थर्मल डी ब्रोगली तरंग दैर्ध्य: Difference between revisions
(→उदाहरण) |
|||
Line 5: | Line 5: | ||
\ , {\rm or} \ | \ , {\rm or} \ | ||
\left( \frac{V}{N} \right)^{1/3} \le \lambda_{\mathrm{th}} | \left( \frac{V}{N} \right)^{1/3} \le \lambda_{\mathrm{th}} | ||
</math>के लिए स्पष्ट होगी, अर्थात, जब कणांतर दूरी ऊष्मीय डी ब्रोगली तरंग दैर्ध्य से कम हो, तब इस स्थिति में गैस बोस-आइंस्टीन आँकड़ों या फर्मी-डिराक आँकड़ों का पालन करेगी, जो भी उपयुक्त हो। यह उदाहरण के लिए | </math>के लिए स्पष्ट होगी, अर्थात, जब कणांतर दूरी ऊष्मीय डी ब्रोगली तरंग दैर्ध्य से कम हो, तब इस स्थिति में गैस बोस-आइंस्टीन आँकड़ों या फर्मी-डिराक आँकड़ों का पालन करेगी, जो भी उपयुक्त हो। यह उदाहरण के लिए T = 300 [[केल्विन]] पर एक विशिष्ट धातु में इलेक्ट्रॉनों की स्थिति है, जहां [[इलेक्ट्रॉन गैस]] [[फर्मी-डिराक आंकड़ों]] या [[बोस-आइंस्टीन संघनित]] का पालन करती है। दूसरी ओर, <math display="block"> | ||
\displaystyle | \displaystyle | ||
\frac{V}{N\lambda_{\mathrm{th}}^3} \gg 1 | \frac{V}{N\lambda_{\mathrm{th}}^3} \gg 1 | ||
\ , {\rm or} \ | \ , {\rm or} \ | ||
\left( \frac{V}{N} \right)^{1/3} \gg \lambda_{\mathrm{th}} | \left( \frac{V}{N} \right)^{1/3} \gg \lambda_{\mathrm{th}} | ||
</math> | </math>के लिए, जब कणांतर दूरी ऊष्मीय डी ब्रोगली तरंग दैर्ध्य से बहुत बड़ी होती है, तो [[गैस मैक्सवेल-बोल्ट्जमैन सांख्यिकी]] का पालन करेगी।<ref name="Kittel">{{cite book|title= ऊष्मीय भौतिकी|url= https://archive.org/details/thermalphysicsnd00kitt |url-access= limited|edition=2|publisher=W. H. Freeman|year=1980|page=[https://archive.org/details/thermalphysicsnd00kitt/page/n51 73]|author=Charles Kittel|author2=Herbert Kroemer|isbn=978-0716710882}}</ref> कमरे के तापमान पर आणविक या परमाणु गैसों और [[न्यूट्रॉन स्रोत]] द्वारा उत्पादित [[न्यूट्रॉन तापमान|तापीय न्यूट्रॉन]] की स्थिति में ऐसा ही है। | ||
== भारी कण == | == भारी कण == | ||
बड़े पैमाने पर, गैर-अंतःक्रियात्मक कणों के लिए, ऊष्मीय डी ब्रोगली तरंग दैर्ध्य को [[विभाजन समारोह (सांख्यिकीय यांत्रिकी)|विभाजन फलन]] की गणना से प्राप्त किया जा सकता है। लंबाई {{mvar|L}} के एक 1-आयामी बॉक्स को मानते हुए , विभाजन फलन (एक [[बॉक्स में]] 1 डी [[कण]] की ऊर्जा अवस्थाओं का उपयोग करके) <math display="block"> Z = \sum_{n} e^{-E_n/k_{\mathrm B}T} = \sum_{n} e^{-h^2 n^2 / 8mL^2k_{\mathrm B} T} .</math>है। | बड़े पैमाने पर, गैर-अंतःक्रियात्मक कणों के लिए, ऊष्मीय डी ब्रोगली तरंग दैर्ध्य को [[विभाजन समारोह (सांख्यिकीय यांत्रिकी)|विभाजन फलन]] की गणना से प्राप्त किया जा सकता है। लंबाई {{mvar|L}} के एक 1-आयामी बॉक्स को मानते हुए , विभाजन फलन (एक [[बॉक्स में]] 1 डी [[कण]] की ऊर्जा अवस्थाओं का उपयोग करके) <math display="block"> Z = \sum_{n} e^{-E_n/k_{\mathrm B}T} = \sum_{n} e^{-h^2 n^2 / 8mL^2k_{\mathrm B} T} .</math>है। |
Revision as of 11:09, 6 June 2023
भौतिकी में, ऊष्मीय डी ब्रोगली तरंग दैर्ध्य (, जिसे कभी-कभी द्वारा भी निरूपित किया जाता है ) मोटे तौर पर निर्दिष्ट तापमान पर एक आदर्श गैस में कणों की औसत डी ब्रोगली तरंग दैर्ध्य है। हम गैस में माध्य अंतर-कण दूरी को लगभग (V/N)1/3 मान सकते हैं जहां V आयतन है और N कणों की संख्या है। जब ऊष्मीय डी ब्रोगली तरंगदैर्घ्य कणांतर दूरी की तुलना में बहुत छोटा होता है, तो गैस को क्लासिकल या मैक्सवेल-बोल्ट्जमैन गैस माना जा सकता है। दूसरी ओर, जब ऊष्मीय डी ब्रोगली तरंग कणांतर दूरी के क्रम में या उससे बड़ा होता है, तो क्वांटम प्रभाव हावी होगा और गैस को फर्मी गैस या बोस गैस के रूप में माना जाना चाहिए, जो गैस के कणों की प्रकृति पर निर्भर करता है। महत्वपूर्ण तापमान इन दो शासनों के बीच संक्रमण बिंदु है, और इस महत्वपूर्ण तापमान पर, ऊष्मीय तरंग दैर्ध्य कणांतर दूरी के लगभग बराबर होगा। अर्थात्, गैस की क्वांटम प्रकृति
भारी कण
बड़े पैमाने पर, गैर-अंतःक्रियात्मक कणों के लिए, ऊष्मीय डी ब्रोगली तरंग दैर्ध्य को विभाजन फलन की गणना से प्राप्त किया जा सकता है। लंबाई L के एक 1-आयामी बॉक्स को मानते हुए , विभाजन फलन (एक बॉक्स में 1 डी कण की ऊर्जा अवस्थाओं का उपयोग करके)
चूंकि ऊर्जा के स्तर एक साथ बहुत करीब हैं, इसलिए हम इस योग को एक अभिन्न के रूप में अनुमानित कर सकते हैं,[2]
द्रव्यमान रहित कण
द्रव्यमान रहित (या अत्यधिक आपेक्षिकीय) कणों के लिए, तापीय तरंग दैर्ध्य को
सामान्य परिभाषा
कणों की एक आदर्श गैस के लिए ऊष्मीय तरंग दैर्ध्य की एक सामान्य परिभाषा, ऊर्जा और संवेग (परिक्षेपण संबंध) के बीच यादृच्छिक शक्ति-कानून संबंध, किसी भी संख्या के आयामों में पेश की जा सकती है।[3] अगर n आयामों की संख्या है, और ऊर्जा (E) और संवेग (p) के बीच संबंध
उदाहरण
298 K पर ऊष्मीय डी ब्रोगली तरंग दैर्ध्य के कुछ उदाहरण नीचे दिए गए हैं।
प्रकार | मास (किग्रा) | (m) |
---|---|---|
अतिसूक्ष्म परमाणु | 9.1094×10−31 | 4.3179×10−9 |
फोटॉन | 0 | 1.6483×10−5 |
H2 | 3.3474×10−27 | 7.1228×10−11 |
O2 | 5.3135×10−26 | 1.7878×10−11 |
संदर्भ
- ↑ 1.0 1.1 Charles Kittel; Herbert Kroemer (1980). ऊष्मीय भौतिकी (2 ed.). W. H. Freeman. p. 73. ISBN 978-0716710882.
- ↑ Schroeder, Daniel (2000). थर्मल भौतिकी का एक परिचय. United States: Addison Wesley Longman. pp. 253. ISBN 0-201-38027-7.
- ↑ Yan, Zijun (2000). "सामान्य तापीय तरंग दैर्ध्य और इसके अनुप्रयोग". European Journal of Physics. 21 (6): 625–631. Bibcode:2000EJPh...21..625Y. doi:10.1088/0143-0807/21/6/314. ISSN 0143-0807. S2CID 250870934. Retrieved 2021-08-17.
- Vu-Quoc, L., Configuration integral (statistical mechanics), 2008. this wiki site is down; see this article in the web archive on 2012 April 28.