थर्मल डी ब्रोगली तरंग दैर्ध्य: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Physical quantity of ideal and quantum gases}}
{{Short description|Physical quantity of ideal and quantum gases}}
{{Use American English|date = February 2019}}भौतिकी में, थर्मल डी ब्रोगली वेवलेंथ (<math>\lambda_{\mathrm{th}}</math>, कभी-कभी द्वारा भी निरूपित किया जाता है <math>\Lambda</math>) निर्दिष्ट तापमान पर एक आदर्श गैस में कणों की औसत [[डी ब्रोगली तरंग दैर्ध्य]] है। हम गैस में माध्य अंतर-कण दूरी को लगभग मान सकते हैं {{math|(''V''/''N'')<sup>1/3</sup>}} कहाँ {{mvar|V}} आयतन है और {{mvar|N}} कणों की संख्या है। जब थर्मल डी ब्रोगली तरंगदैर्घ्य इंटरपार्टिकल दूरी की तुलना में बहुत छोटा होता है, तो गैस को क्लासिकल या मैक्सवेल-बोल्ट्ज़मैन सांख्यिकी मैक्सवेल-बोल्ट्जमैन गैस माना जा सकता है। दूसरी ओर, जब थर्मल डी ब्रोगली तरंग इंटरपार्टिकल दूरी के क्रम में या उससे बड़ा होता है, तो क्वांटम प्रभाव हावी होगा और गैस को [[फर्मी गैस]] या [[बोस गैस]] के रूप में माना जाना चाहिए, जो गैस के कणों की प्रकृति पर निर्भर करता है। . महत्वपूर्ण तापमान इन दो शासनों के बीच संक्रमण बिंदु है, और इस महत्वपूर्ण तापमान पर, थर्मल तरंग दैर्ध्य इंटरपार्टिकल दूरी के लगभग बराबर होगा। यानी गैस की क्वांटम प्रकृति के लिए स्पष्ट हो जाएगा
भौतिकी में, ऊष्मीय डी ब्रोगली तरंग दैर्ध्य (<math>\lambda_{\mathrm{th}}</math>, जिसे कभी-कभी <math>\Lambda</math> द्वारा भी निरूपित किया जाता है ) निर्दिष्ट तापमान पर एक आदर्श गैस में कणों की औसत [[डी ब्रोगली तरंग दैर्ध्य]] है। हम गैस में माध्य अंतर-कण दूरी को लगभग मान सकते हैं {{math|(''V''/''N'')<sup>1/3</sup>}} कहाँ {{mvar|V}} आयतन है और {{mvar|N}} कणों की संख्या है। जब ऊष्मीय डी ब्रोगली तरंगदैर्घ्य इंटरपार्टिकल दूरी की तुलना में बहुत छोटा होता है, तो गैस को क्लासिकल या मैक्सवेल-बोल्ट्ज़मैन सांख्यिकी मैक्सवेल-बोल्ट्जमैन गैस माना जा सकता है। दूसरी ओर, जब ऊष्मीय डी ब्रोगली तरंग इंटरपार्टिकल दूरी के क्रम में या उससे बड़ा होता है, तो क्वांटम प्रभाव हावी होगा और गैस को [[फर्मी गैस]] या [[बोस गैस]] के रूप में माना जाना चाहिए, जो गैस के कणों की प्रकृति पर निर्भर करता है। . महत्वपूर्ण तापमान इन दो शासनों के बीच संक्रमण बिंदु है, और इस महत्वपूर्ण तापमान पर, ऊष्मीय तरंग दैर्ध्य इंटरपार्टिकल दूरी के लगभग बराबर होगा। यानी गैस की क्वांटम प्रकृति के लिए स्पष्ट हो जाएगा
<!--
<!--
<math display="block">\frac{V}{N\lambda_{\mathrm{th}}^3} \le 1 \ , {\rm or}</math>  
<math display="block">\frac{V}{N\lambda_{\mathrm{th}}^3} \le 1 \ , {\rm or}</math>  
Line 10: Line 10:
   \left( \frac{V}{N} \right)^{1/3} \le \lambda_{\mathrm{th}}
   \left( \frac{V}{N} \right)^{1/3} \le \lambda_{\mathrm{th}}
</math>
</math>
यानी, जब इंटरपार्टिकल दूरी थर्मल डी ब्रोगली वेवलेंथ से कम हो; इस मामले में गैस बोस-आइंस्टीन आँकड़ों या फर्मी-डिराक आँकड़ों का पालन करेगी, जो भी उपयुक्त हो। यह उदाहरण के लिए टी = 300 [[केल्विन]] पर एक विशिष्ट धातु में इलेक्ट्रॉनों के मामले में है, जहां [[इलेक्ट्रॉन गैस]] फर्मी-डिराक आंकड़ों का पालन करती है, या बोस-आइंस्टीन कंडेनसेट में। दूसरी ओर, के लिए
यानी, जब इंटरपार्टिकल दूरी ऊष्मीय डी ब्रोगली तरंग दैर्ध्य से कम हो; इस मामले में गैस बोस-आइंस्टीन आँकड़ों या फर्मी-डिराक आँकड़ों का पालन करेगी, जो भी उपयुक्त हो। यह उदाहरण के लिए टी = 300 [[केल्विन]] पर एक विशिष्ट धातु में इलेक्ट्रॉनों के मामले में है, जहां [[इलेक्ट्रॉन गैस]] फर्मी-डिराक आंकड़ों का पालन करती है, या बोस-आइंस्टीन कंडेनसेट में। दूसरी ओर, के लिए
<!--
<!--
<math display="block">\frac{V}{N\lambda_{\mathrm{th}}^3} \gg 1</math>
<math display="block">\frac{V}{N\lambda_{\mathrm{th}}^3} \gg 1</math>
Line 20: Line 20:
   \left( \frac{V}{N} \right)^{1/3} \gg \lambda_{\mathrm{th}}
   \left( \frac{V}{N} \right)^{1/3} \gg \lambda_{\mathrm{th}}
</math>
</math>
यानी, जब इंटरपार्टिकल की दूरी थर्मल डी ब्रोगली वेवलेंथ से बहुत बड़ी होती है, तो गैस मैक्सवेल-बोल्ट्जमैन सांख्यिकी का पालन करेगी।<ref name="Kittel">{{cite book|title= ऊष्मीय भौतिकी|url= https://archive.org/details/thermalphysicsnd00kitt |url-access= limited|edition=2|publisher=W. H. Freeman|year=1980|page=[https://archive.org/details/thermalphysicsnd00kitt/page/n51 73]|author=Charles Kittel|author2=Herbert Kroemer|isbn=978-0716710882}}</ref> कमरे के तापमान पर आणविक या परमाणु गैसों और [[न्यूट्रॉन स्रोत]] द्वारा उत्पादित [[न्यूट्रॉन तापमान]] के मामले में ऐसा ही है।
यानी, जब इंटरपार्टिकल की दूरी ऊष्मीय डी ब्रोगली तरंग दैर्ध्य से बहुत बड़ी होती है, तो गैस मैक्सवेल-बोल्ट्जमैन सांख्यिकी का पालन करेगी।<ref name="Kittel">{{cite book|title= ऊष्मीय भौतिकी|url= https://archive.org/details/thermalphysicsnd00kitt |url-access= limited|edition=2|publisher=W. H. Freeman|year=1980|page=[https://archive.org/details/thermalphysicsnd00kitt/page/n51 73]|author=Charles Kittel|author2=Herbert Kroemer|isbn=978-0716710882}}</ref> कमरे के तापमान पर आणविक या परमाणु गैसों और [[न्यूट्रॉन स्रोत]] द्वारा उत्पादित [[न्यूट्रॉन तापमान]] के मामले में ऐसा ही है।


== बड़े पैमाने पर कण ==
== बड़े पैमाने पर कण ==
बड़े पैमाने पर, गैर-अंतःक्रियात्मक कणों के लिए, थर्मल डी ब्रोगली तरंग दैर्ध्य को [[विभाजन समारोह (सांख्यिकीय यांत्रिकी)]] की गणना से प्राप्त किया जा सकता है। लंबाई का 1-आयामी बॉक्स मानते हुए {{mvar|L}}, विभाजन समारोह (एक बॉक्स में 1D कण की ऊर्जा अवस्थाओं का उपयोग करके) है
बड़े पैमाने पर, गैर-अंतःक्रियात्मक कणों के लिए, ऊष्मीय डी ब्रोगली तरंग दैर्ध्य को [[विभाजन समारोह (सांख्यिकीय यांत्रिकी)]] की गणना से प्राप्त किया जा सकता है। लंबाई का 1-आयामी बॉक्स मानते हुए {{mvar|L}}, विभाजन समारोह (एक बॉक्स में 1D कण की ऊर्जा अवस्थाओं का उपयोग करके) है
<math display="block"> Z = \sum_{n} e^{-E_n/k_{\mathrm B}T} = \sum_{n} e^{-h^2 n^2 / 8mL^2k_{\mathrm B} T} .</math>
<math display="block"> Z = \sum_{n} e^{-E_n/k_{\mathrm B}T} = \sum_{n} e^{-h^2 n^2 / 8mL^2k_{\mathrm B} T} .</math>
चूंकि ऊर्जा के स्तर एक साथ बहुत करीब हैं, हम इस योग को एक अभिन्न के रूप में अनुमानित कर सकते हैं:<ref>{{Cite book|title=थर्मल भौतिकी का एक परिचय|url=https://archive.org/details/introductiontoth00schr_817|url-access=limited| last=Schroeder|first=Daniel|publisher=Addison Wesley Longman|year=2000|isbn=0-201-38027-7|location=United States|pages=[https://archive.org/details/introductiontoth00schr_817/page/n264 253]}}</ref>
चूंकि ऊर्जा के स्तर एक साथ बहुत करीब हैं, हम इस योग को एक अभिन्न के रूप में अनुमानित कर सकते हैं:<ref>{{Cite book|title=थर्मल भौतिकी का एक परिचय|url=https://archive.org/details/introductiontoth00schr_817|url-access=limited| last=Schroeder|first=Daniel|publisher=Addison Wesley Longman|year=2000|isbn=0-201-38027-7|location=United States|pages=[https://archive.org/details/introductiontoth00schr_817/page/n264 253]}}</ref>
Line 37: Line 37:
द्रव्यमान रहित (या अत्यधिक [[विशेष सापेक्षता]]) कणों के लिए, तापीय तरंग दैर्ध्य को इस रूप में परिभाषित किया जाता है
द्रव्यमान रहित (या अत्यधिक [[विशेष सापेक्षता]]) कणों के लिए, तापीय तरंग दैर्ध्य को इस रूप में परिभाषित किया जाता है
<math display="block">\lambda_{\mathrm{th}}= \frac{hc}{2 \pi^{1/3} k_{\mathrm B} T} = \frac{\pi^{2/3}\hbar c}{ k_{\mathrm B} T} ,</math>
<math display="block">\lambda_{\mathrm{th}}= \frac{hc}{2 \pi^{1/3} k_{\mathrm B} T} = \frac{\pi^{2/3}\hbar c}{ k_{\mathrm B} T} ,</math>
जहाँ c प्रकाश की गति है। बड़े पैमाने पर कणों के लिए थर्मल तरंग दैर्ध्य के साथ, यह गैस में कणों के औसत तरंग दैर्ध्य के क्रम का है और एक महत्वपूर्ण बिंदु को परिभाषित करता है जिस पर क्वांटम प्रभाव हावी होने लगते हैं। उदाहरण के लिए, काले शरीर के विकिरण के लंबे-तरंग दैर्ध्य स्पेक्ट्रम का अवलोकन करते समय, शास्त्रीय रेले-जीन्स कानून लागू किया जा सकता है, लेकिन जब मनाया तरंग दैर्ध्य ब्लैक बॉडी रेडिएटर में फोटोन के थर्मल तरंग दैर्ध्य तक पहुंचते हैं, क्वांटम प्लैंक का [[काला शरीर]] का नियम विकिरण | प्लैंक के नियम का उपयोग किया जाना चाहिए।
जहाँ c प्रकाश की गति है। बड़े पैमाने पर कणों के लिए ऊष्मीय तरंग दैर्ध्य के साथ, यह गैस में कणों के औसत तरंग दैर्ध्य के क्रम का है और एक महत्वपूर्ण बिंदु को परिभाषित करता है जिस पर क्वांटम प्रभाव हावी होने लगते हैं। उदाहरण के लिए, काले शरीर के विकिरण के लंबे-तरंग दैर्ध्य स्पेक्ट्रम का अवलोकन करते समय, शास्त्रीय रेले-जीन्स कानून लागू किया जा सकता है, लेकिन जब मनाया तरंग दैर्ध्य ब्लैक बॉडी रेडिएटर में फोटोन के ऊष्मीय तरंग दैर्ध्य तक पहुंचते हैं, क्वांटम प्लैंक का [[काला शरीर]] का नियम विकिरण | प्लैंक के नियम का उपयोग किया जाना चाहिए।


== सामान्य परिभाषा ==
== सामान्य परिभाषा ==
Line 51: Line 51:


== उदाहरण ==
== उदाहरण ==
298 K पर थर्मल डी ब्रोगली वेवलेंथ के कुछ उदाहरण नीचे दिए गए हैं।
298 K पर ऊष्मीय डी ब्रोगली तरंग दैर्ध्य के कुछ उदाहरण नीचे दिए गए हैं।
{| class="wikitable sortable"
{| class="wikitable sortable"
|-
|-

Revision as of 09:18, 6 June 2023

भौतिकी में, ऊष्मीय डी ब्रोगली तरंग दैर्ध्य (, जिसे कभी-कभी द्वारा भी निरूपित किया जाता है ) निर्दिष्ट तापमान पर एक आदर्श गैस में कणों की औसत डी ब्रोगली तरंग दैर्ध्य है। हम गैस में माध्य अंतर-कण दूरी को लगभग मान सकते हैं (V/N)1/3 कहाँ V आयतन है और N कणों की संख्या है। जब ऊष्मीय डी ब्रोगली तरंगदैर्घ्य इंटरपार्टिकल दूरी की तुलना में बहुत छोटा होता है, तो गैस को क्लासिकल या मैक्सवेल-बोल्ट्ज़मैन सांख्यिकी मैक्सवेल-बोल्ट्जमैन गैस माना जा सकता है। दूसरी ओर, जब ऊष्मीय डी ब्रोगली तरंग इंटरपार्टिकल दूरी के क्रम में या उससे बड़ा होता है, तो क्वांटम प्रभाव हावी होगा और गैस को फर्मी गैस या बोस गैस के रूप में माना जाना चाहिए, जो गैस के कणों की प्रकृति पर निर्भर करता है। . महत्वपूर्ण तापमान इन दो शासनों के बीच संक्रमण बिंदु है, और इस महत्वपूर्ण तापमान पर, ऊष्मीय तरंग दैर्ध्य इंटरपार्टिकल दूरी के लगभग बराबर होगा। यानी गैस की क्वांटम प्रकृति के लिए स्पष्ट हो जाएगा

यानी, जब इंटरपार्टिकल दूरी ऊष्मीय डी ब्रोगली तरंग दैर्ध्य से कम हो; इस मामले में गैस बोस-आइंस्टीन आँकड़ों या फर्मी-डिराक आँकड़ों का पालन करेगी, जो भी उपयुक्त हो। यह उदाहरण के लिए टी = 300 केल्विन पर एक विशिष्ट धातु में इलेक्ट्रॉनों के मामले में है, जहां इलेक्ट्रॉन गैस फर्मी-डिराक आंकड़ों का पालन करती है, या बोस-आइंस्टीन कंडेनसेट में। दूसरी ओर, के लिए
यानी, जब इंटरपार्टिकल की दूरी ऊष्मीय डी ब्रोगली तरंग दैर्ध्य से बहुत बड़ी होती है, तो गैस मैक्सवेल-बोल्ट्जमैन सांख्यिकी का पालन करेगी।[1] कमरे के तापमान पर आणविक या परमाणु गैसों और न्यूट्रॉन स्रोत द्वारा उत्पादित न्यूट्रॉन तापमान के मामले में ऐसा ही है।

बड़े पैमाने पर कण

बड़े पैमाने पर, गैर-अंतःक्रियात्मक कणों के लिए, ऊष्मीय डी ब्रोगली तरंग दैर्ध्य को विभाजन समारोह (सांख्यिकीय यांत्रिकी) की गणना से प्राप्त किया जा सकता है। लंबाई का 1-आयामी बॉक्स मानते हुए L, विभाजन समारोह (एक बॉक्स में 1D कण की ऊर्जा अवस्थाओं का उपयोग करके) है

चूंकि ऊर्जा के स्तर एक साथ बहुत करीब हैं, हम इस योग को एक अभिन्न के रूप में अनुमानित कर सकते हैं:[2]
इस तरह,
कहाँ प्लैंक स्थिरांक है, m गैस कण का द्रव्यमान है, बोल्ट्जमैन स्थिरांक है, और T गैस का तापमान है।[1]यह कम प्लैंक स्थिरांक का उपयोग करके भी व्यक्त किया जा सकता है जैसा


द्रव्यमान रहित कण

द्रव्यमान रहित (या अत्यधिक विशेष सापेक्षता) कणों के लिए, तापीय तरंग दैर्ध्य को इस रूप में परिभाषित किया जाता है

जहाँ c प्रकाश की गति है। बड़े पैमाने पर कणों के लिए ऊष्मीय तरंग दैर्ध्य के साथ, यह गैस में कणों के औसत तरंग दैर्ध्य के क्रम का है और एक महत्वपूर्ण बिंदु को परिभाषित करता है जिस पर क्वांटम प्रभाव हावी होने लगते हैं। उदाहरण के लिए, काले शरीर के विकिरण के लंबे-तरंग दैर्ध्य स्पेक्ट्रम का अवलोकन करते समय, शास्त्रीय रेले-जीन्स कानून लागू किया जा सकता है, लेकिन जब मनाया तरंग दैर्ध्य ब्लैक बॉडी रेडिएटर में फोटोन के ऊष्मीय तरंग दैर्ध्य तक पहुंचते हैं, क्वांटम प्लैंक का काला शरीर का नियम विकिरण | प्लैंक के नियम का उपयोग किया जाना चाहिए।

सामान्य परिभाषा

कणों की एक आदर्श गैस के लिए ऊष्मीय तरंग दैर्ध्य की एक सामान्य परिभाषा, ऊर्जा और संवेग (फैलाव संबंध) के बीच मनमाना शक्ति-कानून संबंध, किसी भी संख्या में आयामों में पेश की जा सकती है।[3] अगर n आयामों की संख्या है, और ऊर्जा के बीच संबंध है (E) और गति (p) द्वारा दिया गया है

(साथ a और s स्थिरांक है), तो तापीय तरंगदैर्घ्य को इस रूप में परिभाषित किया जाता है
कहाँ Γ गामा समारोह है। विशेष रूप से, 3-डी के लिए (n = 3) हमारे पास भारी या द्रव्यमान रहित कणों की गैस E = p2/2m (a = 1/2m, s = 2) और E = pc (a = c, s = 1), क्रमशः, पिछले अनुभागों में सूचीबद्ध व्यंजकों को प्रस्तुत करते हुए। ध्यान दें कि भारी गैर-सापेक्ष कणों (s = 2) के लिए व्यंजक n पर निर्भर नहीं करता है। यह बताता है कि उपरोक्त 1-डी व्युत्पत्ति 3-डी मामले से सहमत क्यों है।

उदाहरण

298 K पर ऊष्मीय डी ब्रोगली तरंग दैर्ध्य के कुछ उदाहरण नीचे दिए गए हैं।

Species Mass (kg) (m)
Electron 9.1094×10−31 4.3179×10−9
Photon 0 1.6483×10−5
H2 3.3474×10−27 7.1228×10−11
O2 5.3135×10−26 1.7878×10−11


संदर्भ

  1. 1.0 1.1 Charles Kittel; Herbert Kroemer (1980). ऊष्मीय भौतिकी (2 ed.). W. H. Freeman. p. 73. ISBN 978-0716710882.
  2. Schroeder, Daniel (2000). थर्मल भौतिकी का एक परिचय. United States: Addison Wesley Longman. pp. 253. ISBN 0-201-38027-7.
  3. Yan, Zijun (2000). "सामान्य तापीय तरंग दैर्ध्य और इसके अनुप्रयोग". European Journal of Physics. 21 (6): 625–631. Bibcode:2000EJPh...21..625Y. doi:10.1088/0143-0807/21/6/314. ISSN 0143-0807. S2CID 250870934. Retrieved 2021-08-17.