स्लेटर निर्धारक: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Function that can be used to build the wave function of a multi-fermionic system}} क्वांटम यांत्रिकी में, एक...")
 
No edit summary
Line 1: Line 1:
{{short description|Function that can be used to build the wave function of a multi-fermionic system}}
{{short description|Function that can be used to build the wave function of a multi-fermionic system}}
[[क्वांटम यांत्रिकी]] में, एक स्लेटर निर्धारक एक अभिव्यक्ति है जो बहु-फर्मियोनिक प्रणाली के तरंग कार्य का वर्णन करता है। यह दो इलेक्ट्रॉनों (या अन्य [[फर्मियन]]) के आदान-प्रदान पर [[प्लस और माइनस संकेत]]ों को बदलकर [[तिरछा-सममित मैट्रिक्स]] | विरोधी-समरूपता आवश्यकताओं और फलस्वरूप [[पाउली सिद्धांत]] को संतुष्ट करता है।<ref name="Atkins">Molecular Quantum Mechanics Parts I and II: An Introduction to QUANTUM CHEMISTRY (Volume 1), P. W. Atkins, Oxford University Press, 1977, {{ISBN|0-19-855129-0}}.</ref> सभी संभव फर्मीओनिक तरंग कार्यों का केवल एक छोटा उपसमुच्चय एकल स्लेटर निर्धारक के रूप में लिखा जा सकता है, लेकिन वे अपनी सादगी के कारण एक महत्वपूर्ण और उपयोगी उपसमुच्चय बनाते हैं।
[[क्वांटम यांत्रिकी]] में, एक '''स्लेटर निर्धारक''' एक अभिव्यक्ति है जो एक बहु-फर्मियोनिक प्रणाली के तरंग फलन का वर्णन करता है। यह दो इलेक्ट्रॉनों (या अन्य फरमिओन्स) के आदान-प्रदान पर हस्ताक्षर बदलकर, और फलस्वरूप [[पाउली सिद्धांत]] को बदलकर, विरोधी समरूपता आवश्यकताओं को पूरा करता है।<ref name="Atkins">Molecular Quantum Mechanics Parts I and II: An Introduction to QUANTUM CHEMISTRY (Volume 1), P. W. Atkins, Oxford University Press, 1977, {{ISBN|0-19-855129-0}}.</ref> सभी संभव फर्मीओनिक तरंग फलनों का केवल एक छोटा सा उपसमुच्चय एकल स्लेटर निर्धारक के रूप में लिखा जा सकता है, लेकिन अपनी सरलता के कारण वे एक महत्वपूर्ण और उपयोगी उपसमूह बनाते हैं।


स्लेटर निर्धारक इलेक्ट्रॉनों के एक संग्रह के लिए एक तरंग फ़ंक्शन के विचार से उत्पन्न होता है, प्रत्येक एक तरंग फ़ंक्शन के साथ होता है जिसे [[ स्पिन कक्षीय ]] के रूप में जाना जाता है। <math>\chi(\mathbf{x})</math>, कहाँ <math>\mathbf{x}</math> एकल इलेक्ट्रॉन की स्थिति और स्पिन को दर्शाता है। एक ही स्पिन ऑर्बिटल के साथ दो इलेक्ट्रॉनों वाला स्लेटर निर्धारक एक तरंग फ़ंक्शन के अनुरूप होगा जो हर जगह शून्य है।
स्लेटर निर्धारक इलेक्ट्रॉनों के एक संग्रह के लिए एक तरंग फ़ंक्शन के विचार से उत्पन्न होता है, प्रत्येक एक तरंग फ़ंक्शन के साथ होता है जिसे [[ स्पिन कक्षीय ]] के रूप में जाना जाता है। <math>\chi(\mathbf{x})</math>, कहाँ <math>\mathbf{x}</math> एकल इलेक्ट्रॉन की स्थिति और स्पिन को दर्शाता है। एक ही स्पिन ऑर्बिटल के साथ दो इलेक्ट्रॉनों वाला स्लेटर निर्धारक एक तरंग फ़ंक्शन के अनुरूप होगा जो हर जगह शून्य है।

Revision as of 17:19, 4 June 2023

क्वांटम यांत्रिकी में, एक स्लेटर निर्धारक एक अभिव्यक्ति है जो एक बहु-फर्मियोनिक प्रणाली के तरंग फलन का वर्णन करता है। यह दो इलेक्ट्रॉनों (या अन्य फरमिओन्स) के आदान-प्रदान पर हस्ताक्षर बदलकर, और फलस्वरूप पाउली सिद्धांत को बदलकर, विरोधी समरूपता आवश्यकताओं को पूरा करता है।[1] सभी संभव फर्मीओनिक तरंग फलनों का केवल एक छोटा सा उपसमुच्चय एकल स्लेटर निर्धारक के रूप में लिखा जा सकता है, लेकिन अपनी सरलता के कारण वे एक महत्वपूर्ण और उपयोगी उपसमूह बनाते हैं।

स्लेटर निर्धारक इलेक्ट्रॉनों के एक संग्रह के लिए एक तरंग फ़ंक्शन के विचार से उत्पन्न होता है, प्रत्येक एक तरंग फ़ंक्शन के साथ होता है जिसे स्पिन कक्षीय के रूप में जाना जाता है। , कहाँ एकल इलेक्ट्रॉन की स्थिति और स्पिन को दर्शाता है। एक ही स्पिन ऑर्बिटल के साथ दो इलेक्ट्रॉनों वाला स्लेटर निर्धारक एक तरंग फ़ंक्शन के अनुरूप होगा जो हर जगह शून्य है।

स्लेटर निर्धारक का नाम जॉन सी. स्लेटर के नाम पर रखा गया है, जिन्होंने 1929 में कई-इलेक्ट्रॉन वेव फ़ंक्शन की एंटीसिमेट्री सुनिश्चित करने के साधन के रूप में निर्धारक को पेश किया था,[2] हालांकि निर्धारक रूप में तरंग फलन पहली बार हाइजेनबर्ग में स्वतंत्र रूप से प्रकट हुआ[3] और डिराक के[4] लेख तीन साल पहले।

परिभाषा

दो-कण का मामला

बहु-कण प्रणाली के तरंग फ़ंक्शन का अनुमान लगाने का सबसे आसान तरीका अलग-अलग कणों के ठीक से चुने गए ऑर्थोगोनलिटी (क्वांटम यांत्रिकी) तरंग कार्यों के उत्पाद को लेना है। निर्देशांक के साथ दो-कण मामले के लिए और , अपने पास

इस अभिव्यक्ति का उपयोग हार्ट्री-फॉक पद्धति #संक्षिप्त इतिहास में कई-कण तरंग समारोह के लिए एक ansatz के रूप में किया जाता है और इसे हार्ट्री उत्पाद के रूप में जाना जाता है। हालांकि, यह fermions के लिए संतोषजनक नहीं है क्योंकि उपरोक्त तरंग कार्य किसी भी दो fermions के आदान-प्रदान के तहत एंटीसिमेट्रिक नहीं है, जैसा कि पाउली बहिष्करण सिद्धांत के अनुसार होना चाहिए। एक एंटीसिमेट्रिक वेव फ़ंक्शन को गणितीय रूप से निम्नानुसार वर्णित किया जा सकता है:

यह हार्ट्री उत्पाद के लिए सही नहीं है, इसलिए यह पाउली सिद्धांत को संतुष्ट नहीं करता है। दोनों हार्ट्री उत्पादों का एक रैखिक संयोजन लेकर इस समस्या को दूर किया जा सकता है:

जहां गुणांक सामान्यीकरण कारक है। यह वेव फंक्शन अब एंटीसिमेट्रिक है और अब फ़र्मियन के बीच अंतर नहीं करता है (अर्थात, कोई विशिष्ट कण के लिए एक क्रमिक संख्या का संकेत नहीं दे सकता है, और दिए गए सूचकांक विनिमेय हैं)। इसके अलावा, यह भी शून्य हो जाता है यदि दो फ़र्मियन के दो स्पिन ऑर्बिटल्स समान हैं। यह पाउली अपवर्जन सिद्धांत को संतुष्ट करने के बराबर है।

बहु-कण मामला

निर्धारक के रूप में लिखकर अभिव्यक्ति को किसी भी संख्या में fermions के लिए सामान्यीकृत किया जा सकता है। एन-इलेक्ट्रॉन प्रणाली के लिए, स्लेटर निर्धारक को इस रूप में परिभाषित किया गया है[1][5]

जहां अंतिम दो अभिव्यक्तियाँ स्लेटर निर्धारकों के लिए एक आशुलिपि का उपयोग करती हैं: सामान्यीकरण स्थिरांक संख्या N को ध्यान में रखते हुए निहित होता है, और केवल एक-कण वेवफंक्शन (प्रथम आशुलिपि) या फ़र्मियन निर्देशांक (दूसरा आशुलिपि) के सूचकांक नीचे लिखे जाते हैं। छोड़े गए सभी लेबल आरोही क्रम में व्यवहार करने के लिए निहित हैं। दो-कण मामले के लिए हार्ट्री उत्पादों का रैखिक संयोजन एन = 2 के लिए स्लेटर निर्धारक के समान है। स्लेटर निर्धारकों का उपयोग शुरुआत में एक एंटीसिमेट्रिज्ड फ़ंक्शन सुनिश्चित करता है। उसी तरह, स्लेटर निर्धारकों का उपयोग पाउली सिद्धांत के अनुरूप सुनिश्चित करता है। वास्तव में, सेट होने पर स्लेटर निर्धारक गायब हो जाता है रैखिक रूप से आश्रित है। विशेष रूप से, यह तब होता है जब दो (या अधिक) चक्रण कक्षक समान होते हैं। रसायन विज्ञान में इस तथ्य को यह कहते हुए व्यक्त किया जाता है कि एक ही स्पिन के साथ कोई भी दो इलेक्ट्रॉन एक ही स्थानिक कक्षीय पर कब्जा नहीं कर सकते हैं।

उदाहरण: कई इलेक्ट्रॉन समस्या में मैट्रिक्स तत्व

स्लेटर निर्धारक के कई गुण एक गैर-सापेक्षवादी कई इलेक्ट्रॉन समस्या में एक उदाहरण के साथ जीवन में आते हैं।[6]

  • हैमिल्टनियन का एक कण शब्द उसी तरह से योगदान देगा जैसे साधारण हार्ट्री उत्पाद के लिए, अर्थात् ऊर्जा का योग है और राज्य स्वतंत्र हैं
  • हैमिल्टनियन के बहु-कण शब्द, यानी विनिमय की शर्तें, स्वदेशी की ऊर्जा को कम करने का परिचय देंगी

हैमिल्टनियन से शुरू करना:

कहाँ इलेक्ट्रॉन हैं और नाभिक हैं और

सादगी के लिए हम एक स्थिति में नाभिक को संतुलन में जमा देते हैं और हम एक सरल हैमिल्टनियन के साथ रहते हैं

कहाँ

और जहां हम हैमिल्टनियन में शर्तों के पहले सेट के बीच अंतर करेंगे (1 कण शर्तें) और अंतिम कार्यकाल जो 2 कण शब्द या विनिमय शब्द है

दो भागों अलग तरह से व्यवहार करेंगे जब उन्हें स्लेटर निर्धारक तरंग समारोह के साथ बातचीत करनी होगी। हम अपेक्षा मूल्यों की गणना करना शुरू करते हैं

ऊपर दिए गए व्यंजक में, हम केवल सारणिक में समान क्रमचय का चयन कर सकते हैं बाएं हिस्से में, चूंकि अन्य सभी N! − 1 क्रमचय वही परिणाम देगा जो चयनित एक। हम इस प्रकार एन रद्द कर सकते हैं! भाजक पर

स्पिन-ऑर्बिटल्स की ऑर्थोनॉर्मलिटी के कारण यह भी स्पष्ट है कि केवल समान उपरोक्त मैट्रिक्स तत्व के दाहिने भाग पर निर्धारक में क्रमचय जीवित रहता है

इस परिणाम से पता चलता है कि उत्पाद के प्रति-सममितीकरण का एक कण की शर्तों के लिए कोई प्रभाव नहीं पड़ता है और यह वैसा ही व्यवहार करता है जैसा कि साधारण हार्ट्री उत्पाद के मामले में होता है।

और अंत में हम एक कण हैमिल्टनियन पर निशान के साथ बने रहते हैं

जो हमें बताता है कि एक कण की सीमा तक इलेक्ट्रॉनों के तरंग कार्य एक दूसरे से स्वतंत्र होते हैं और ऊर्जा एकल कणों की ऊर्जाओं के योग द्वारा दी जाती है।

बदले में विनिमय भाग के लिए

यदि हम एक एक्सचेंज शब्द की क्रिया देखते हैं तो यह केवल एक्सचेंज किए गए वेवफंक्शन का चयन करेगा

और अंत में

जो इसके बजाय एक मिश्रण शब्द है, पहले योगदान को कूलम्ब शब्द कहा जाता है और दूसरा विनिमय शब्द है जिसे प्रयोग करके लिखा जा सकता है या , चूंकि कूलम्ब और विनिमय योगदान बिल्कुल एक दूसरे को रद्द करते हैं .

यह स्पष्ट रूप से नोटिस करना महत्वपूर्ण है कि इलेक्ट्रॉन-इलेक्ट्रॉन प्रतिकारक ऊर्जा स्पिन-ऑर्बिटल्स के एंटीसिमेट्रिज्ड उत्पाद पर समान स्पिन-ऑर्बिटल्स के सरल हार्ट्री उत्पाद पर इलेक्ट्रॉन-इलेक्ट्रॉन प्रतिकारक ऊर्जा की तुलना में हमेशा कम होता है। अंतर को केवल स्व-सहभागिता की शर्तों के बिना दाईं ओर दूसरे पद द्वारा दर्शाया गया है . विनिमय द्विइलेक्ट्रॉनिक के बाद से समाकल धनात्मक मात्राएँ हैं, केवल समांतर चक्रण वाले स्पिन-ऑर्बिटल्स के लिए शून्य से भिन्न, हम ऊर्जा में कमी को भौतिक तथ्य से जोड़ते हैं कि समानांतर चक्रण वाले इलेक्ट्रॉनों को स्लेटर निर्धारक अवस्थाओं में वास्तविक स्थान में अलग रखा जाता है।

सन्निकटन के रूप में

अधिकांश फ़र्मोनिक तरंगों को स्लेटर निर्धारक के रूप में प्रदर्शित नहीं किया जा सकता है। किसी दिए गए फ़र्मोनिक तरंग फ़ंक्शन के लिए सबसे अच्छा स्लेटर सन्निकटन को उस रूप में परिभाषित किया जा सकता है जो स्लेटर निर्धारक और लक्ष्य तरंग फ़ंक्शन के बीच कक्षीय ओवरलैप को अधिकतम करता है।[7] अधिकतम अतिव्याप्ति फ़र्मियों के बीच क्वांटम उलझाव का एक ज्यामितीय माप है।

हार्ट्री-फॉक विधि | हार्ट्री-फॉक सिद्धांत में इलेक्ट्रॉनिक वेवफंक्शन के सन्निकटन के रूप में एकल स्लेटर निर्धारक का उपयोग किया जाता है। अधिक सटीक सिद्धांतों (जैसे कॉन्फ़िगरेशन इंटरैक्शन और एमसीएससीएफ) में, स्लेटर निर्धारकों के एक रैखिक संयोजन की आवश्यकता होती है।

चर्चा

डेटर शब्द का प्रस्ताव एस. फ्रांसिस बॉयज|एस. एफ। लड़के ऑर्थोनॉर्मल ऑर्बिटल्स के एक स्लेटर निर्धारक को संदर्भित करने के लिए,[8] लेकिन इस शब्द का प्रयोग कम ही किया जाता है।

पाउली बहिष्करण सिद्धांत के अधीन होने वाले फ़र्मियन के विपरीत, दो या दो से अधिक बोसोन एक ही एकल-कण क्वांटम स्थिति पर कब्जा कर सकते हैं। समान बोसोन की प्रणालियों का वर्णन करने वाले वेवफंक्शन कणों के आदान-प्रदान के तहत सममित होते हैं और स्थायी (गणित) के संदर्भ में इसका विस्तार किया जा सकता है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Molecular Quantum Mechanics Parts I and II: An Introduction to QUANTUM CHEMISTRY (Volume 1), P. W. Atkins, Oxford University Press, 1977, ISBN 0-19-855129-0.
  2. Slater, J. (1929). "कॉम्प्लेक्स स्पेक्ट्रा का सिद्धांत". Physical Review. 34 (2): 1293–1322. Bibcode:1929PhRv...34.1293S. doi:10.1103/PhysRev.34.1293.
  3. Heisenberg, W. (1926). "Mehrkörperproblem und Resonanz in der Quantenmechanik". Zeitschrift für Physik. 38 (6–7): 411–426. Bibcode:1926ZPhy...38..411H. doi:10.1007/BF01397160. S2CID 186238286.
  4. Dirac, P. A. M. (1926). "क्वांटम यांत्रिकी के सिद्धांत पर". Proceedings of the Royal Society A. 112 (762): 661–677. Bibcode:1926RSPSA.112..661D. doi:10.1098/rspa.1926.0133.
  5. Szabo, A.; Ostlund, N. S. (1996). Modern Quantum Chemistry. Mineola, New York: Dover Publishing. ISBN 0-486-69186-1.
  6. Solid State Physics - Grosso Parravicini - 2nd edition pp.140-143
  7. Zhang, J. M.; Kollar, Marcus (2014). "एक N-फर्मियन वेव फंक्शन का ऑप्टिमल मल्टीकॉन्फ़िगरेशन सन्निकटन". Physical Review A. 89 (1): 012504. arXiv:1309.1848. Bibcode:2014PhRvA..89a2504Z. doi:10.1103/PhysRevA.89.012504. S2CID 17241999.
  8. Boys, S. F. (1950). "इलेक्ट्रॉनिक तरंग कार्य I. किसी भी आणविक प्रणाली की स्थिर अवस्थाओं के लिए गणना की एक सामान्य विधि". Proceedings of the Royal Society. A200 (1063): 542. Bibcode:1950RSPSA.200..542B. doi:10.1098/rspa.1950.0036. S2CID 122709395.


बाहरी संबंध