अरहेनियस समीकरण: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Formula for temperature dependence of rates of chemical reactions}} भौतिक रसायन विज्ञान में, आरेनिय...")
 
No edit summary
Line 1: Line 1:
{{Short description|Formula for temperature dependence of rates of chemical reactions}}
{{Short description|Formula for temperature dependence of rates of chemical reactions}}
[[भौतिक रसायन]] विज्ञान में, आरेनियस समीकरण प्रतिक्रिया दरों की तापमान निर्भरता के लिए एक सूत्र है। 1889 में डच रसायनशास्त्री जेकोबस हेनरिकस वैन 'टी हॉफ के काम के आधार पर [[Svante Arrhenius]] द्वारा समीकरण प्रस्तावित किया गया था, जिन्होंने 1884 में नोट किया था कि संतुलन स्थिरांक की तापमान निर्भरता के लिए वैन' टी हॉफ समीकरण दरों के लिए इस तरह के एक सूत्र का सुझाव देता है। आगे और पीछे दोनों प्रतिक्रियाएँ। रासायनिक प्रतिक्रियाओं की दर निर्धारित करने और [[सक्रियण ऊर्जा]] की गणना के लिए इस समीकरण का एक विशाल और महत्वपूर्ण अनुप्रयोग है। अरहेनियस ने सूत्र के लिए एक भौतिक औचित्य और व्याख्या प्रदान की।<ref name="Arrhenius96">{{cite journal|first = S. A.|last = Arrhenius|title = Über die Dissociationswärme und den Einfluß der Temperatur auf den Dissociationsgrad der Elektrolyte|journal = [[Z. Phys. Chem.]]|volume = 4|pages = 96–116|year = 1889|doi=10.1515/zpch-1889-0408|s2cid = 202553486|url = https://zenodo.org/record/1448930}}</ref><ref name="Arrhenius226">{{cite journal|first = S. A.|last = Arrhenius|title = Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren|journal = [[Z. Phys. Chem.]]|volume = 4|pages = 226–48|year = 1889|doi = 10.1515/zpch-1889-0416| s2cid=100032801 |url = https://zenodo.org/record/1749766}}</ref><ref name="Laidler1984">{{cite journal|first = K. J.|last = Laidler|title = अरहेनियस समीकरण का विकास|journal = [[J. Chem. Educ.]]|volume = 61|pages = 494–498|year = 1984| issue=6 |doi=10.1021/ed061p494| bibcode=1984JChEd..61..494L |url = https://doi.org/10.1021/ed061p494}}</ref><ref name="Laidler42">[[Keith J. Laidler|Laidler, K. J.]] (1987) ''Chemical Kinetics'', Third Edition, Harper & Row, p. 42</ref> वर्तमान में, इसे [[अनुभवजन्य संबंध]] के रूप में सबसे अच्छा देखा जाता है।<ref name="Connors">Kenneth Connors, Chemical Kinetics, 1990, VCH Publishers {{Google books|nHux3YED1HsC|Chemical Kinetics: The Study of Reaction Rates in Solution}}</ref>{{rp|188}} इसका उपयोग प्रसार गुणांकों के तापमान भिन्नता, क्रिस्टल रिक्तियों की जनसंख्या, रेंगने की दर, और कई अन्य तापीय-प्रेरित प्रक्रियाओं/प्रतिक्रियाओं को मॉडल करने के लिए किया जा सकता है। 1935 में विकसित [[आयरिंग समीकरण]] भी दर और ऊर्जा के बीच संबंध को व्यक्त करता है।
[[भौतिक रसायन]] विज्ञान में, अरहेनियस समीकरण प्रतिक्रिया दरों की तापमान निर्भरता के लिए एक सूत्र है। 1889 में डच रसायनशास्त्री जेकोबस हेनरिकस वैन 'टी हॉफ के काम के आधार पर [[Svante Arrhenius|स्वांते अरहेनियस]] द्वारा समीकरण प्रस्तावित किया गया था, जिन्होंने 1884 में नोट किया था कि संतुलन स्थिरांक की तापमान निर्भरता के लिए वैन' टी हॉफ समीकरण के अग्र तथा पश्च प्रतिक्रिया दोनों की दरों के लिए इस प्रकार के एक सूत्र का सुझाव देता है। रासायनिक प्रतिक्रियाओं की दर निर्धारित करने और [[सक्रियण ऊर्जा]] की गणना के लिए इस समीकरण का एक विशाल और महत्वपूर्ण अनुप्रयोग है। अरहेनियस ने सूत्र के लिए एक भौतिक औचित्य और व्याख्या प्रदान की।<ref name="Arrhenius96">{{cite journal|first = S. A.|last = Arrhenius|title = Über die Dissociationswärme und den Einfluß der Temperatur auf den Dissociationsgrad der Elektrolyte|journal = [[Z. Phys. Chem.]]|volume = 4|pages = 96–116|year = 1889|doi=10.1515/zpch-1889-0408|s2cid = 202553486|url = https://zenodo.org/record/1448930}}</ref><ref name="Arrhenius226">{{cite journal|first = S. A.|last = Arrhenius|title = Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren|journal = [[Z. Phys. Chem.]]|volume = 4|pages = 226–48|year = 1889|doi = 10.1515/zpch-1889-0416| s2cid=100032801 |url = https://zenodo.org/record/1749766}}</ref><ref name="Laidler1984">{{cite journal|first = K. J.|last = Laidler|title = अरहेनियस समीकरण का विकास|journal = [[J. Chem. Educ.]]|volume = 61|pages = 494–498|year = 1984| issue=6 |doi=10.1021/ed061p494| bibcode=1984JChEd..61..494L |url = https://doi.org/10.1021/ed061p494}}</ref><ref name="Laidler42">[[Keith J. Laidler|Laidler, K. J.]] (1987) ''Chemical Kinetics'', Third Edition, Harper & Row, p. 42</ref> वर्तमान में, इसे [[अनुभवजन्य संबंध]] के रूप में सबसे ठीक देखा जाता है।<ref name="Connors">Kenneth Connors, Chemical Kinetics, 1990, VCH Publishers {{Google books|nHux3YED1HsC|Chemical Kinetics: The Study of Reaction Rates in Solution}}</ref>{{rp|188}} इसका उपयोग प्रसार गुणांकों के तापमान भिन्नता, क्रिस्टल रिक्तियों की जनसंख्या, मंद विरूपण दर, और कई अन्य तापीय-प्रेरित प्रक्रियाओं/प्रतिक्रियाओं को मॉडल करने के लिए किया जा सकता है। 1935 में विकसित [[आयरिंग समीकरण]] भी दर और ऊर्जा के बीच संबंध को व्यक्त करता है।


== समीकरण ==
== समीकरण ==
[[File:NO2 Arrhenius k against T.svg|thumb|लगभग सभी व्यावहारिक मामलों में, <math>E_a \gg RT</math> और k, T के साथ तेजी से बढ़ता है।]]
[[File:NO2 Arrhenius k against T.svg|thumb|लगभग सभी व्यावहारिक मामलों में, <math>E_a \gg RT</math> और k, T के साथ तेजी से बढ़ता है।]]
[[File:KineticConstant.png|thumb|गणितीय रूप से, बहुत उच्च तापमान पर ताकि <math>E_a \ll RT</math>, k स्तर बंद हो जाता है और एक सीमा के रूप में A तक पहुँच जाता है, लेकिन यह मामला व्यावहारिक परिस्थितियों में नहीं होता है।]]आरेनियस समीकरण किसी रासायनिक अभिक्रिया के वेग स्थिरांक की परम ताप पर निर्भरता देता है
[[File:KineticConstant.png|thumb|गणितीय रूप से, बहुत उच्च तापमान पर ताकि <math>E_a \ll RT</math>, k स्तर बंद हो जाता है और एक सीमा के रूप में A तक पहुँच जाता है, लेकिन यह मामला व्यावहारिक परिस्थितियों में नहीं होता है।]]अरहेनियस समीकरण किसी रासायनिक अभिक्रिया के वेग स्थिरांक की परम तापमान पर निर्भरता को
<math display="block">k = Ae^\frac{- E_{\rm a}}{RT},</math>
<math display="block">k = Ae^\frac{- E_{\rm a}}{RT}</math>  
कहाँ
के रूप में बताता है, जहां
* {{mvar|k}} दर स्थिर है (टकराव की आवृत्ति जिसके परिणामस्वरूप प्रतिक्रिया होती है),
* {{mvar|k}} दर स्थिर है ( संघट्ट की आवृत्ति जिसके परिणामस्वरूप प्रतिक्रिया होती है),
* {{mvar|T}} पूर्ण तापमान है ([[केल्विन]] या डिग्री रैंकिन पैमाने में<!-- pluralized – see Kelvin#Usage conventions -->),
* {{mvar|T}} पूर्ण तापमान है ([[केल्विन]] या परिमाण रैंकिन पैमाने में),
* {{mvar|A}} [[पूर्व-घातीय कारक]] है। Arrhenius मूल रूप से A को प्रत्येक रासायनिक प्रतिक्रिया के लिए एक तापमान-स्वतंत्र स्थिरांक माना जाता है।<ref>[http://goldbook.iupac.org/A00446.html IUPAC Goldbook definition of Arrhenius equation].</ref> हालाँकि हाल के उपचारों में कुछ तापमान पर निर्भरता शामिल है - अरहेनियस समीकरण # नीचे संशोधित अरहेनियस समीकरण देखें।
* {{mvar|A}} [[पूर्व-घातीय कारक]] है। अरहेनियस मूल रूप से A को प्रत्येक रासायनिक प्रतिक्रिया के लिए एक तापमान-स्वतंत्र स्थिरांक माना जाता है।<ref>[http://goldbook.iupac.org/A00446.html IUPAC Goldbook definition of Arrhenius equation].</ref> यद्यपि वर्तमान उपचारों में कुछ तापमान पर निर्भरता सम्मिलित है - नीचे संशोधित अरहेनियस समीकरण देखें।
* {{math|''E''<sub>a</sub>}} प्रतिक्रिया के लिए सक्रियण ऊर्जा है (आरटी के समान इकाइयों में),
* {{math|''E''<sub>a</sub>}} प्रतिक्रिया के लिए सक्रियण ऊर्जा है (आरटी के समान इकाइयों में),
* {{mvar|R}} सार्वभौमिक गैस नियतांक है।<ref name="Arrhenius96"/><ref name="Arrhenius226"/><ref name="Laidler42"/>
* {{mvar|R}} सार्वभौमिक गैस नियतांक है।<ref name="Arrhenius96" /><ref name="Arrhenius226" /><ref name="Laidler42" />


वैकल्पिक रूप से, समीकरण के रूप में व्यक्त किया जा सकता है
वैकल्पिक रूप से, समीकरण को
<math display="block">k = Ae^\frac{-E_{\rm a}}{k_{\rm B}T},</math>
<math display="block">k = Ae^\frac{-E_{\rm a}}{k_{\rm B}T}</math> के रूप में व्यक्त किया जा सकता है,
कहाँ
 
*{{math|''E''<sub>a</sub>}} प्रतिक्रिया के लिए सक्रियण ऊर्जा है (के रूप में एक ही इकाइयों में<sub>B</sub>टी),
जहां
*{{math|''E''<sub>a</sub>}} प्रतिक्रिया के लिए सक्रियण ऊर्जा है (k<sub>B</sub>T के समान इकाइयों में),
*{{math|''k''<sub>B</sub>}} [[बोल्ट्जमैन स्थिरांक]] है।
*{{math|''k''<sub>B</sub>}} [[बोल्ट्जमैन स्थिरांक]] है।


अंतर केवल ऊर्जा इकाइयों का है {{math|''E''<sub>a</sub>}}: पूर्व रूप ऊर्जा प्रति मोल (यूनिट) का उपयोग करता है, जो रसायन विज्ञान में आम है, जबकि बाद वाला रूप सीधे प्रति [[अणु]] ऊर्जा का उपयोग करता है, जो भौतिकी में आम है।
एकमात्र अंतर {{math|''E''<sub>a</sub>}}: की ऊर्जा इकाइयों का है: पूर्व रूप प्रति मोल ऊर्जा का उपयोग करता है, जो रसायन विज्ञान में सामान्य है, जबकि बाद वाला रूप सीधे प्रति [[अणु]] ऊर्जा का उपयोग करता है, जो भौतिकी में सामान्य है। तापमान {{mvar|T}} के गुणक के रूप में या तो [[गैस स्थिरांक]], {{mvar|R}}, या बोल्ट्जमान स्थिरांक, {{math|''k''<sub>B</sub>}} का उपयोग करने में विभिन्न इकाइयों की गणना की जाती है।
[[गैस स्थिरांक]] का उपयोग करने के लिए विभिन्न इकाइयों का हिसाब लगाया जाता है, {{mvar|R}}, या बोल्ट्जमान स्थिरांक, {{math|''k''<sub>B</sub>}}, तापमान के गुणक के रूप में {{mvar|T}}.
 
पूर्व-घातीय कारक {{mvar|A}} की इकाइयाँ दर स्थिर के समान हैं और प्रतिक्रिया के क्रम के आधार पर अलग-अलग होंगी। यदि प्रतिक्रिया पहले क्रम की है तो इसकी इकाइयाँ हैं: [[दूसरा|सेकंड]]<sup>-1</sup>, और इस कारण से इसे प्रायः प्रतिक्रिया का [[आवृत्ति]] कारक या प्रयत्न आवृत्ति कहा जाता है। सरल शब्दों में, {{mvar|k}} की वह संख्या है जिसके परिणामस्वरूप प्रति सेकंड एक प्रतिक्रिया होती है, {{mvar|A}} प्रतिक्रिया करने के लिए उचित अभिविन्यास के साथ होने वाली टक्करों की संख्या है (प्रतिक्रिया की ओर अग्रसर है या नहीं)<ref>{{cite book |last1=Silberberg |first1=Martin S. |title=रसायन विज्ञान|url=https://archive.org/details/chemistrymolecul00silb_803 |url-access=limited |date=2006 |publisher=McGraw-Hill |location=NY |isbn=0-07-111658-3 |page=[https://archive.org/details/chemistrymolecul00silb_803/page/n728 696] |edition=fourth}}</ref> और <math>e^{-E_{\rm a}/(RT)}</math> संभावना है कि किसी भी टकराव के परिणामस्वरूप प्रतिक्रिया होगी। यह देखा जा सकता है कि या तो तापमान में वृद्धि या सक्रियण ऊर्जा में कमी (उदाहरण के लिए [[उत्प्रेरक]] के उपयोग के माध्यम से) के परिणामस्वरूप प्रतिक्रिया की दर में वृद्धि होगी।


पूर्व-घातीय कारक की इकाइयाँ {{mvar|A}} दर स्थिर के समान हैं और प्रतिक्रिया के क्रम के आधार पर अलग-अलग होंगे। यदि प्रतिक्रिया पहले क्रम की है तो इसकी इकाइयाँ हैं: [[दूसरा]]<sup>-1</sup>, और इस कारण से इसे अक्सर [[आवृत्ति]] कारक या प्रतिक्रिया की प्रयास आवृत्ति कहा जाता है। सबसे सरलता से, {{mvar|k}} टक्करों की संख्या है जिसके परिणामस्वरूप प्रति सेकंड प्रतिक्रिया होती है, {{mvar|A}} प्रतिक्रिया करने के लिए उचित अभिविन्यास के साथ प्रति सेकंड होने वाली टक्करों की संख्या है (प्रतिक्रिया की ओर अग्रसर है या नहीं)।<ref>{{cite book |last1=Silberberg |first1=Martin S. |title=रसायन विज्ञान|url=https://archive.org/details/chemistrymolecul00silb_803 |url-access=limited |date=2006 |publisher=McGraw-Hill |location=NY |isbn=0-07-111658-3 |page=[https://archive.org/details/chemistrymolecul00silb_803/page/n728 696] |edition=fourth}}</ref> और <math>e^{-E_{\rm a}/(RT)}</math> संभावना है कि किसी दिए गए टक्कर के परिणामस्वरूप प्रतिक्रिया होगी। यह देखा जा सकता है कि या तो तापमान में वृद्धि या सक्रियण ऊर्जा में कमी (उदाहरण के लिए [[उत्प्रेरक]] के उपयोग के माध्यम से) के परिणामस्वरूप प्रतिक्रिया की दर में वृद्धि होगी।
गतिज अध्ययन की छोटी तापमान सीमा को देखते हुए, सक्रियण ऊर्जा को तापमान से स्वतंत्र होने के रूप में अनुमानित करना उचित है। इसी प्रकार, व्यावहारिक परिस्थितियों की एक विस्तृत श्रृंखला के अंतर्गत, <math>\exp(-E_{\rm a}/(RT))</math> कारक की तापमान निर्भरता की तुलना में पूर्व-घातीय कारक की मन्द तापमान निर्भरता नगण्य है; "बाधा रहित" [[प्रसार]]-सीमित प्रतिक्रियाओं की स्थिति को छोड़कर, जिसमें पूर्व-घातीय कारक प्रमुख है और प्रत्यक्ष रूप से देखा जा सकता है।


गतिज अध्ययन की छोटी तापमान सीमा को देखते हुए, सक्रियण ऊर्जा को तापमान से स्वतंत्र होने के रूप में अनुमानित करना उचित है। इसी तरह, व्यावहारिक परिस्थितियों की एक विस्तृत श्रृंखला के तहत, पूर्व-घातीय कारक की कमजोर तापमान निर्भरता की तापमान निर्भरता की तुलना में नगण्य है <math>\exp(-E_{\rm a}/(RT))</math> कारक; बाधा रहित [[प्रसार]]-सीमित प्रतिक्रियाओं के मामले को छोड़कर, जिसमें पूर्व-घातीय कारक प्रमुख है और प्रत्यक्ष रूप से देखा जा सकता है।
इस समीकरण से साधारणतया अनुमान लगाया जा सकता है कि तापमान में प्रत्येक 10 डिग्री सेल्सियस की वृद्धि के लिए प्रतिक्रिया की दर लगभग 2 या 3 गुना बढ़ जाती है।


इस समीकरण से मोटे तौर पर अनुमान लगाया जा सकता है कि तापमान में प्रत्येक 10 डिग्री सेल्सियस की वृद्धि के लिए प्रतिक्रिया की दर लगभग 2 या 3 गुना बढ़ जाती है।
<math>e^{\frac{-E_a}{RT}}</math> पद <math>E_a</math> से अधिक या उसके बराबर ऊर्जा वाले अणुओं के अंश को दर्शाता है ।<ref>{{Cite web |date=2013-10-02 |title=6.2.3.3: The Arrhenius Law - Activation Energies |url=https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Kinetics/06%3A_Modeling_Reaction_Kinetics/6.02%3A_Temperature_Dependence_of_Reaction_Rates/6.2.03%3A_The_Arrhenius_Law/6.2.3.03%3A_The_Arrhenius_Law-_Activation_Energies |access-date= |website=Chemistry LibreTexts |language=en}}</ref>


शब्द <math>e^{\frac{-E_a}{RT}}</math> से अधिक या उसके बराबर ऊर्जा वाले अणुओं के अंश को दर्शाता है <math>E_a</math>.<ref>{{Cite web |date=2013-10-02 |title=6.2.3.3: The Arrhenius Law - Activation Energies |url=https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Kinetics/06%3A_Modeling_Reaction_Kinetics/6.02%3A_Temperature_Dependence_of_Reaction_Rates/6.2.03%3A_The_Arrhenius_Law/6.2.3.03%3A_The_Arrhenius_Law-_Activation_Energies |access-date= |website=Chemistry LibreTexts |language=en}}</ref>




== अरहेनियस प्लॉट ==
== अरहेनियस कथानक ==
{{main|Arrhenius plot}}
{{main|अरहेनियस कथानक}}


[[Image:Arrhenius_plot_with_break_in_y-axis_to_show_intercept.svg|thumb|अरहेनियस रैखिक प्लॉट: ln k विरुद्ध 1/T।]]आरेनियस समीकरण का [[प्राकृतिक]] लघुगणक लेने से प्राप्त होता है:
[[Image:Arrhenius_plot_with_break_in_y-axis_to_show_intercept.svg|thumb|अरहेनियस रैखिक कथानक: ln k विरुद्ध 1/T।]]अरहेनियस समीकरण का [[प्राकृतिक]] लघुगणक लेने से प्राप्त होता है:
<math display="block">\ln k= \ln A - \frac{E_{\rm a}}{R} \frac{1}{T}.</math>
<math display="block">\ln k= \ln A - \frac{E_{\rm a}}{R} \frac{1}{T}.</math>
पुनर्व्यवस्थित उपज:
पुनर्व्यवस्थित उपज:
Line 42: Line 43:
जहाँ x, T का गुणक प्रतिलोम है।
जहाँ x, T का गुणक प्रतिलोम है।


इसलिए, जब किसी अभिक्रिया में दर स्थिरांक होता है जो अरहेनियस समीकरण का पालन करता है, तो ln k बनाम T का प्लॉट<sup>-1</sup> एक सीधी रेखा देता है, जिसकी ग्रेडिएंट और इंटरसेप्ट का उपयोग E को निर्धारित करने के लिए किया जा सकता है<sub>a</sub> और ए। प्रायोगिक रासायनिक कैनेटीक्स में यह प्रक्रिया इतनी सामान्य हो गई है कि चिकित्सकों ने प्रतिक्रिया के लिए सक्रियण ऊर्जा को परिभाषित करने के लिए इसका उपयोग करना शुरू कर दिया है। यानी सक्रियण ऊर्जा को ln k बनाम (1/T) के प्लॉट के ढलान (−R) गुणा के रूप में परिभाषित किया गया है:
इसलिए, जब किसी अभिक्रिया में दर स्थिरांक होता है जो अरहेनियस समीकरण का पालन करता है, तो ln k बनाम T का कथानक<sup>-1</sup> एक सीधी रेखा देता है, जिसकी ग्रेडिएंट और इंटरसेप्ट का उपयोग E को निर्धारित करने के लिए किया जा सकता है<sub>a</sub> और ए। प्रायोगिक रासायनिक कैनेटीक्स में यह प्रक्रिया इतनी सामान्य हो गई है कि चिकित्सकों ने प्रतिक्रिया के लिए सक्रियण ऊर्जा को परिभाषित करने के लिए इसका उपयोग करना शुरू कर दिया है। यानी सक्रियण ऊर्जा को ln k बनाम (1/T) के कथानक के ढलान (−R) गुणा के रूप में परिभाषित किया गया है:
<math display="block">E_{\rm a} \equiv -R \left[ \frac{\partial \ln k}{\partial (1/T)} \right]_P.</math>
<math display="block">E_{\rm a} \equiv -R \left[ \frac{\partial \ln k}{\partial (1/T)} \right]_P.</math>




== संशोधित अरहेनियस समीकरण ==
== संशोधित अरहेनियस समीकरण ==
संशोधित अरहेनियस समीकरण<ref>[http://goldbook.iupac.org/M03963.html IUPAC Goldbook definition of modified Arrhenius equation].</ref> पूर्व-घातीय कारक की तापमान निर्भरता को स्पष्ट करता है। संशोधित समीकरण आमतौर पर रूप का होता है
संशोधित अरहेनियस समीकरण<ref>[http://goldbook.iupac.org/M03963.html IUPAC Goldbook definition of modified Arrhenius equation].</ref> पूर्व-घातीय कारक की तापमान निर्भरता को स्पष्ट करता है। संशोधित समीकरण सामान्यतः रूप का होता है
<math display="block">k = A T^n e^{-E_{\rm a}/(RT)}.</math>
<math display="block">k = A T^n e^{-E_{\rm a}/(RT)}.</math>
उपरोक्त मूल अरहेनियस अभिव्यक्ति n = 0 से मेल खाती है। फिटेड दर स्थिरांक आमतौर पर सीमा में होते हैं {{nobr|−1 < ''n'' < 1}}. सैद्धांतिक विश्लेषण n के लिए विभिन्न भविष्यवाणियां करते हैं। यह इंगित किया गया है कि दर स्थिरांक के तापमान अध्ययन के आधार पर यह स्थापित करना संभव नहीं है कि क्या अनुमानित टी<sup>1/2</sup> पूर्व-घातीय कारक की निर्भरता प्रयोगात्मक रूप से देखी गई है।<ref name="Connors"/>{{rp|190}} हालांकि, यदि सिद्धांत और/या प्रयोग (जैसे घनत्व निर्भरता) से अतिरिक्त सबूत उपलब्ध हैं, तो अरहेनियस कानून के निर्णायक परीक्षणों में कोई बाधा नहीं है।
उपरोक्त मूल अरहेनियस अभिव्यक्ति n = 0 से मेल खाती है। फिटेड दर स्थिरांक सामान्यतः सीमा में होते हैं {{nobr|−1 < ''n'' < 1}}सैद्धांतिक विश्लेषण n के लिए विभिन्न भविष्यवाणियां करते हैं। यह इंगित किया गया है कि दर स्थिरांक के तापमान अध्ययन के आधार पर यह स्थापित करना संभव नहीं है कि क्या अनुमानित टी<sup>1/2</sup> पूर्व-घातीय कारक की निर्भरता प्रयोगात्मक रूप से देखी गई है।<ref name="Connors"/>{{rp|190}} यद्यपि, यदि सिद्धांत और/या प्रयोग (जैसे घनत्व निर्भरता) से अतिरिक्त सबूत उपलब्ध हैं, तो अरहेनियस कानून के निर्णायक परीक्षणों में कोई बाधा नहीं है।


एक अन्य आम संशोधन फैला हुआ घातीय रूप है{{citation needed|date=January 2013}}
एक अन्य सामान्य संशोधन फैला हुआ घातीय रूप है{{citation needed|date=January 2013}}
<math display="block">k = A \exp \left[-\left(\frac{E_a}{RT}\right)^\beta\right],</math>
<math display="block">k = A \exp \left[-\left(\frac{E_a}{RT}\right)^\beta\right],</math>
जहां β ऑर्डर 1 की एक आयाम रहित संख्या है। इसे आमतौर पर डेटा को फिट करने के लिए मॉडल बनाने के लिए विशुद्ध रूप से अनुभवजन्य सुधार या फ़ज कारक के रूप में माना जाता है, लेकिन इसका सैद्धांतिक अर्थ हो सकता है, उदाहरण के लिए सक्रियण ऊर्जा की एक श्रृंखला की उपस्थिति या विशेष में Mott [[चर रेंज hopping]] जैसे मामले।
जहां β ऑर्डर 1 की एक आयाम रहित संख्या है। इसे सामान्यतः डेटा को फिट करने के लिए मॉडल बनाने के लिए विशुद्ध रूप से अनुभवजन्य सुधार या फ़ज कारक के रूप में माना जाता है, लेकिन इसका सैद्धांतिक अर्थ हो सकता है, उदाहरण के लिए सक्रियण ऊर्जा की एक श्रृंखला की उपस्थिति या विशेष में Mott [[चर रेंज hopping]] जैसे मामले।


== समीकरण की सैद्धांतिक व्याख्या ==
== समीकरण की सैद्धांतिक व्याख्या ==


=== अरहेनियस की सक्रियण ऊर्जा की अवधारणा ===
=== अरहेनियस की सक्रियण ऊर्जा की अवधारणा ===
अरहेनियस ने तर्क दिया कि अभिकारकों को उत्पादों में बदलने के लिए, उन्हें पहले ऊर्जा की एक न्यूनतम मात्रा प्राप्त करनी होगी, जिसे सक्रियण ऊर्जा E कहा जाता है।<sub>a</sub>. एक पूर्ण तापमान T पर, अणुओं का वह अंश जिसमें E से अधिक गतिज ऊर्जा होती है<sub>a</sub> [[सांख्यिकीय यांत्रिकी]] से गणना की जा सकती है। सक्रियण ऊर्जा की अवधारणा संबंध की घातीय प्रकृति की व्याख्या करती है, और एक या दूसरे तरीके से यह सभी गतिज सिद्धांतों में मौजूद है।
अरहेनियस ने तर्क दिया कि अभिकारकों को उत्पादों में बदलने के लिए, उन्हें पहले ऊर्जा की एक न्यूनतम मात्रा प्राप्त करनी होगी, जिसे सक्रियण ऊर्जा E कहा जाता है।<sub>a</sub>एक पूर्ण तापमान T पर, अणुओं का वह अंश जिसमें E से अधिक गतिज ऊर्जा होती है<sub>a</sub> [[सांख्यिकीय यांत्रिकी]] से गणना की जा सकती है। सक्रियण ऊर्जा की अवधारणा संबंध की घातीय प्रकृति की व्याख्या करती है, और एक या दूसरे तरीके से यह सभी गतिज सिद्धांतों में मौजूद है।


प्रतिक्रिया दर स्थिरांक की गणना में मैक्सवेल-बोल्ट्ज़मैन वितरण पर औसत ऊर्जा शामिल है <math>E_{\rm a}</math> निचले बाउंड के रूप में और अक्सर अपूर्ण गामा फ़ंक्शन # विशेष मान के प्रकार होते हैं, जो आनुपातिक होते हैं <math>e^{\frac{-E_{\rm a}}{RT}}</math>.
प्रतिक्रिया दर स्थिरांक की गणना में मैक्सवेल-बोल्ट्ज़मैन वितरण पर औसत ऊर्जा सम्मिलित है <math>E_{\rm a}</math> निचले बाउंड के रूप में और प्रायः अपूर्ण गामा फ़ंक्शन # विशेष मान के प्रकार होते हैं, जो आनुपातिक होते हैं <math>e^{\frac{-E_{\rm a}}{RT}}</math>


=== टक्कर सिद्धांत ===
=== टक्कर सिद्धांत ===
{{main|Collision theory}}
{{main|Collision theory}}
एक दृष्टिकोण रासायनिक प्रतिक्रियाओं का टकराव सिद्धांत है, जिसे 1916-18 के वर्षों में [[मैक्स ट्रॉट्ज़]] और [[विलियम लुईस (भौतिक रसायनज्ञ)]] द्वारा विकसित किया गया था। इस सिद्धांत में, माना जाता है कि अणु प्रतिक्रिया करते हैं यदि वे ई से अधिक केंद्रों की अपनी रेखा के साथ सापेक्ष गतिज ऊर्जा से टकराते हैं।<sub>a</sub>. प्रति इकाई आयतन प्रति सेकंड दो विपरीत अणुओं के बीच बाइनरी टकराव की संख्या पाई जाती है<ref name=LM>{{cite book |last1=Laidler |first1=Keith J. |last2=Meiser |first2=John H. |title=भौतिक रसायन|date=1982 |publisher=Benjamin/Cummings |isbn=0-8053-5682-7 |pages=376–78 |edition=1st}}</ref>
एक दृष्टिकोण रासायनिक प्रतिक्रियाओं का टकराव सिद्धांत है, जिसे 1916-18 के वर्षों में [[मैक्स ट्रॉट्ज़]] और [[विलियम लुईस (भौतिक रसायनज्ञ)]] द्वारा विकसित किया गया था। इस सिद्धांत में, माना जाता है कि अणु प्रतिक्रिया करते हैं यदि वे ई से अधिक केंद्रों की अपनी रेखा के साथ सापेक्ष गतिज ऊर्जा से टकराते हैं।<sub>a</sub>प्रति इकाई आयतन प्रति सेकंड दो विपरीत अणुओं के बीच बाइनरी टकराव की संख्या पाई जाती है<ref name=LM>{{cite book |last1=Laidler |first1=Keith J. |last2=Meiser |first2=John H. |title=भौतिक रसायन|date=1982 |publisher=Benjamin/Cummings |isbn=0-8053-5682-7 |pages=376–78 |edition=1st}}</ref>
<math display="block"> z_{AB} = N_{\rm A} d_{AB}^2 \sqrt\frac{8 \pi k_{\rm B}T}{ \mu_{AB}} ,</math>
<math display="block"> z_{AB} = N_{\rm A} d_{AB}^2 \sqrt\frac{8 \pi k_{\rm B}T}{ \mu_{AB}} ,</math>
जहां एन<sub>A</sub>[[अवोगाद्रो स्थिरांक]] है, डी<sub>AB</sub>A और B का औसत व्यास है, T वह तापमान है जिसे बोल्ट्जमैन स्थिरांक k से गुणा किया जाता है<sub>B</sub> ऊर्जा इकाइयों में परिवर्तित करने के लिए, और μ<sub>AB</sub>घटा हुआ द्रव्यमान है।
जहां एन<sub>A</sub>[[अवोगाद्रो स्थिरांक]] है, डी<sub>AB</sub>A और B का औसत व्यास है, T वह तापमान है जिसे बोल्ट्जमैन स्थिरांक k से गुणा किया जाता है<sub>B</sub> ऊर्जा इकाइयों में परिवर्तित करने के लिए, और μ<sub>AB</sub>घटा हुआ द्रव्यमान है।


दर स्थिरांक की गणना तब की जाती है <math>k = z_{AB}e^\frac{-E_{\rm a}}{RT},</math> ताकि टक्कर सिद्धांत भविष्यवाणी करता है कि पूर्व-घातीय कारक टक्कर संख्या z के बराबर है<sub>AB</sub>. हालाँकि कई प्रतिक्रियाओं के लिए यह प्रयोग के साथ खराब रूप से सहमत है, इसलिए दर स्थिरांक को इसके बजाय लिखा जाता है <math>k = \rho z_{AB}e^\frac{-E_{\rm a}}{RT},</math>. यहाँ<math>\rho</math>एक अनुभवजन्य [[स्टेरिक कारक]] है, जो अक्सर 1.00 से बहुत कम होता है, जिसे पर्याप्त ऊर्जावान टकरावों के अंश के रूप में व्याख्या किया जाता है जिसमें प्रतिक्रिया करने के लिए दो अणुओं का सही पारस्परिक अभिविन्यास होता है।<ref name=LM/>
दर स्थिरांक की गणना तब की जाती है <math>k = z_{AB}e^\frac{-E_{\rm a}}{RT},</math> ताकि टक्कर सिद्धांत भविष्यवाणी करता है कि पूर्व-घातीय कारक टक्कर संख्या z के बराबर है<sub>AB</sub>। यद्यपि कई प्रतिक्रियाओं के लिए यह प्रयोग के साथ खराब रूप से सहमत है, इसलिए दर स्थिरांक को इसके बजाय लिखा जाता है <math>k = \rho z_{AB}e^\frac{-E_{\rm a}}{RT},</math>यहाँ<math>\rho</math>एक अनुभवजन्य [[स्टेरिक कारक]] है, जो प्रायः 1।00 से बहुत कम होता है, जिसे पर्याप्त ऊर्जावान टकरावों के अंश के रूप में व्याख्या किया जाता है जिसमें प्रतिक्रिया करने के लिए दो अणुओं का सही पारस्परिक अभिविन्यास होता है।<ref name=LM/>




Line 74: Line 75:
1930 के दशक में [[यूजीन विग्नर]], हेनरी आइरिंग (रसायनज्ञ), [[माइकल पोलानी]] और [[मेरेडिथ ग्वेने इवांस]] द्वारा तैयार किए गए रासायनिक प्रतिक्रियाओं के [[संक्रमण राज्य सिद्धांत]] में आयरिंग समीकरण, एक अन्य अरहेनियस जैसी अभिव्यक्ति दिखाई देती है। आयरिंग समीकरण लिखा जा सकता है:
1930 के दशक में [[यूजीन विग्नर]], हेनरी आइरिंग (रसायनज्ञ), [[माइकल पोलानी]] और [[मेरेडिथ ग्वेने इवांस]] द्वारा तैयार किए गए रासायनिक प्रतिक्रियाओं के [[संक्रमण राज्य सिद्धांत]] में आयरिंग समीकरण, एक अन्य अरहेनियस जैसी अभिव्यक्ति दिखाई देती है। आयरिंग समीकरण लिखा जा सकता है:
<math display="block">k = \frac{k_{\rm B}T}{h} e^{-\frac{\Delta G^\ddagger}{RT}} = \frac{k_{\rm B}T}{h} e^{\frac{\Delta S^\ddagger}{R}}e^{-\frac{\Delta H^\ddagger}{RT}},</math>
<math display="block">k = \frac{k_{\rm B}T}{h} e^{-\frac{\Delta G^\ddagger}{RT}} = \frac{k_{\rm B}T}{h} e^{\frac{\Delta S^\ddagger}{R}}e^{-\frac{\Delta H^\ddagger}{RT}},</math>
कहाँ <math>\Delta G^\ddagger</math> सक्रियण की [[गिब्स मुक्त ऊर्जा]] है, <math>\Delta S^\ddagger</math> [[सक्रियता की एन्ट्रापी]] है, <math>\Delta H^\ddagger</math> सक्रियता की [[तापीय धारिता]] है, <math>k_{\rm B}</math> बोल्ट्जमैन स्थिरांक है, और <math>h</math> प्लैंक नियतांक है।<ref>{{cite book |last1=Laidler |first1=Keith J. |last2=Meiser |first2=John H. |title=भौतिक रसायन|date=1982 |publisher=Benjamin/Cummings |isbn=0-8053-5682-7 |pages=378–83 |edition=1st}}</ref>
जहां <math>\Delta G^\ddagger</math> सक्रियण की [[गिब्स मुक्त ऊर्जा]] है, <math>\Delta S^\ddagger</math> [[सक्रियता की एन्ट्रापी]] है, <math>\Delta H^\ddagger</math> सक्रियता की [[तापीय धारिता]] है, <math>k_{\rm B}</math> बोल्ट्जमैन स्थिरांक है, और <math>h</math> प्लैंक नियतांक है।<ref>{{cite book |last1=Laidler |first1=Keith J. |last2=Meiser |first2=John H. |title=भौतिक रसायन|date=1982 |publisher=Benjamin/Cummings |isbn=0-8053-5682-7 |pages=378–83 |edition=1st}}</ref>
पहली नजर में यह तापमान में रैखिक होने वाले कारक से गुणा किए गए घातांक जैसा दिखता है। हालाँकि, मुक्त ऊर्जा अपने आप में एक तापमान पर निर्भर मात्रा है। सक्रियता की मुक्त ऊर्जा <math>\Delta G^\ddagger = \Delta H^\ddagger - T\Delta S^\ddagger</math> एन्थैल्पी टर्म और एन्ट्रापी टर्म का अंतर पूर्ण तापमान से गुणा किया जाता है। पूर्व-घातीय कारक मुख्य रूप से सक्रियण की एन्ट्रापी पर निर्भर करता है। समग्र अभिव्यक्ति फिर से टी के धीरे-धीरे बदलते कार्य से गुणा एक अरहेनियस एक्सपोनेंशियल (ऊर्जा के बजाय तापीय धारिता) का रूप लेती है। तापमान निर्भरता का सटीक रूप प्रतिक्रिया पर निर्भर करता है, और इसमें शामिल सांख्यिकीय यांत्रिकी के सूत्रों का उपयोग करके गणना की जा सकती है अभिकारकों और सक्रिय परिसर का विभाजन कार्य (सांख्यिकीय यांत्रिकी)।
पहली नजर में यह तापमान में रैखिक होने वाले कारक से गुणा किए गए घातांक जैसा दिखता है। यद्यपि, मुक्त ऊर्जा अपने आप में एक तापमान पर निर्भर मात्रा है। सक्रियता की मुक्त ऊर्जा <math>\Delta G^\ddagger = \Delta H^\ddagger - T\Delta S^\ddagger</math> एन्थैल्पी टर्म और एन्ट्रापी टर्म का अंतर पूर्ण तापमान से गुणा किया जाता है। पूर्व-घातीय कारक मुख्य रूप से सक्रियण की एन्ट्रापी पर निर्भर करता है। समग्र अभिव्यक्ति फिर से टी के धीरे-धीरे बदलते कार्य से गुणा एक अरहेनियस एक्सपोनेंशियल (ऊर्जा के बजाय तापीय धारिता) का रूप लेती है। तापमान निर्भरता का सटीक रूप प्रतिक्रिया पर निर्भर करता है, और इसमें सम्मिलित सांख्यिकीय यांत्रिकी के सूत्रों का उपयोग करके गणना की जा सकती है अभिकारकों और सक्रिय परिसर का विभाजन कार्य (सांख्यिकीय यांत्रिकी)।


=== अरहेनियस सक्रियण ऊर्जा के विचार की सीमाएं ===
=== अरहेनियस सक्रियण ऊर्जा के विचार की सीमाएं ===
अरहेनियस सक्रियण ऊर्जा और दर स्थिर k दोनों प्रयोगात्मक रूप से निर्धारित किए गए हैं, और मैक्रोस्कोपिक प्रतिक्रिया-विशिष्ट पैरामीटर का प्रतिनिधित्व करते हैं जो केवल थ्रेशोल्ड ऊर्जा और आणविक स्तर पर व्यक्तिगत टक्करों की सफलता से संबंधित नहीं हैं। अणुओं ए और बी के बीच एक विशेष टकराव (एक प्राथमिक प्रतिक्रिया) पर विचार करें। टक्कर कोण, सापेक्ष अनुवाद ऊर्जा, आंतरिक (विशेष रूप से कंपन) ऊर्जा सभी इस संभावना को निर्धारित करेंगे कि टक्कर एक उत्पाद अणु एबी का उत्पादन करेगी। ई और के मैक्रोस्कोपिक माप अलग-अलग टकराव मापदंडों के साथ कई अलग-अलग टकरावों का परिणाम हैं। आणविक स्तर पर प्रतिक्रिया दर की जांच करने के लिए, निकट-टकराव की स्थिति में प्रयोग किए जाते हैं और इस विषय को अक्सर आणविक प्रतिक्रिया गतिकी कहा जाता है।<ref>[[Raphael David Levine|Levine, R.D.]] (2005) ''Molecular Reaction Dynamics'', Cambridge University Press</ref>
अरहेनियस सक्रियण ऊर्जा और दर स्थिर k दोनों प्रयोगात्मक रूप से निर्धारित किए गए हैं, और मैक्रोस्कोपिक प्रतिक्रिया-विशिष्ट पैरामीटर का प्रतिनिधित्व करते हैं जो केवल थ्रेशोल्ड ऊर्जा और आणविक स्तर पर व्यक्तिगत टक्करों की सफलता से संबंधित नहीं हैं। अणुओं ए और बी के बीच एक विशेष टकराव (एक प्राथमिक प्रतिक्रिया) पर विचार करें। टक्कर कोण, सापेक्ष अनुवाद ऊर्जा, आंतरिक (विशेष रूप से कंपन) ऊर्जा सभी इस संभावना को निर्धारित करेंगे कि टक्कर एक उत्पाद अणु एबी का उत्पादन करेगी। ई और के मैक्रोस्कोपिक माप अलग-अलग टकराव मापदंडों के साथ कई अलग-अलग टकरावों का परिणाम हैं। आणविक स्तर पर प्रतिक्रिया दर की जांच करने के लिए, निकट-टकराव की स्थिति में प्रयोग किए जाते हैं और इस विषय को प्रायः आणविक प्रतिक्रिया गतिकी कहा जाता है।<ref>[[Raphael David Levine|Levine, R.D.]] (2005) ''Molecular Reaction Dynamics'', Cambridge University Press</ref>
एक अन्य स्थिति जहां अरहेनियस समीकरण मापदंडों की व्याख्या कम हो जाती है, [[विषम कटैलिसीस]] में होती है, विशेष रूप से उन प्रतिक्रियाओं के लिए जो [[लैंगमुइर-हिंशेलवुड कैनेटीक्स]] दिखाते हैं। स्पष्ट रूप से, सतहों पर अणु सीधे टकराते नहीं हैं, और एक साधारण आणविक क्रॉस-सेक्शन यहां लागू नहीं होता है। इसके बजाय, पूर्व-घातीय कारक सतह के पार सक्रिय साइट की ओर यात्रा को दर्शाता है।<ref>{{Cite journal|last1=Slot|first1=Thierry K.|last2=Riley|first2=Nathan|last3=Shiju|first3=N. Raveendran|last4=Medlin|first4=J. Will|last5=Rothenberg|first5=Gadi|date=2020|title=उत्प्रेरक इंटरफेस पर कारावास प्रभाव को नियंत्रित करने के लिए एक प्रायोगिक दृष्टिकोण|journal=Chemical Science|language=en|volume=11|issue=40|pages=11024–11029| doi=10.1039/D0SC04118A|pmid=34123192|pmc=8162257|issn=2041-6520|doi-access=free}}</ref>
एक अन्य स्थिति जहां अरहेनियस समीकरण मापदंडों की व्याख्या कम हो जाती है, [[विषम कटैलिसीस]] में होती है, विशेष रूप से उन प्रतिक्रियाओं के लिए जो [[लैंगमुइर-हिंशेलवुड कैनेटीक्स]] दिखाते हैं। स्पष्ट रूप से, सतहों पर अणु सीधे टकराते नहीं हैं, और एक साधारण आणविक क्रॉस-सेक्शन यहां लागू नहीं होता है। इसके बजाय, पूर्व-घातीय कारक सतह के पार सक्रिय साइट की ओर यात्रा को दर्शाता है।<ref>{{Cite journal|last1=Slot|first1=Thierry K.|last2=Riley|first2=Nathan|last3=Shiju|first3=N. Raveendran|last4=Medlin|first4=J. Will|last5=Rothenberg|first5=Gadi|date=2020|title=उत्प्रेरक इंटरफेस पर कारावास प्रभाव को नियंत्रित करने के लिए एक प्रायोगिक दृष्टिकोण|journal=Chemical Science|language=en|volume=11|issue=40|pages=11024–11029| doi=10.1039/D0SC04118A|pmid=34123192|pmc=8162257|issn=2041-6520|doi-access=free}}</ref>
कांच बनाने वाले पदार्थ के सभी वर्गों में कांच के संक्रमण के दौरान आरेनियस कानून से विचलन होते हैं।<ref>{{cite journal| last1=Bauer|first1=Th.|last2=Lunkenheimer|first2=P.|last3=Loidl|first3=A.|title=सहकारिता और कांच के संक्रमण पर आणविक गति की ठंड|journal=Physical Review Letters|date=2013|volume=111|issue=22|page=225702| doi=10.1103/PhysRevLett.111.225702| pmid=24329455|arxiv=1306.4630|bibcode=2013PhRvL.111v5702B|s2cid=13720989}}</ref> अरहेनियस कानून भविष्यवाणी करता है कि संरचनात्मक इकाइयों (परमाणुओं, अणुओं, आयनों, आदि) की गति कांच के संक्रमण के माध्यम से धीमी गति से धीमी होनी चाहिए, जो प्रयोगात्मक रूप से देखी गई है। दूसरे शब्दों में, अरहेनियस कानून द्वारा भविष्यवाणी की तुलना में संरचनात्मक इकाइयां तेज गति से धीमी हो जाती हैं। यह अवलोकन उचित माना जाता है कि इकाइयों को थर्मल सक्रियण ऊर्जा के माध्यम से ऊर्जा बाधा को दूर करना चाहिए। तापीय ऊर्जा इतनी अधिक होनी चाहिए कि इकाइयों के अनुवाद संबंधी गति की अनुमति दी जा सके जिससे सामग्री का [[चिपचिपा प्रवाह]] हो।
कांच बनाने वाले पदार्थ के सभी वर्गों में कांच के संक्रमण के दौरान अरहेनियस कानून से विचलन होते हैं।<ref>{{cite journal| last1=Bauer|first1=Th.|last2=Lunkenheimer|first2=P.|last3=Loidl|first3=A.|title=सहकारिता और कांच के संक्रमण पर आणविक गति की ठंड|journal=Physical Review Letters|date=2013|volume=111|issue=22|page=225702| doi=10.1103/PhysRevLett.111.225702| pmid=24329455|arxiv=1306.4630|bibcode=2013PhRvL.111v5702B|s2cid=13720989}}</ref> अरहेनियस कानून भविष्यवाणी करता है कि संरचनात्मक इकाइयों (परमाणुओं, अणुओं, आयनों, आदि) की गति कांच के संक्रमण के माध्यम से धीमी गति से धीमी होनी चाहिए, जो प्रयोगात्मक रूप से देखी गई है। दूसरे शब्दों में, अरहेनियस कानून द्वारा भविष्यवाणी की तुलना में संरचनात्मक इकाइयां तेज गति से धीमी हो जाती हैं। यह अवलोकन उचित माना जाता है कि इकाइयों को थर्मल सक्रियण ऊर्जा के माध्यम से ऊर्जा बाधा को दूर करना चाहिए। तापीय ऊर्जा इतनी अधिक होनी चाहिए कि इकाइयों के अनुवाद संबंधी गति की अनुमति दी जा सके जिससे सामग्री का [[चिपचिपा प्रवाह]] हो।


== यह भी देखें ==
== यह भी देखें ==
Line 102: Line 103:


==बाहरी संबंध==
==बाहरी संबंध==
* [https://web.archive.org/web/20100926220628/http://www.composite-agency.com/messages/3945.html Carbon Dioxide solubility in Polyethylene] – Using Arrhenius equation for calculating species solubility in polymers
* [https://web.archive.org/web/20100926220628/http://www.composite-agency.com/messages/3945.html Carbon Dioxide solubility in Polyethylene] – Using अरहेनियस equation for calculating species solubility in polymers


{{Reaction mechanisms}}[[Category: रासायनिक गतिकी]] [[Category: समीकरण]] [[Category: सांख्यिकीय यांत्रिकी]]  
{{Reaction mechanisms}}[[Category: रासायनिक गतिकी]] [[Category: समीकरण]] [[Category: सांख्यिकीय यांत्रिकी]]  

Revision as of 23:08, 2 June 2023

भौतिक रसायन विज्ञान में, अरहेनियस समीकरण प्रतिक्रिया दरों की तापमान निर्भरता के लिए एक सूत्र है। 1889 में डच रसायनशास्त्री जेकोबस हेनरिकस वैन 'टी हॉफ के काम के आधार पर स्वांते अरहेनियस द्वारा समीकरण प्रस्तावित किया गया था, जिन्होंने 1884 में नोट किया था कि संतुलन स्थिरांक की तापमान निर्भरता के लिए वैन' टी हॉफ समीकरण के अग्र तथा पश्च प्रतिक्रिया दोनों की दरों के लिए इस प्रकार के एक सूत्र का सुझाव देता है। रासायनिक प्रतिक्रियाओं की दर निर्धारित करने और सक्रियण ऊर्जा की गणना के लिए इस समीकरण का एक विशाल और महत्वपूर्ण अनुप्रयोग है। अरहेनियस ने सूत्र के लिए एक भौतिक औचित्य और व्याख्या प्रदान की।[1][2][3][4] वर्तमान में, इसे अनुभवजन्य संबंध के रूप में सबसे ठीक देखा जाता है।[5]: 188  इसका उपयोग प्रसार गुणांकों के तापमान भिन्नता, क्रिस्टल रिक्तियों की जनसंख्या, मंद विरूपण दर, और कई अन्य तापीय-प्रेरित प्रक्रियाओं/प्रतिक्रियाओं को मॉडल करने के लिए किया जा सकता है। 1935 में विकसित आयरिंग समीकरण भी दर और ऊर्जा के बीच संबंध को व्यक्त करता है।

समीकरण

लगभग सभी व्यावहारिक मामलों में, और k, T के साथ तेजी से बढ़ता है।
गणितीय रूप से, बहुत उच्च तापमान पर ताकि , k स्तर बंद हो जाता है और एक सीमा के रूप में A तक पहुँच जाता है, लेकिन यह मामला व्यावहारिक परिस्थितियों में नहीं होता है।

अरहेनियस समीकरण किसी रासायनिक अभिक्रिया के वेग स्थिरांक की परम तापमान पर निर्भरता को

के रूप में बताता है, जहां

  • k दर स्थिर है ( संघट्ट की आवृत्ति जिसके परिणामस्वरूप प्रतिक्रिया होती है),
  • T पूर्ण तापमान है (केल्विन या परिमाण रैंकिन पैमाने में),
  • A पूर्व-घातीय कारक है। अरहेनियस मूल रूप से A को प्रत्येक रासायनिक प्रतिक्रिया के लिए एक तापमान-स्वतंत्र स्थिरांक माना जाता है।[6] यद्यपि वर्तमान उपचारों में कुछ तापमान पर निर्भरता सम्मिलित है - नीचे संशोधित अरहेनियस समीकरण देखें।
  • Ea प्रतिक्रिया के लिए सक्रियण ऊर्जा है (आरटी के समान इकाइयों में),
  • R सार्वभौमिक गैस नियतांक है।[1][2][4]

वैकल्पिक रूप से, समीकरण को

के रूप में व्यक्त किया जा सकता है,

जहां

एकमात्र अंतर Ea: की ऊर्जा इकाइयों का है: पूर्व रूप प्रति मोल ऊर्जा का उपयोग करता है, जो रसायन विज्ञान में सामान्य है, जबकि बाद वाला रूप सीधे प्रति अणु ऊर्जा का उपयोग करता है, जो भौतिकी में सामान्य है। तापमान T के गुणक के रूप में या तो गैस स्थिरांक, R, या बोल्ट्जमान स्थिरांक, kB का उपयोग करने में विभिन्न इकाइयों की गणना की जाती है।

पूर्व-घातीय कारक A की इकाइयाँ दर स्थिर के समान हैं और प्रतिक्रिया के क्रम के आधार पर अलग-अलग होंगी। यदि प्रतिक्रिया पहले क्रम की है तो इसकी इकाइयाँ हैं: सेकंड-1, और इस कारण से इसे प्रायः प्रतिक्रिया का आवृत्ति कारक या प्रयत्न आवृत्ति कहा जाता है। सरल शब्दों में, k की वह संख्या है जिसके परिणामस्वरूप प्रति सेकंड एक प्रतिक्रिया होती है, A प्रतिक्रिया करने के लिए उचित अभिविन्यास के साथ होने वाली टक्करों की संख्या है (प्रतिक्रिया की ओर अग्रसर है या नहीं)[7] और संभावना है कि किसी भी टकराव के परिणामस्वरूप प्रतिक्रिया होगी। यह देखा जा सकता है कि या तो तापमान में वृद्धि या सक्रियण ऊर्जा में कमी (उदाहरण के लिए उत्प्रेरक के उपयोग के माध्यम से) के परिणामस्वरूप प्रतिक्रिया की दर में वृद्धि होगी।

गतिज अध्ययन की छोटी तापमान सीमा को देखते हुए, सक्रियण ऊर्जा को तापमान से स्वतंत्र होने के रूप में अनुमानित करना उचित है। इसी प्रकार, व्यावहारिक परिस्थितियों की एक विस्तृत श्रृंखला के अंतर्गत, कारक की तापमान निर्भरता की तुलना में पूर्व-घातीय कारक की मन्द तापमान निर्भरता नगण्य है; "बाधा रहित" प्रसार-सीमित प्रतिक्रियाओं की स्थिति को छोड़कर, जिसमें पूर्व-घातीय कारक प्रमुख है और प्रत्यक्ष रूप से देखा जा सकता है।

इस समीकरण से साधारणतया अनुमान लगाया जा सकता है कि तापमान में प्रत्येक 10 डिग्री सेल्सियस की वृद्धि के लिए प्रतिक्रिया की दर लगभग 2 या 3 गुना बढ़ जाती है।

पद से अधिक या उसके बराबर ऊर्जा वाले अणुओं के अंश को दर्शाता है ।[8]


अरहेनियस कथानक

अरहेनियस रैखिक कथानक: ln k विरुद्ध 1/T।

अरहेनियस समीकरण का प्राकृतिक लघुगणक लेने से प्राप्त होता है:

पुनर्व्यवस्थित उपज:
इसका एक सीधी रेखा के समीकरण के समान रूप है:
जहाँ x, T का गुणक प्रतिलोम है।

इसलिए, जब किसी अभिक्रिया में दर स्थिरांक होता है जो अरहेनियस समीकरण का पालन करता है, तो ln k बनाम T का कथानक-1 एक सीधी रेखा देता है, जिसकी ग्रेडिएंट और इंटरसेप्ट का उपयोग E को निर्धारित करने के लिए किया जा सकता हैa और ए। प्रायोगिक रासायनिक कैनेटीक्स में यह प्रक्रिया इतनी सामान्य हो गई है कि चिकित्सकों ने प्रतिक्रिया के लिए सक्रियण ऊर्जा को परिभाषित करने के लिए इसका उपयोग करना शुरू कर दिया है। यानी सक्रियण ऊर्जा को ln k बनाम (1/T) के कथानक के ढलान (−R) गुणा के रूप में परिभाषित किया गया है:


संशोधित अरहेनियस समीकरण

संशोधित अरहेनियस समीकरण[9] पूर्व-घातीय कारक की तापमान निर्भरता को स्पष्ट करता है। संशोधित समीकरण सामान्यतः रूप का होता है

उपरोक्त मूल अरहेनियस अभिव्यक्ति n = 0 से मेल खाती है। फिटेड दर स्थिरांक सामान्यतः सीमा में होते हैं −1 < n < 1। सैद्धांतिक विश्लेषण n के लिए विभिन्न भविष्यवाणियां करते हैं। यह इंगित किया गया है कि दर स्थिरांक के तापमान अध्ययन के आधार पर यह स्थापित करना संभव नहीं है कि क्या अनुमानित टी1/2 पूर्व-घातीय कारक की निर्भरता प्रयोगात्मक रूप से देखी गई है।[5]: 190  यद्यपि, यदि सिद्धांत और/या प्रयोग (जैसे घनत्व निर्भरता) से अतिरिक्त सबूत उपलब्ध हैं, तो अरहेनियस कानून के निर्णायक परीक्षणों में कोई बाधा नहीं है।

एक अन्य सामान्य संशोधन फैला हुआ घातीय रूप है[citation needed]

जहां β ऑर्डर 1 की एक आयाम रहित संख्या है। इसे सामान्यतः डेटा को फिट करने के लिए मॉडल बनाने के लिए विशुद्ध रूप से अनुभवजन्य सुधार या फ़ज कारक के रूप में माना जाता है, लेकिन इसका सैद्धांतिक अर्थ हो सकता है, उदाहरण के लिए सक्रियण ऊर्जा की एक श्रृंखला की उपस्थिति या विशेष में Mott चर रेंज hopping जैसे मामले।

समीकरण की सैद्धांतिक व्याख्या

अरहेनियस की सक्रियण ऊर्जा की अवधारणा

अरहेनियस ने तर्क दिया कि अभिकारकों को उत्पादों में बदलने के लिए, उन्हें पहले ऊर्जा की एक न्यूनतम मात्रा प्राप्त करनी होगी, जिसे सक्रियण ऊर्जा E कहा जाता है।a। एक पूर्ण तापमान T पर, अणुओं का वह अंश जिसमें E से अधिक गतिज ऊर्जा होती हैa सांख्यिकीय यांत्रिकी से गणना की जा सकती है। सक्रियण ऊर्जा की अवधारणा संबंध की घातीय प्रकृति की व्याख्या करती है, और एक या दूसरे तरीके से यह सभी गतिज सिद्धांतों में मौजूद है।

प्रतिक्रिया दर स्थिरांक की गणना में मैक्सवेल-बोल्ट्ज़मैन वितरण पर औसत ऊर्जा सम्मिलित है निचले बाउंड के रूप में और प्रायः अपूर्ण गामा फ़ंक्शन # विशेष मान के प्रकार होते हैं, जो आनुपातिक होते हैं

टक्कर सिद्धांत

एक दृष्टिकोण रासायनिक प्रतिक्रियाओं का टकराव सिद्धांत है, जिसे 1916-18 के वर्षों में मैक्स ट्रॉट्ज़ और विलियम लुईस (भौतिक रसायनज्ञ) द्वारा विकसित किया गया था। इस सिद्धांत में, माना जाता है कि अणु प्रतिक्रिया करते हैं यदि वे ई से अधिक केंद्रों की अपनी रेखा के साथ सापेक्ष गतिज ऊर्जा से टकराते हैं।a। प्रति इकाई आयतन प्रति सेकंड दो विपरीत अणुओं के बीच बाइनरी टकराव की संख्या पाई जाती है[10]

जहां एनAअवोगाद्रो स्थिरांक है, डीABA और B का औसत व्यास है, T वह तापमान है जिसे बोल्ट्जमैन स्थिरांक k से गुणा किया जाता हैB ऊर्जा इकाइयों में परिवर्तित करने के लिए, और μABघटा हुआ द्रव्यमान है।

दर स्थिरांक की गणना तब की जाती है ताकि टक्कर सिद्धांत भविष्यवाणी करता है कि पूर्व-घातीय कारक टक्कर संख्या z के बराबर हैAB। यद्यपि कई प्रतिक्रियाओं के लिए यह प्रयोग के साथ खराब रूप से सहमत है, इसलिए दर स्थिरांक को इसके बजाय लिखा जाता है । यहाँएक अनुभवजन्य स्टेरिक कारक है, जो प्रायः 1।00 से बहुत कम होता है, जिसे पर्याप्त ऊर्जावान टकरावों के अंश के रूप में व्याख्या किया जाता है जिसमें प्रतिक्रिया करने के लिए दो अणुओं का सही पारस्परिक अभिविन्यास होता है।[10]


संक्रमण अवस्था सिद्धांत

1930 के दशक में यूजीन विग्नर, हेनरी आइरिंग (रसायनज्ञ), माइकल पोलानी और मेरेडिथ ग्वेने इवांस द्वारा तैयार किए गए रासायनिक प्रतिक्रियाओं के संक्रमण राज्य सिद्धांत में आयरिंग समीकरण, एक अन्य अरहेनियस जैसी अभिव्यक्ति दिखाई देती है। आयरिंग समीकरण लिखा जा सकता है:

जहां सक्रियण की गिब्स मुक्त ऊर्जा है, सक्रियता की एन्ट्रापी है, सक्रियता की तापीय धारिता है, बोल्ट्जमैन स्थिरांक है, और प्लैंक नियतांक है।[11] पहली नजर में यह तापमान में रैखिक होने वाले कारक से गुणा किए गए घातांक जैसा दिखता है। यद्यपि, मुक्त ऊर्जा अपने आप में एक तापमान पर निर्भर मात्रा है। सक्रियता की मुक्त ऊर्जा एन्थैल्पी टर्म और एन्ट्रापी टर्म का अंतर पूर्ण तापमान से गुणा किया जाता है। पूर्व-घातीय कारक मुख्य रूप से सक्रियण की एन्ट्रापी पर निर्भर करता है। समग्र अभिव्यक्ति फिर से टी के धीरे-धीरे बदलते कार्य से गुणा एक अरहेनियस एक्सपोनेंशियल (ऊर्जा के बजाय तापीय धारिता) का रूप लेती है। तापमान निर्भरता का सटीक रूप प्रतिक्रिया पर निर्भर करता है, और इसमें सम्मिलित सांख्यिकीय यांत्रिकी के सूत्रों का उपयोग करके गणना की जा सकती है अभिकारकों और सक्रिय परिसर का विभाजन कार्य (सांख्यिकीय यांत्रिकी)।

अरहेनियस सक्रियण ऊर्जा के विचार की सीमाएं

अरहेनियस सक्रियण ऊर्जा और दर स्थिर k दोनों प्रयोगात्मक रूप से निर्धारित किए गए हैं, और मैक्रोस्कोपिक प्रतिक्रिया-विशिष्ट पैरामीटर का प्रतिनिधित्व करते हैं जो केवल थ्रेशोल्ड ऊर्जा और आणविक स्तर पर व्यक्तिगत टक्करों की सफलता से संबंधित नहीं हैं। अणुओं ए और बी के बीच एक विशेष टकराव (एक प्राथमिक प्रतिक्रिया) पर विचार करें। टक्कर कोण, सापेक्ष अनुवाद ऊर्जा, आंतरिक (विशेष रूप से कंपन) ऊर्जा सभी इस संभावना को निर्धारित करेंगे कि टक्कर एक उत्पाद अणु एबी का उत्पादन करेगी। ई और के मैक्रोस्कोपिक माप अलग-अलग टकराव मापदंडों के साथ कई अलग-अलग टकरावों का परिणाम हैं। आणविक स्तर पर प्रतिक्रिया दर की जांच करने के लिए, निकट-टकराव की स्थिति में प्रयोग किए जाते हैं और इस विषय को प्रायः आणविक प्रतिक्रिया गतिकी कहा जाता है।[12] एक अन्य स्थिति जहां अरहेनियस समीकरण मापदंडों की व्याख्या कम हो जाती है, विषम कटैलिसीस में होती है, विशेष रूप से उन प्रतिक्रियाओं के लिए जो लैंगमुइर-हिंशेलवुड कैनेटीक्स दिखाते हैं। स्पष्ट रूप से, सतहों पर अणु सीधे टकराते नहीं हैं, और एक साधारण आणविक क्रॉस-सेक्शन यहां लागू नहीं होता है। इसके बजाय, पूर्व-घातीय कारक सतह के पार सक्रिय साइट की ओर यात्रा को दर्शाता है।[13] कांच बनाने वाले पदार्थ के सभी वर्गों में कांच के संक्रमण के दौरान अरहेनियस कानून से विचलन होते हैं।[14] अरहेनियस कानून भविष्यवाणी करता है कि संरचनात्मक इकाइयों (परमाणुओं, अणुओं, आयनों, आदि) की गति कांच के संक्रमण के माध्यम से धीमी गति से धीमी होनी चाहिए, जो प्रयोगात्मक रूप से देखी गई है। दूसरे शब्दों में, अरहेनियस कानून द्वारा भविष्यवाणी की तुलना में संरचनात्मक इकाइयां तेज गति से धीमी हो जाती हैं। यह अवलोकन उचित माना जाता है कि इकाइयों को थर्मल सक्रियण ऊर्जा के माध्यम से ऊर्जा बाधा को दूर करना चाहिए। तापीय ऊर्जा इतनी अधिक होनी चाहिए कि इकाइयों के अनुवाद संबंधी गति की अनुमति दी जा सके जिससे सामग्री का चिपचिपा प्रवाह हो।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Arrhenius, S. A. (1889). "Über die Dissociationswärme und den Einfluß der Temperatur auf den Dissociationsgrad der Elektrolyte". Z. Phys. Chem. 4: 96–116. doi:10.1515/zpch-1889-0408. S2CID 202553486.
  2. 2.0 2.1 Arrhenius, S. A. (1889). "Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren". Z. Phys. Chem. 4: 226–48. doi:10.1515/zpch-1889-0416. S2CID 100032801.
  3. Laidler, K. J. (1984). "अरहेनियस समीकरण का विकास". J. Chem. Educ. 61 (6): 494–498. Bibcode:1984JChEd..61..494L. doi:10.1021/ed061p494.
  4. 4.0 4.1 Laidler, K. J. (1987) Chemical Kinetics, Third Edition, Harper & Row, p. 42
  5. 5.0 5.1 Kenneth Connors, Chemical Kinetics, 1990, VCH Publishers Chemical Kinetics: The Study of Reaction Rates in Solution at Google Books
  6. IUPAC Goldbook definition of Arrhenius equation.
  7. Silberberg, Martin S. (2006). रसायन विज्ञान (fourth ed.). NY: McGraw-Hill. p. 696. ISBN 0-07-111658-3.
  8. "6.2.3.3: The Arrhenius Law - Activation Energies". Chemistry LibreTexts (in English). 2013-10-02.
  9. IUPAC Goldbook definition of modified Arrhenius equation.
  10. 10.0 10.1 Laidler, Keith J.; Meiser, John H. (1982). भौतिक रसायन (1st ed.). Benjamin/Cummings. pp. 376–78. ISBN 0-8053-5682-7.
  11. Laidler, Keith J.; Meiser, John H. (1982). भौतिक रसायन (1st ed.). Benjamin/Cummings. pp. 378–83. ISBN 0-8053-5682-7.
  12. Levine, R.D. (2005) Molecular Reaction Dynamics, Cambridge University Press
  13. Slot, Thierry K.; Riley, Nathan; Shiju, N. Raveendran; Medlin, J. Will; Rothenberg, Gadi (2020). "उत्प्रेरक इंटरफेस पर कारावास प्रभाव को नियंत्रित करने के लिए एक प्रायोगिक दृष्टिकोण". Chemical Science (in English). 11 (40): 11024–11029. doi:10.1039/D0SC04118A. ISSN 2041-6520. PMC 8162257. PMID 34123192.
  14. Bauer, Th.; Lunkenheimer, P.; Loidl, A. (2013). "सहकारिता और कांच के संक्रमण पर आणविक गति की ठंड". Physical Review Letters. 111 (22): 225702. arXiv:1306.4630. Bibcode:2013PhRvL.111v5702B. doi:10.1103/PhysRevLett.111.225702. PMID 24329455. S2CID 13720989.


ग्रन्थसूची

  • Pauling, L. C. (1988). General Chemistry. Dover Publications.
  • Laidler, K. J. (1987). Chemical Kinetics (3rd ed.). Harper & Row.
  • Laidler, K. J. (1993). The World of Physical Chemistry. Oxford University Press.


बाहरी संबंध