लेकिन संबंधित कूलम्ब के नियम के उत्तर में भी आगे बढ़ते हैं, इस प्रकार यदि हम यह मानते हैं कि प्रणाली पूर्ण तापमान पर उत्पन्न होने वाली तापमान के साथ ऊष्मागतिकी संतुलन में है, तो इस स्थ्ति में फिर असतत आवेशों की सांद्रता, ऊष्मागतिकी (पहनावा) औसत और संबंधित विद्युत क्षमता को ऊष्मागतिकी माध्य क्षेत्र सिद्धांत माना जा सकता है। इन धारणाओं के साथ इसकी एकाग्रता आवेश प्रजाति का वर्णन बोल्ट्जमान वितरण द्वारा किया गया है,
पोइसन समीकरण में तात्क्षणिक सांद्रता और क्षमता की पहचान बोल्ट्जमैन वितरण में उनके माध्य-क्षेत्र समकक्षों के साथ पॉसॉन-बोल्ट्जमान समीकरण प्राप्त करता है:
जिसे सामान्यतः डेबी हुकेल लंबाई के रूप में जाना जाता है। डेबी हुकेल समीकरण में एकमात्र विशेषता लंबाई पैमाने के रूप में, संभावित और आवेशित संस्करणों की सांद्रता में भिन्नता के लिए पैमाना निर्धारित करता है। सभी आवेशित प्रजातियाँ डेबी-हुकेल लंबाई में उसी तरह से योगदान करती हैं, भले ही उनके आरोपों के संकेत कुछ भी हों। विद्युत रूप से तटस्थ प्रणाली के लिए, पॉसों समीकरण बन जाता है
डेबी लंबाई की दूरी पर नंगे कूलम्ब क्षमता को माध्यम द्वारा घातीय रूप से जांचा जाता है: इसे डेबी स्क्रीनिंग या परिरक्षण विद्युत क्षेत्रीय स्क्रीनिंग करने के लिए उपयोग जाता है।
डेबी-हुकेल की लंबाई बजरम की लंबाई के संदर्भ में व्यक्त की जा सकती है, जो इस प्रकार हैं-
प्लाज्मा
कमजोर संपार्श्विक प्लाज्मा के लिए, इस तरह के प्लाज्मा के दानेदार करेक्टर को ध्यान में रखते हुए डेबी परिरक्षण को बहुत सहज तरीके से प्रस्तुत किया जा सकता है। आइए हम इसके एक इलेक्ट्रॉन के बारे में एक गोले की कल्पना करें, और कूलम्ब प्रतिकर्षण के साथ और बिना इस गोले को पार करने वाले इलेक्ट्रॉनों की संख्या की तुलना करें। प्रतिकर्षण के साथ, यह संख्या छोटी होती है। इसलिए, गॉस प्रमेय के अनुसार, पहले इलेक्ट्रॉन का आभासी आवेश प्रतिकर्षण की अनुपस्थिति की तुलना में छोटा होता है। गोलाकार त्रिज्या जितनी बड़ी होगी, विक्षेपित इलेक्ट्रॉनों की संख्या उतनी ही अधिक होगी, और आभासी आवेश जितना छोटा होगा: यह डेबी परिरक्षण है। चूंकि कणों के वैश्विक विक्षेपण में कई अन्य लोगों का योगदान सम्मिलित है, इसलिए लैंगमुइर जांच ( डेबी म्यान ) के बगल में कार्य पर ढाल के साथ भिन्नता पर इलेक्ट्रॉनों का घनत्व नहीं बदलता है। विपरीत चिह्नों वाले आवेशों के आकर्षक कूलम्बियन विक्षेपण के कारण, आयन परिरक्षण में समान योगदान देते हैं।
यह सहज ज्ञान युक्त तस्वीर डेबी शील्डिंग की एक प्रभावी गणना की ओर ले जाती है (देखें खंड II.A.2 [7]). इस गणना में बोल्ट्जमैन वितरण की धारणा आवश्यक नहीं है: यह किसी भी कण वितरण फलन के लिए कार्य करता है। इस प्रकार गणना निरंतर मीडिया के रूप में कमजोर रूप से टकराने वाले प्लास्मा के अनुमान से भी बचती है। एक एन-बॉडी गणना से पता चलता है कि एक कण के नंगे कूलम्ब त्वरण को अन्य सभी कणों द्वारा मध्यस्थता वाले योगदान द्वारा संशोधित किया जाता है, डेबी शील्डिंग का एक हस्ताक्षर (धारा 8 देखें) [8]). यादृच्छिक कण स्थितियों से प्रारंभ होने पर, परिरक्षण के लिए विशिष्ट समय-पैमाना एक तापीय कण के लिए एक डेबी लंबाई को पार करने का समय होता है, अर्थात प्लाज्मा आवृत्ति का व्युत्क्रम हैं। इसलिए कमजोर संपार्श्विक प्लाज्मा में, टकराव एक सहकारी स्व-संगठन प्रक्रिया लाकर एक आवश्यक भूमिका निभाते हैं: जो डेबी परिरक्षण के फलस्वरूप उपयोग में लाया जाता हैं। इस प्रकार कूलम्ब स्कैटरिंग कूलॉम्ब संघट्ट की गणना में परिमित प्रसार गुणांक प्राप्त करने के लिए यह परिरक्षण महत्वपूर्ण है।
किसी गैर समतापीय प्लाज़्मा में, इलेक्ट्रॉनों और भारी संस्करणों के लिए तापमान भिन्न हो सकते हैं, जबकि पृष्ठभूमि माध्यम को निर्वात के रूप में माना जा सकता है। (), और डेबी की लंबाई है
जहाँ
- LD डेबी लंबाई है,
- ε0 मुक्त स्थान की पारगम्यता है,
- KB बोल्ट्जमैन स्थिरांक है,
- Qe प्राथमिक मान है,
- Teऔर Tiक्रमशः इलेक्ट्रॉनों और आयनों के तापमान हैं,
- Neइलेक्ट्रॉनों का घनत्व है,
- Njधनात्मक आयनिक आवेश z के साथ परमाणु प्रजाति jjqe का घनत्व है, यहां तक कि क्वासिन्यूट्रल कोल्ड प्लाज़्मा में, जहां आयन का योगदान वस्तुतः कम आयन तापमान के कारण बड़ा लगता है, आयन शब्द वास्तव में अधिकांशतः गिरा दिया जाता है, जिससे
विशिष्ट मूल्य
अंतरिक्ष प्लास्मा में जहां इलेक्ट्रॉन घनत्व अपेक्षाकृत कम है, डेबी की लंबाई मैक्रोस्कोपिक मूल्यों तक पहुंच सकती है, जैसे मैग्नेटोस्फीयर, सौर हवा, इंटरस्टेलर माध्यम और इंटरगैलेक्टिक माध्यम से उपयोग की जाती हैं। यहां नीचे दी गई तालिका देखें:[10]
प्लाज्मा | घनत्व ne(m−3) |
इलेक्ट्रान का तापमान T(K) |
चुंबकीय क्षेत्र B(T) |
डेबी की लंबाई λD(m) |
---|---|---|---|---|
सौर्य कोर | 1032 | 107 | — | 10−11 |
टोडामार्क | 1020 | 108 | 10 | 10−4 |
गैस का डिस्चार्ज | 1016 | 104 | — | 10−4 |
आयनोस्फेयर | 1012 | 103 | 10−5 | 10−3 |
मैग्नेटोस्फेयर | 107 | 107 | 10−8 | 102 |
सौर्य हवा | 106 | 105 | 10−9 | 10 |
इंटरस्टेलर माध्यम | 105 | 104 | 10−10 | 10 |
इंटरगैलेक्टिक माध्यम | 1 | 106 | — | 105 |
इलेक्ट्रोलाइट समाधान में
इलेक्ट्रोलाइट या कोलाइड्स में, डेबी लंबाई[11][12][13] एक मोनोवैलेंट इलेक्ट्रोलाइट के लिए आमतौर पर प्रतीक κ के साथ निरूपित किया जाता है-1
- I संख्या/m3 इकाइयों में इलेक्ट्रोलाइट की आयनिक शक्ति है,
- E0 वैक्यूम परमिटिटिविटी है,
- εr सापेक्ष स्थैतिक पारगम्यता है,
- KB बोल्ट्जमैन स्थिरांक है,
- T केल्विन में पूर्ण तापमान है,
- प्राथमिक मान है,
या, एक सममित मोनोवालेंट इलेक्ट्रोलाइट के लिए,
- R गैस नियतांक है,
- F फैराडे स्थिरांक है,
- C0 दाढ़ एकाग्रता इकाइयों (एम या मोल / एल) में इलेक्ट्रोलाइट एकाग्रता है।
वैकल्पिक रूप से,
पीएच = 7, λB ≈ 1μm पर कमरे के तापमान पर विआयनीकृत पानी के लिए हैं।
कमरे के तापमान पर (20 °C or 70 °F), कोई पानी में संबंध पर विचार कर सकता है:[14]
- κ−1 नैनोमीटर (एनएम) में व्यक्त किया जाता है
- I मोलर सांद्रता (M या mol/L) में व्यक्त की गई आयनिक शक्ति है
चालकता का उपयोग करके तरल पदार्थों में डेबी लंबाई के अनुमानित मूल्य का अनुमान लगाने की एक विधि है, जो आईएसओ मानक और किताब में वर्णित है,[11][12]
अर्धचालकों में
ठोस अवस्था उपकरणों के मॉडलिंग में डेबी की लंबाई तेजी से महत्वपूर्ण हो गई है क्योंकि लिथोग्राफिक प्रौद्योगिकियों में सुधार ने छोटे ज्यामिति को सक्षम किया है।[15][16][17]
अर्धचालकों की डेबी लंबाई दी गई है:
- ε परावैद्युतांक है,
- KB बोल्ट्जमैन स्थिरांक है,
- T केल्विन में पूर्ण तापमान है,
- Q प्राथमिक प्रभार है, और
- Ndop डोपेंट (या तो दाता या स्वीकारकर्ता) का शुद्ध घनत्व है।
जब डोपिंग प्रोफाइल डेबी लंबाई से अधिक हो जाता है, तो अधिकांश वाहक अब डोपेंट के वितरण के अनुसार व्यवहार नहीं करते हैं। इसके अतिरिक्त डोपिंग ग्रेडिएंट्स के प्रोफाइल का एक उपाय एक प्रभावी प्रोफाइल प्रदान करता है जो बहुमत वाहक घनत्व के प्रोफाइल से उत्तम स्थिति में मेल खाता है।
ठोस पदार्थों के संदर्भ में, डेबी लंबाई के अतिरिक्त थॉमस-फर्मी स्क्रीनिंग लंबाई की आवश्यकता हो सकती है।
यह भी देखें
- जेरम की लंबाई
- डेबी-फाल्केनहेगन प्रभाव
- प्लाज्मा दोलन
- परिरक्षण प्रभाव
- विद्युत क्षेत्रीय स्क्रीनिंग
संदर्भ
- ↑ Debye, P.; Hückel, E. (2019) [1923]. Translated by Braus, Michael J. "इलेक्ट्रोलाइट्स के सिद्धांत पर। I. हिमांक बिंदु अवसाद और संबंधित घटना" [The theory of electrolytes. I. Freezing point depression and related phenomenon]. Physikalische Zeitschrift. 24 (9): 185–206.
- ↑ Kirby, B. J. (2010). Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. New York: Cambridge University Press. ISBN 978-0-521-11903-0.
- ↑ Li, D. (2004). माइक्रोफ्लुइडिक्स में इलेक्ट्रोकाइनेटिक्स. Academic Press. ISBN 0-12-088444-5.
- ↑ PC Clemmow & JP Dougherty (1969). कणों और प्लाज़्मा के इलेक्ट्रोडायनामिक्स. Redwood City CA: Addison-Wesley. pp. § 7.6.7, p. 236 ff. ISBN 978-0-201-47986-7.
- ↑ RA Robinson &RH Stokes (2002). इलेक्ट्रोलाइट समाधान. Mineola, NY: Dover Publications. p. 76. ISBN 978-0-486-42225-1.
- ↑ See Brydges, David C.; Martin, Ph. A. (1999). "Coulomb Systems at Low Density: A Review". Journal of Statistical Physics. 96 (5/6): 1163–1330. arXiv:cond-mat/9904122. Bibcode:1999JSP....96.1163B. doi:10.1023/A:1004600603161. S2CID 54979869.
- ↑ Meyer-Vernet N (1993) Aspects of Debye shielding. American journal of physics 61, 249-257
- ↑ Escande, D. F., Bénisti, D., Elskens, Y., Zarzoso, D., & Doveil, F. (2018). Basic microscopic plasma physics from N-body mechanics, A tribute to Pierre-Simon de Laplace, Reviews of Modern Plasma Physics, 2, 1-68
- ↑ I. H. Hutchinson Principles of plasma diagnostics ISBN 0-521-38583-0
- ↑ Kip Thorne (2012). "Chapter 20: The Particle Kinetics of Plasma" (PDF). शास्त्रीय भौतिकी के अनुप्रयोग. Retrieved September 7, 2017.
- ↑ 11.0 11.1 International Standard ISO 13099-1, 2012, "Colloidal systems – Methods for Zeta potential determination- Part 1: Electroacoustic and Electrokinetic phenomena"
- ↑ 12.0 12.1 Dukhin, A. S.; Goetz, P. J. (2017). अल्ट्रासाउंड का उपयोग करते हुए तरल पदार्थ, नैनो- और सूक्ष्म कण और झरझरा शरीर की विशेषता. Elsevier. ISBN 978-0-444-63908-0.
- ↑ Russel, W. B.; Saville, D. A.; Schowalter, W. R. (1989). कोलाइडल फैलाव. Cambridge University Press. ISBN 0-521-42600-6.
- ↑ Israelachvili, J. (1985). इंटरमॉलिक्युलर और सरफेस फोर्स. Academic Press. ISBN 0-12-375181-0.
- ↑ Stern, Eric; Robin Wagner; Fred J. Sigworth; Ronald Breaker; Tarek M. Fahmy; Mark A. Reed (2007-11-01). "नैनोवायर फील्ड इफेक्ट ट्रांजिस्टर सेंसर पर डेबी स्क्रीनिंग लंबाई का महत्व". Nano Letters. 7 (11): 3405–3409. Bibcode:2007NanoL...7.3405S. doi:10.1021/nl071792z. PMC 2713684. PMID 17914853.
- ↑ Guo, Lingjie; Effendi Leobandung; Stephen Y. Chou (199). "A room-temperature silicon single-electron metal–oxide–semiconductor memory with nanoscale floating-gate and ultranarrow channel". Applied Physics Letters. 70 (7): 850. Bibcode:1997ApPhL..70..850G. doi:10.1063/1.118236.
- ↑ Tiwari, Sandip; Farhan Rana; Kevin Chan; Leathen Shi; Hussein Hanafi (1996). "नैनो-क्रिस्टल मेमोरी में सिंगल चार्ज और एकांतवास प्रभाव". Applied Physics Letters. 69 (9): 1232. Bibcode:1996ApPhL..69.1232T. doi:10.1063/1.117421.
अग्रिम पठन
- Goldston & Rutherford (1997). Introduction to Plasma Physics. Philadelphia: Institute of Physics Publishing.
- Lyklema (1993). Fundamentals of Interface and Colloid Science. NY: Academic Press.