स्थायी चुंबक तुल्यकालिक जनरेटर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{tech|date=June 2018}}
{{tech|date=जून 2018}}
{{about|बड़े जनरेटर|छोटे डिजाइन|बिजली की शक्ति उत्पन्न करने का यंत्र}}
{{about|बड़े जनरेटर|छोटे डिजाइन|बिजली की शक्ति उत्पन्न करने का यंत्र}}
एक स्थायी चुंबक तुल्यकालिक जनरेटर एक विद्युत जनरेटर है जहां उत्तेजना क्षेत्र एक कुंडल के बजाय एक स्थायी चुंबक द्वारा प्रदान किया जाता है। सिंक्रोनस शब्द यहाँ इस तथ्य को संदर्भित करता है कि रोटर और चुंबकीय क्षेत्र समान गति से घूमते हैं, क्योंकि चुंबकीय क्षेत्र एक शाफ्ट पर लगे स्थायी चुंबक तंत्र के माध्यम से उत्पन्न होता है और करंट को स्थिर आर्मेचर में प्रेरित किया जाता है।
एक स्थायी चुंबक तुल्यकालिक जनरेटर एक विद्युत जनरेटर है जहां उत्तेजना क्षेत्र एक कुंडल के बजाय एक स्थायी चुंबक द्वारा प्रदान किया जाता है। सिंक्रोनस शब्द यहाँ इस तथ्य को संदर्भित करता है कि रोटर और चुंबकीय क्षेत्र समान गति से घूमते हैं, क्योंकि चुंबकीय क्षेत्र एक शाफ्ट पर लगे स्थायी चुंबक तंत्र के माध्यम से उत्पन्न होता है और करंट को स्थिर आर्मेचर में प्रेरित किया जाता है।
Line 6: Line 6:
तुल्यकालिक जनरेटर वाणिज्यिक विद्युत ऊर्जा के अधिकांश स्रोत हैं। वे प्रायः [[ भाप टर्बाइन ]]ों, [[ गैस टरबाइन ]], पारस्परिक इंजनों और [[ हाइड्रो टर्बाइन ]]ों के यांत्रिक शक्ति उत्पादन को ग्रिड के लिए विद्युत शक्ति में परिवर्तित करने के लिए उपयोग किए जाते हैं। पवन टर्बाइनों के कुछ डिज़ाइन भी इस जनरेटर प्रकार का उपयोग करते हैं।
तुल्यकालिक जनरेटर वाणिज्यिक विद्युत ऊर्जा के अधिकांश स्रोत हैं। वे प्रायः [[ भाप टर्बाइन ]]ों, [[ गैस टरबाइन ]], पारस्परिक इंजनों और [[ हाइड्रो टर्बाइन ]]ों के यांत्रिक शक्ति उत्पादन को ग्रिड के लिए विद्युत शक्ति में परिवर्तित करने के लिए उपयोग किए जाते हैं। पवन टर्बाइनों के कुछ डिज़ाइन भी इस जनरेटर प्रकार का उपयोग करते हैं।


[[फ़ाइल:EE137A एचडब्ल्यू 12 2.पीएनजी|अंगूठा|[[File:EE137A HW12 3.png|thumb]]अधिकांश डिजाइनों में जनरेटर के केंद्र में रोटेटिंग असेंबली - [[ रोटर (बिजली) ]] - में चुंबक होता है, और स्टेटर स्थिर आर्मेचर होता है जो विद्युत रूप से लोड से जुड़ा होता है। जैसा कि आरेख में दिखाया गया है, स्टेटर क्षेत्र का लंबवत घटक टोक़ को प्रभावित करता है जबकि समांतर घटक वोल्टेज को प्रभावित करता है। जनरेटर द्वारा आपूर्ति किया गया लोड वोल्टेज को निर्धारित करता है। यदि भार आगमनात्मक है, तो रोटर और स्टेटर क्षेत्रों के बीच का कोण 90 डिग्री से अधिक होगा जो कि बढ़े हुए जनरेटर वोल्टेज से मेल खाता है। इसे एक अतिउत्साहित जनरेटर के रूप में जाना जाता है। कैपेसिटिव लोड की आपूर्ति करने वाले जनरेटर के लिए विपरीत सच है, जिसे अंडरएक्साइटेड जनरेटर के रूप में जाना जाता है। तीन कंडक्टरों का एक सेट मानक उपयोगिता उपकरण में आर्मेचर वाइंडिंग बनाता है, जो एक पावर सर्किट के तीन चरणों का गठन करता है - जो तीन तारों के अनुरूप होता है जिसे हम ट्रांसमिशन लाइनों पर देखने के आदी हैं। चरण इस तरह से घाव होते हैं कि वे स्टेटर पर स्थानिक रूप से 120 डिग्री अलग होते हैं, जनरेटर रोटर पर एक समान बल या टोक़ प्रदान करते हैं। टोक़ की एकरूपता उत्पन्न होती है क्योंकि आर्मेचर वाइंडिंग के तीन कंडक्टरों में प्रेरित धाराओं से उत्पन्न चुंबकीय क्षेत्र इस तरह से स्थानिक रूप से जुड़ते हैं जैसे एकल, घूर्णन चुंबक के चुंबकीय क्षेत्र के समान। यह स्टेटर चुंबकीय क्षेत्र या स्टेटर फील्ड एक स्थिर घूर्णन क्षेत्र के रूप में प्रकट होता है और रोटर के समान आवृत्ति पर घूमता है जब रोटर में एक एकल द्विध्रुवीय चुंबकीय क्षेत्र होता है। दो क्षेत्र समकालिकता में चलते हैं और घूमते समय एक दूसरे के सापेक्ष एक निश्चित स्थिति बनाए रखते हैं।<ref>{{cite book|last=von Meier|first=Alexandra|title=Electric Power Systems: A Conception Introduction|url=https://archive.org/details/electricpowersys00meie|url-access=limited|year=2006|publisher=John Wiley & Sons, Inc.|location=Hoboken, New Jersey|isbn=978-0-471--17859-0|pages=[https://archive.org/details/electricpowersys00meie/page/n109 92]–95}}</ref>
[[फ़ाइल:EE137A एचडब्ल्यू 12 2.PNG|अंगूठा|[[File:EE137A HW12 3.png|thumb]]अधिकांश डिजाइनों में जनरेटर के केंद्र में रोटेटिंग असेंबली - [[ रोटर (बिजली) ]] - में चुंबक होता है, और स्टेटर स्थिर आर्मेचर होता है जो विद्युत रूप से लोड से जुड़ा होता है। जैसा कि आरेख में दिखाया गया है, स्टेटर क्षेत्र का लंबवत घटक टोक़ को प्रभावित करता है जबकि समांतर घटक वोल्टेज को प्रभावित करता है। जनरेटर द्वारा आपूर्ति किया गया लोड वोल्टेज को निर्धारित करता है। यदि भार आगमनात्मक है, तो रोटर और स्टेटर क्षेत्रों के बीच का कोण 90 डिग्री से अधिक होगा जो कि बढ़े हुए जनरेटर वोल्टेज से मेल खाता है। इसे एक अतिउत्साहित जनरेटर के रूप में जाना जाता है। कैपेसिटिव लोड की आपूर्ति करने वाले जनरेटर के लिए विपरीत सच है, जिसे अंडरएक्साइटेड जनरेटर के रूप में जाना जाता है। तीन कंडक्टरों का एक सेट मानक उपयोगिता उपकरण में आर्मेचर वाइंडिंग बनाता है, जो एक पावर सर्किट के तीन चरणों का गठन करता है - जो तीन तारों के अनुरूप होता है जिसे हम ट्रांसमिशन लाइनों पर देखने के आदी हैं। चरण इस तरह से घाव होते हैं कि वे स्टेटर पर स्थानिक रूप से 120 डिग्री अलग होते हैं, जनरेटर रोटर पर एक समान बल या टोक़ प्रदान करते हैं। टोक़ की एकरूपता उत्पन्न होती है क्योंकि आर्मेचर वाइंडिंग के तीन कंडक्टरों में प्रेरित धाराओं से उत्पन्न चुंबकीय क्षेत्र इस तरह से स्थानिक रूप से जुड़ते हैं जैसे एकल, घूर्णन चुंबक के चुंबकीय क्षेत्र के समान। यह स्टेटर चुंबकीय क्षेत्र या स्टेटर फील्ड एक स्थिर घूर्णन क्षेत्र के रूप में प्रकट होता है और रोटर के समान आवृत्ति पर घूमता है जब रोटर में एक एकल द्विध्रुवीय चुंबकीय क्षेत्र होता है। दो क्षेत्र समकालिकता में चलते हैं और घूमते समय एक दूसरे के सापेक्ष एक निश्चित स्थिति बनाए रखते हैं।<ref>{{cite book|last=von Meier|first=Alexandra|title=Electric Power Systems: A Conception Introduction|url=https://archive.org/details/electricpowersys00meie|url-access=limited|year=2006|publisher=John Wiley & Sons, Inc.|location=Hoboken, New Jersey|isbn=978-0-471--17859-0|pages=[https://archive.org/details/electricpowersys00meie/page/n109 92]–95}}</ref>
== तुल्यकालिक ==
== तुल्यकालिक ==
उन्हें तुल्यकालिक जनरेटर के रूप में जाना जाता है क्योंकि एफ, पारंपरिक रूप से [[ हेटर्स ]]़ में मापी गई स्टेटर (आर्मेचर कंडक्टर) में प्रेरित वोल्टेज की आवृत्ति, आरपीएम के सीधे आनुपातिक होती है, रोटर की रोटेशन दर प्रायः प्रति मिनट क्रांतियों (या कोणीय गति) में दी जाती है। . यदि रोटर वाइंडिंग को इस तरह से व्यवस्थित किया जाता है कि दो से अधिक चुंबकीय ध्रुवों के प्रभाव का उत्पादन किया जा सके, तो रोटर की प्रत्येक भौतिक क्रांति के परिणामस्वरूप अधिक चुंबकीय ध्रुव आर्मेचर वाइंडिंग से आगे बढ़ते हैं। उत्तर और दक्षिण ध्रुव का प्रत्येक गुजरना चुंबक क्षेत्र दोलन के एक पूर्ण चक्र से मेल खाता है। इसलिए, आनुपातिकता का स्थिरांक है <math>\frac{\text{P}}{120}</math>, जहां पी चुंबकीय रोटर ध्रुवों की संख्या है (लगभग हमेशा एक सम संख्या), और 120 का कारक 60 सेकंड प्रति मिनट और एक चुंबक में दो ध्रुवों से आता है;                                                                                                                                              <math>f \left(\text{Hz}\right)=RPM\frac{\text{P}}{120}</math>.<ref>{{cite book|last=von Meier|first=Alexandra|title=Electric Power Systems: A Conceptual Introduction|url=https://archive.org/details/electricpowersys00meie|url-access=limited|year=2006|publisher=John Wiley & Sons, Inc.|location=Hoboken, New Jersey|isbn=978-0-471-17859-0|pages=[https://archive.org/details/electricpowersys00meie/page/n113 96]–97}}</ref>
उन्हें तुल्यकालिक जनरेटर के रूप में जाना जाता है क्योंकि F , पारंपरिक रूप से [[ हेटर्स ]]़ में मापी गई स्टेटर (आर्मेचर कंडक्टर) में प्रेरित वोल्टेज की आवृत्ति, आरपीएम के सीधे आनुपातिक होती है, रोटर की रोटेशन दर प्रायः प्रति मिनट क्रांतियों (या कोणीय गति) में दी जाती है। . यदि रोटर वाइंडिंग को इस तरह से व्यवस्थित किया जाता है कि दो से अधिक चुंबकीय ध्रुवों के प्रभाव का उत्पादन किया जा सके, तो रोटर की प्रत्येक भौतिक क्रांति के परिणामस्वरूप अधिक चुंबकीय ध्रुव आर्मेचर वाइंडिंग से आगे बढ़ते हैं। उत्तर और दक्षिण ध्रुव का प्रत्येक गुजरना चुंबक क्षेत्र दोलन के एक पूर्ण चक्र से मेल खाता है। इसलिए, आनुपातिकता का स्थिरांक है <math>\frac{\text{P}}{120}</math>, जहां पी चुंबकीय रोटर ध्रुवों की संख्या है (लगभग हमेशा एक सम संख्या), और 120 का कारक 60 सेकंड प्रति मिनट और एक चुंबक में दो ध्रुवों से आता है;                                                                                                                                              <math>f \left(\text{Hz}\right)=RPM\frac{\text{P}}{120}</math>.<ref>{{cite book|last=von Meier|first=Alexandra|title=Electric Power Systems: A Conceptual Introduction|url=https://archive.org/details/electricpowersys00meie|url-access=limited|year=2006|publisher=John Wiley & Sons, Inc.|location=Hoboken, New Jersey|isbn=978-0-471-17859-0|pages=[https://archive.org/details/electricpowersys00meie/page/n113 96]–97}}</ref>
== आरपीएम और टॉर्क ==
== आरपीएम और टॉर्क ==
प्राइम मूवर में शक्ति RPM और टॉर्क का एक कार्य है। <math>P_m=T_m*RPM</math> जहाँ  पे <math>P_m</math> वाट में यांत्रिक शक्ति है, <math>T_m</math> की इकाइयों के साथ टोक़ है <math>\frac{N*m}{rad}</math>, और RPM प्रति मिनट घुमाव है जो कि एक कारक से गुणा किया जाता है <math>\frac{2\pi}{60}</math> की यूनिट देना है <math>\frac{Radians}{Sec}</math>. प्राइम मूवर पर टॉर्क बढ़ाकर, एक बड़ा विद्युत उत्पादन उत्पन्न किया जा सकता है।
प्राइम मूवर में शक्ति RPM और टॉर्क का एक कार्य है। <math>P_m=T_m*RPM</math> जहाँ  पे <math>P_m</math> वाट में यांत्रिक शक्ति है, <math>T_m</math> की इकाइयों के साथ टोक़ है <math>\frac{N*m}{rad}</math>, और RPM प्रति मिनट घुमाव है जो कि एक कारक से गुणा किया जाता है <math>\frac{2\pi}{60}</math> की यूनिट देना है <math>\frac{Radians}{Sec}</math>. प्राइम मूवर पर टॉर्क बढ़ाकर, एक बड़ा विद्युत उत्पादन उत्पन्न किया जा सकता है।

Revision as of 13:38, 6 June 2023

Template:Tech

एक स्थायी चुंबक तुल्यकालिक जनरेटर एक विद्युत जनरेटर है जहां उत्तेजना क्षेत्र एक कुंडल के बजाय एक स्थायी चुंबक द्वारा प्रदान किया जाता है। सिंक्रोनस शब्द यहाँ इस तथ्य को संदर्भित करता है कि रोटर और चुंबकीय क्षेत्र समान गति से घूमते हैं, क्योंकि चुंबकीय क्षेत्र एक शाफ्ट पर लगे स्थायी चुंबक तंत्र के माध्यम से उत्पन्न होता है और करंट को स्थिर आर्मेचर में प्रेरित किया जाता है।

विवरण

तुल्यकालिक जनरेटर वाणिज्यिक विद्युत ऊर्जा के अधिकांश स्रोत हैं। वे प्रायः भाप टर्बाइन ों, गैस टरबाइन , पारस्परिक इंजनों और हाइड्रो टर्बाइन ों के यांत्रिक शक्ति उत्पादन को ग्रिड के लिए विद्युत शक्ति में परिवर्तित करने के लिए उपयोग किए जाते हैं। पवन टर्बाइनों के कुछ डिज़ाइन भी इस जनरेटर प्रकार का उपयोग करते हैं।

[[फ़ाइल:EE137A एचडब्ल्यू 12 2.PNG|अंगूठा|

EE137A HW12 3.png

अधिकांश डिजाइनों में जनरेटर के केंद्र में रोटेटिंग असेंबली - रोटर (बिजली) - में चुंबक होता है, और स्टेटर स्थिर आर्मेचर होता है जो विद्युत रूप से लोड से जुड़ा होता है। जैसा कि आरेख में दिखाया गया है, स्टेटर क्षेत्र का लंबवत घटक टोक़ को प्रभावित करता है जबकि समांतर घटक वोल्टेज को प्रभावित करता है। जनरेटर द्वारा आपूर्ति किया गया लोड वोल्टेज को निर्धारित करता है। यदि भार आगमनात्मक है, तो रोटर और स्टेटर क्षेत्रों के बीच का कोण 90 डिग्री से अधिक होगा जो कि बढ़े हुए जनरेटर वोल्टेज से मेल खाता है। इसे एक अतिउत्साहित जनरेटर के रूप में जाना जाता है। कैपेसिटिव लोड की आपूर्ति करने वाले जनरेटर के लिए विपरीत सच है, जिसे अंडरएक्साइटेड जनरेटर के रूप में जाना जाता है। तीन कंडक्टरों का एक सेट मानक उपयोगिता उपकरण में आर्मेचर वाइंडिंग बनाता है, जो एक पावर सर्किट के तीन चरणों का गठन करता है - जो तीन तारों के अनुरूप होता है जिसे हम ट्रांसमिशन लाइनों पर देखने के आदी हैं। चरण इस तरह से घाव होते हैं कि वे स्टेटर पर स्थानिक रूप से 120 डिग्री अलग होते हैं, जनरेटर रोटर पर एक समान बल या टोक़ प्रदान करते हैं। टोक़ की एकरूपता उत्पन्न होती है क्योंकि आर्मेचर वाइंडिंग के तीन कंडक्टरों में प्रेरित धाराओं से उत्पन्न चुंबकीय क्षेत्र इस तरह से स्थानिक रूप से जुड़ते हैं जैसे एकल, घूर्णन चुंबक के चुंबकीय क्षेत्र के समान। यह स्टेटर चुंबकीय क्षेत्र या स्टेटर फील्ड एक स्थिर घूर्णन क्षेत्र के रूप में प्रकट होता है और रोटर के समान आवृत्ति पर घूमता है जब रोटर में एक एकल द्विध्रुवीय चुंबकीय क्षेत्र होता है। दो क्षेत्र समकालिकता में चलते हैं और घूमते समय एक दूसरे के सापेक्ष एक निश्चित स्थिति बनाए रखते हैं।[1]

तुल्यकालिक

उन्हें तुल्यकालिक जनरेटर के रूप में जाना जाता है क्योंकि F , पारंपरिक रूप से हेटर्स ़ में मापी गई स्टेटर (आर्मेचर कंडक्टर) में प्रेरित वोल्टेज की आवृत्ति, आरपीएम के सीधे आनुपातिक होती है, रोटर की रोटेशन दर प्रायः प्रति मिनट क्रांतियों (या कोणीय गति) में दी जाती है। . यदि रोटर वाइंडिंग को इस तरह से व्यवस्थित किया जाता है कि दो से अधिक चुंबकीय ध्रुवों के प्रभाव का उत्पादन किया जा सके, तो रोटर की प्रत्येक भौतिक क्रांति के परिणामस्वरूप अधिक चुंबकीय ध्रुव आर्मेचर वाइंडिंग से आगे बढ़ते हैं। उत्तर और दक्षिण ध्रुव का प्रत्येक गुजरना चुंबक क्षेत्र दोलन के एक पूर्ण चक्र से मेल खाता है। इसलिए, आनुपातिकता का स्थिरांक है , जहां पी चुंबकीय रोटर ध्रुवों की संख्या है (लगभग हमेशा एक सम संख्या), और 120 का कारक 60 सेकंड प्रति मिनट और एक चुंबक में दो ध्रुवों से आता है; .[2]

आरपीएम और टॉर्क

प्राइम मूवर में शक्ति RPM और टॉर्क का एक कार्य है। जहाँ पे वाट में यांत्रिक शक्ति है, की इकाइयों के साथ टोक़ है , और RPM प्रति मिनट घुमाव है जो कि एक कारक से गुणा किया जाता है की यूनिट देना है . प्राइम मूवर पर टॉर्क बढ़ाकर, एक बड़ा विद्युत उत्पादन उत्पन्न किया जा सकता है।

EE137A HW12 4.png

व्यवहार में, विशिष्ट भार प्रकृति में आगमनात्मक होता है। ऊपर दिया गया चित्र ऐसी व्यवस्था को दर्शाता है। जनरेटर का वोल्टेज है, और और लोड में क्रमशः वोल्टेज और करंट हैं और उनके बीच का कोण है। यहाँ, हम देख सकते हैं कि प्रतिरोध, R, और प्रतिघात, , कोण के निर्धारण में भूमिका निभाते हैं . इस जानकारी का उपयोग जनरेटर से वास्तविक और प्रतिक्रियाशील बिजली उत्पादन को निर्धारित करने के लिए किया जा सकता है।

EE137A HW12 5.png

इस आरेख में, टर्मिनल वोल्टेज है। यदि हम ऊपर दिखाए गए प्रतिरोध को अनदेखा करते हैं, तो हम पाते हैं कि शक्ति की गणना की जा सकती है:[3]

आभासी शक्ति को वास्तविक और प्रतिक्रियाशील शक्ति में तोड़कर, हम प्राप्त करते हैं:

,


अनुप्रयोग

स्थायी चुंबक जनरेटर (पीएमजी) या अल्टरनेटर (पीएमए) को उत्तेजना सर्किट के लिए डीसी आपूर्ति की आवश्यकता नहीं होती है, न ही उनके पास पर्ची के छल्ले और संपर्क ब्रश होते हैं। पीएमए या पीएमजी में एक प्रमुख नुकसान यह है कि हवा के अंतर के प्रवाह को नियंत्रित नहीं किया जा सकता है, इसलिए मशीन के वोल्टेज को आसानी से नियंत्रित नहीं किया जा सकता है। एक सतत चुंबकीय क्षेत्र असेंबली, फील्ड सर्विस या मरम्मत के दौरान सुरक्षा मुद्दों को लागू करता है। उच्च प्रदर्शन वाले स्थायी चुम्बकों में स्वयं संरचनात्मक और तापीय समस्याएं होती हैं। टॉर्क करंट MMF स्थायी रूप से स्थायी चुम्बकों के लगातार प्रवाह के साथ जुड़ता है, जिससे उच्च वायु-अंतराल प्रवाह घनत्व और अंततः, कोर संतृप्ति होती है। स्थायी चुंबक अल्टरनेटर में, आउटपुट वोल्टेज सीधे गति के समानुपाती होता है।

गति माप के लिए उपयोग किए जाने वाले छोटे पायलट जनरेटर के लिए, वोल्टेज विनियमन की आवश्यकता नहीं हो सकती है। जहां एक ही शाफ्ट पर एक बड़ी मशीन के रोटर को उत्तेजना वर्तमान की आपूर्ति के लिए एक स्थायी चुंबक जनरेटर का उपयोग किया जाता है, मुख्य मशीन के उत्तेजना वर्तमान नियंत्रण और वोल्टेज विनियमन के लिए कुछ बाहरी नियंत्रण की आवश्यकता होती है। यह घूर्णन प्रणाली को बाहरी नियंत्रण सर्किट से जोड़ने वाली पर्ची के छल्ले के साथ किया जा सकता है, या घूर्णन प्रणाली पर लगाए गए विद्युत इलेक्ट्रॉनिक उपकरणों के माध्यम से नियंत्रित किया जा सकता है और बाहरी रूप से नियंत्रित किया जा सकता है।

यह भी देखें

संदर्भ

  1. von Meier, Alexandra (2006). Electric Power Systems: A Conception Introduction. Hoboken, New Jersey: John Wiley & Sons, Inc. pp. 92–95. ISBN 978-0-471--17859-0.
  2. von Meier, Alexandra (2006). Electric Power Systems: A Conceptual Introduction. Hoboken, New Jersey: John Wiley & Sons, Inc. pp. 96–97. ISBN 978-0-471-17859-0.
  3. Chapman, Stephen (February 17, 2011). Electric Machinery Fundamentals. McGraw-Hill Education. ISBN 978-0073529547.