वायरल द्रव्यमान: Difference between revisions
No edit summary |
No edit summary |
||
Line 12: | Line 12: | ||
जहां <math display="inline">x=\Omega(z)-1</math>, <math>\Omega(z)=\frac{\Omega_0(1+z)^3}{E(z)^2},</math> <math>\Omega_0=\frac{8 \pi G \rho_0}{3 H_0^2},</math> और <math>E(z)=\frac{H(z)}{H_0}</math>.<ref>{{Cite journal|last1=Bryan|first1=Greg L.|last2=Norman|first2=Michael L.|year=1998|title=Statistical Properties of X-ray Clusters: Analytic and Numerical Comparisons|journal=The Astrophysical Journal|volume=495|issue=80|pages=80|arxiv=astro-ph/9710107|doi=10.1086/305262|bibcode=1998ApJ...495...80B|s2cid=16118077}}</ref><ref>{{Cite book|title=गैलेक्सी गठन और विकास|url=https://archive.org/details/galaxyformatione00moho_818|url-access=limited|last1=Mo|first1=Houjun|last2=van den Bosch|first2=Frank|last3=White|first3=Simon|publisher=Cambridge University Press|year=2011|isbn=978-0-521-85793-2|location=United States of America|pages=[https://archive.org/details/galaxyformatione00moho_818/page/n257 236]}}</ref> चूँकि यह घनत्व पैरामीटर <math>\Omega</math> पर निर्भर करता है इसका मान उपयोग किए गए ब्रह्माण्ड संबंधी मॉडल पर निर्भर करता है। आइंस्टीन-डी सिटर मॉडल में यह <math>18\pi^2\approx 178</math> के समान है। चूँकि यह परिभाषा सार्वभौमिक नहीं है, क्योंकि <math>\Delta_c</math> का स्पष्ट मान ब्रह्माण्ड विज्ञान पर निर्भर करता है। आइंस्टीन-डी सिटर मॉडल में यह माना जाता है कि घनत्व पैरामीटर केवल पदार्थ के कारण होता है, जहां <math>\Omega_m=1</math> ब्रह्मांड के लिए वर्तमान में स्वीकृत ब्रह्माण्ड संबंधी मॉडल से इसकी तुलना करें, ΛCDM मॉडल, जहाँ <math>\Omega_m=0.3</math> और <math>\Omega_{\Lambda}=0.7</math>; इस स्थिति में, <math>\Delta_c \approx 100</math> (शून्य के एक रेडशिफ्ट पर; मान बढ़े हुए रेडशिफ्ट के साथ आइंस्टीन-डी सिटर मान तक पहुंचती है)। फिर भी, यह सामान्यतः माना जाता है कि <math>\Delta_c = 200</math> एक सामान्य परिभाषा का उपयोग करने के उद्देश्य से और इसे वायरल त्रिज्या के लिए <math>r_{200}</math> के रूप में दर्शाया जाता है और <math>M_{200}</math> वायरल द्रव्यमान के लिए। इस परिपाटी का उपयोग करते हुए, औसत घनत्व द्वारा दिया गया है | जहां <math display="inline">x=\Omega(z)-1</math>, <math>\Omega(z)=\frac{\Omega_0(1+z)^3}{E(z)^2},</math> <math>\Omega_0=\frac{8 \pi G \rho_0}{3 H_0^2},</math> और <math>E(z)=\frac{H(z)}{H_0}</math>.<ref>{{Cite journal|last1=Bryan|first1=Greg L.|last2=Norman|first2=Michael L.|year=1998|title=Statistical Properties of X-ray Clusters: Analytic and Numerical Comparisons|journal=The Astrophysical Journal|volume=495|issue=80|pages=80|arxiv=astro-ph/9710107|doi=10.1086/305262|bibcode=1998ApJ...495...80B|s2cid=16118077}}</ref><ref>{{Cite book|title=गैलेक्सी गठन और विकास|url=https://archive.org/details/galaxyformatione00moho_818|url-access=limited|last1=Mo|first1=Houjun|last2=van den Bosch|first2=Frank|last3=White|first3=Simon|publisher=Cambridge University Press|year=2011|isbn=978-0-521-85793-2|location=United States of America|pages=[https://archive.org/details/galaxyformatione00moho_818/page/n257 236]}}</ref> चूँकि यह घनत्व पैरामीटर <math>\Omega</math> पर निर्भर करता है इसका मान उपयोग किए गए ब्रह्माण्ड संबंधी मॉडल पर निर्भर करता है। आइंस्टीन-डी सिटर मॉडल में यह <math>18\pi^2\approx 178</math> के समान है। चूँकि यह परिभाषा सार्वभौमिक नहीं है, क्योंकि <math>\Delta_c</math> का स्पष्ट मान ब्रह्माण्ड विज्ञान पर निर्भर करता है। आइंस्टीन-डी सिटर मॉडल में यह माना जाता है कि घनत्व पैरामीटर केवल पदार्थ के कारण होता है, जहां <math>\Omega_m=1</math> ब्रह्मांड के लिए वर्तमान में स्वीकृत ब्रह्माण्ड संबंधी मॉडल से इसकी तुलना करें, ΛCDM मॉडल, जहाँ <math>\Omega_m=0.3</math> और <math>\Omega_{\Lambda}=0.7</math>; इस स्थिति में, <math>\Delta_c \approx 100</math> (शून्य के एक रेडशिफ्ट पर; मान बढ़े हुए रेडशिफ्ट के साथ आइंस्टीन-डी सिटर मान तक पहुंचती है)। फिर भी, यह सामान्यतः माना जाता है कि <math>\Delta_c = 200</math> एक सामान्य परिभाषा का उपयोग करने के उद्देश्य से और इसे वायरल त्रिज्या के लिए <math>r_{200}</math> के रूप में दर्शाया जाता है और <math>M_{200}</math> वायरल द्रव्यमान के लिए। इस परिपाटी का उपयोग करते हुए, औसत घनत्व द्वारा दिया गया है | ||
<math display="block">\rho(<r_{200}) = 200 \rho_c(t)=200\frac{3 H^2(t)}{8 \pi G}.</math> | <math display="block">\rho(<r_{200}) = 200 \rho_c(t)=200\frac{3 H^2(t)}{8 \pi G}.</math> | ||
अतिघनत्व स्थिरांक के लिए अन्य सम्मेलनों में <math>\Delta_c = 500</math> या <math>\Delta_c = 1000</math> सम्मिलित हैं जो विश्लेषण के प्रकार पर निर्भर करता है जिस स्थिति में वायरल त्रिज्या और वायरल मास प्रासंगिक सबस्क्रिप्ट द्वारा दर्शाया गया है।<ref name=":12" /> | अतिघनत्व स्थिरांक के लिए अन्य सम्मेलनों में <math>\Delta_c = 500</math> या <math>\Delta_c = 1000</math> सम्मिलित हैं जो विश्लेषण के प्रकार पर निर्भर करता है जिस स्थिति में वायरल त्रिज्या और वायरल मास प्रासंगिक सबस्क्रिप्ट द्वारा दर्शाया गया है।<ref name=":12" /> | ||
Line 22: | Line 21: | ||
== डार्क मैटर हलोस के लिए आवेदन == | == डार्क मैटर हलोस के लिए आवेदन == | ||
<math> M_{200}</math> और <math>r_{200}</math> को देखते हुए, डार्क मैटर हेलो के गुणों को परिभाषित किया जा सकता है, जिसमें गोलाकार वेग, घनत्व प्रोफ़ाइल और कुल द्रव्यमान सम्मिलित हैं। <math> M_{200}</math>और <math>r_{200}</math> सीधे नवारो-फ्रेंक-व्हाइट (एनएफडब्ल्यू) प्रोफ़ाइल से संबंधित हैं` एक घनत्व प्रोफ़ाइल जो ठंडे डार्क मैटर प्रतिमान के साथ मॉडल किए गए डार्क मैटर हेलो का वर्णन करती है। एनएफडब्ल्यू प्रोफ़ाइल किसके द्वारा दी गई है<math display="block">\rho(r)=\frac{\delta_c\rho_{c}}{r/r_s(1+r/r_s)^2},</math>जहां <math>\rho_c</math> महत्वपूर्ण घनत्व है, और अति घनत्व <math>\delta_c=\frac{200}{3}\frac{c_{200}^3}{\ln(1+c_{200})-\frac{c_{200}}{1+c_{200}}}</math>(<math>\Delta_c</math> के साथ भ्रमित न हों) और स्केल त्रिज्या <math>r_s</math> प्रत्येक प्रभामंडल के लिए अद्वितीय हैं, और एकाग्रता पैरामीटर <math>c_{200}=\frac{r_{200}}{r_s}</math> द्वारा दिया जाता है। <math>\delta_c\rho_{c}</math> के स्थान पर,<math>\rho_s</math> का प्रयोग अधिकांशतः किया जाता है, जहाँ <math>\rho_s</math> प्रत्येक हेलो के लिए अद्वितीय पैरामीटर है। इसके बाद डार्क मैटर हेलो के कुल द्रव्यमान की गणना वायरल रेडियस <math>r_{200}</math> में घनत्व के आयतन को एकीकृत करके की जा सकती है: | |||
<math>M=\int \limits_{0}^{r_{200}}4\pi r^2\rho(r)dr=4\pi \rho_s r_s^3[\ln(\frac{r_{200}+r_s}{r_s})-\frac{r_{200}}{r_{200}+r_s}]=4\pi \rho_s r_s^3[\ln(1+c_{200})-\frac{c_{200}}{1+c_{200}}].</math> | <math>M=\int \limits_{0}^{r_{200}}4\pi r^2\rho(r)dr=4\pi \rho_s r_s^3[\ln(\frac{r_{200}+r_s}{r_s})-\frac{r_{200}}{r_{200}+r_s}]=4\pi \rho_s r_s^3[\ln(1+c_{200})-\frac{c_{200}}{1+c_{200}}].</math> | ||
वर्तुल वेग की परिभाषा से <math>V_c(r)=\sqrt{\frac{GM(r)}{r}},</math>हम वायरल रेडियस <math>r_{200}</math> पर परिपत्र वेग पा सकते हैं।<math display="block">V_{200}=\sqrt{\frac{GM_{200}}{r_{200}}}.</math>तब डार्क मैटर हेलो के लिए गोलाकार वेग द्वारा दिया जाता है<math display="block">V_c^2(r)=V_{200}^2\frac{1}{x}\frac{\ln(1+cx)-(cx)/(1+cx)}{\ln(1+c)-c/(1+c)},</math>जहाँ <math>x=r/r_{200}</math>.<ref name=":02">{{Cite journal|last1=Navarro|first1=Julio F.|last2=Frenk|first2=Carlos S.|last3=White|first3=Simon D. M.|year=1996|title=कोल्ड डार्क मैटर हैलोस की संरचना|journal=The Astrophysical Journal|volume=462|pages=563–575|arxiv=astro-ph/9508025|doi=10.1086/177173|bibcode=1996ApJ...462..563N|s2cid=119007675}}</ref> | |||
चूँकि | चूँकि एनएफडब्ल्यू प्रोफ़ाइल का सामान्यतः उपयोग किया जाता है, [[इनास्टो प्रोफाइल]] जैसे इनास्तो प्रोफ़ाइल और प्रोफ़ाइल जो बैरोनिक पदार्थ के कारण डार्क मैटर के रुद्धोष्म संकुचन को ध्यान में रखते हैं का उपयोग डार्क मैटर हेलो को चिह्नित करने के लिए भी किया जाता है। | ||
प्रणाली के कुल द्रव्यमान की गणना करने के लिए, जिसमें तारे | प्रणाली के कुल द्रव्यमान की गणना करने के लिए, जिसमें तारे गैस और डार्क मैटर सम्मिलित हैं, [[जीन्स समीकरण]] को प्रत्येक घटक के घनत्व प्रोफाइल के साथ उपयोग करने की आवश्यकता है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 19:44, 2 June 2023
खगोल भौतिकी में, विषाणु द्रव्यमान एक गुरुत्वाकर्षण से बंधी हुई खगोल भौतिकीय प्रणाली का द्रव्यमान है, यह मानते हुए कि वायरल प्रमेय प्रयुक्त होता है। आकाशगंगा निर्माण और डार्क मैटर हैलोस के संदर्भ में, वायरल द्रव्यमान को एक गुरुत्वाकर्षण बाध्य प्रणाली के वायरल त्रिज्या के अंदर संलग्न द्रव्यमान के रूप में परिभाषित किया गया है, एक त्रिज्या जिसके अंदर प्रणाली नियमों का पालन करती है। वायरल प्रमेय वायरल रेडियस "टॉप-हैट" मॉडल का उपयोग करके निर्धारित किया जाता है। एक गोलाकार "टॉप हैट" घनत्व अस्पष्ट जो एक आकाशगंगा बनने के लिए नियत है, विस्तार करना प्रारंभ कर देती है, किन्तु गुरुत्वाकर्षण के तहत बड़े मापदंड पर ढहने के कारण विस्तार रुक जाता है और विपरीत हो जाता है जब तक कि क्षेत्र संतुलन तक नहीं पहुंच जाता - इसे वायरलाइज़ कहा जाता है। इस त्रिज्या के अंदर , क्षेत्र वायरल प्रमेय का पालन करता है जो कहता है कि औसत गतिज ऊर्जा औसत संभावित ऊर्जा के आधे गुना के समान है, और यह त्रिज्या वायरल त्रिज्या को परिभाषित करता है।
वायरल त्रिज्या
एक गुरुत्वीय रूप से बाध्य खगोलभौतिकीय प्रणाली का वायरल त्रिज्या त्रिज्या है जिसके अंदर वायरल प्रमेय प्रयुक्त होता है। इसे त्रिज्या के रूप में परिभाषित किया गया है जिस पर घनत्व प्रणाली के रेडशिफ्ट पर ब्रह्मांड के महत्वपूर्ण घनत्व के समान है, जो एक अति घनत्व स्थिरांक से गुणा है।
अतिघनत्व स्थिरांक के लिए अन्य सम्मेलनों में या सम्मिलित हैं जो विश्लेषण के प्रकार पर निर्भर करता है जिस स्थिति में वायरल त्रिज्या और वायरल मास प्रासंगिक सबस्क्रिप्ट द्वारा दर्शाया गया है।[2]
वायरल द्रव्यमान को परिभाषित करना
वायरल रेडियस और ओवरडेंसिटी कन्वेंशन को देखते हुए, वायरल मास संबंध के माध्यम से पाया जा सकता है
डार्क मैटर हलोस के लिए आवेदन
और को देखते हुए, डार्क मैटर हेलो के गुणों को परिभाषित किया जा सकता है, जिसमें गोलाकार वेग, घनत्व प्रोफ़ाइल और कुल द्रव्यमान सम्मिलित हैं। और सीधे नवारो-फ्रेंक-व्हाइट (एनएफडब्ल्यू) प्रोफ़ाइल से संबंधित हैं` एक घनत्व प्रोफ़ाइल जो ठंडे डार्क मैटर प्रतिमान के साथ मॉडल किए गए डार्क मैटर हेलो का वर्णन करती है। एनएफडब्ल्यू प्रोफ़ाइल किसके द्वारा दी गई है
वर्तुल वेग की परिभाषा से हम वायरल रेडियस पर परिपत्र वेग पा सकते हैं।
चूँकि एनएफडब्ल्यू प्रोफ़ाइल का सामान्यतः उपयोग किया जाता है, इनास्टो प्रोफाइल जैसे इनास्तो प्रोफ़ाइल और प्रोफ़ाइल जो बैरोनिक पदार्थ के कारण डार्क मैटर के रुद्धोष्म संकुचन को ध्यान में रखते हैं का उपयोग डार्क मैटर हेलो को चिह्नित करने के लिए भी किया जाता है।
प्रणाली के कुल द्रव्यमान की गणना करने के लिए, जिसमें तारे गैस और डार्क मैटर सम्मिलित हैं, जीन्स समीकरण को प्रत्येक घटक के घनत्व प्रोफाइल के साथ उपयोग करने की आवश्यकता है।
यह भी देखें
- डार्क मैटर हेलो
- जीन्स समीकरण
- नवारो-फ्रेंक-श्वेत प्रोफ़ाइल
- वायरल प्रमेय
संदर्भ
- ↑ 1.0 1.1 Sparke, Linda S.; Gallagher, John S. (2007). आकाशगंगाएँ और ब्रह्मांड. United States of America: Cambridge University Press. pp. 329, 331, 362. ISBN 978-0-521-67186-6.
- ↑ 2.0 2.1 White, M (3 February 2001). "एक प्रभामंडल का द्रव्यमान". Astronomy and Astrophysics. 367 (1): 27–32. arXiv:astro-ph/0011495. Bibcode:2001A&A...367...27W. doi:10.1051/0004-6361:20000357. S2CID 18709176.
- ↑ Bryan, Greg L.; Norman, Michael L. (1998). "Statistical Properties of X-ray Clusters: Analytic and Numerical Comparisons". The Astrophysical Journal. 495 (80): 80. arXiv:astro-ph/9710107. Bibcode:1998ApJ...495...80B. doi:10.1086/305262. S2CID 16118077.
- ↑ Mo, Houjun; van den Bosch, Frank; White, Simon (2011). गैलेक्सी गठन और विकास. United States of America: Cambridge University Press. pp. 236. ISBN 978-0-521-85793-2.
- ↑ Navarro, Julio F.; Frenk, Carlos S.; White, Simon D. M. (1996). "कोल्ड डार्क मैटर हैलोस की संरचना". The Astrophysical Journal. 462: 563–575. arXiv:astro-ph/9508025. Bibcode:1996ApJ...462..563N. doi:10.1086/177173. S2CID 119007675.