नियमित उपाय: Difference between revisions
From Vigyanwiki
(Created page with "गणित में, टोपोलॉजिकल स्पेस पर एक नियमित माप एक माप (गणित) है, जिसके...") |
No edit summary |
||
Line 1: | Line 1: | ||
गणित में, [[टोपोलॉजिकल स्पेस]] पर एक नियमित माप एक | गणित में, [[टोपोलॉजिकल स्पेस]] पर एक नियमित माप एक उपाय (गणित) है, जिसके लिए प्रत्येक [[मापने योग्य सेट]] को ऊपर से विवृत मापनीय समुच्चयों द्वारा और नीचे से कॉम्पैक्ट मापने योग्य समुच्चयों द्वारा अनुमानित किया जा सकता है। | ||
== परिभाषा == | == परिभाषा == | ||
माना (''X'', ''T'') एक सांस्थितिक स्थान हो और Σ को ''X'' पर σ-बीजगणित होने दें। माना μ (''X'', Σ) पर एक उपाय बनें। ''X'' का एक मापने योग्य सबसेट ''A'' को आंतरिक नियमित कहा जाता है: | |||
:<math>\mu (A) = \sup \{ \mu (F) \mid F \subseteq A, F \text{ compact and measurable} \}</math> | :<math>\mu (A) = \sup \{ \mu (F) \mid F \subseteq A, F \text{ compact and measurable} \}</math> | ||
और कहा कि | और कहा कि यदि बाहरी नियमित हो; तो | ||
:<math>\mu (A) = \inf \{ \mu (G) \mid G \supseteq A, G \text{ open and measurable} \}</math> | :<math>\mu (A) = \inf \{ \mu (G) \mid G \supseteq A, G \text{ open and measurable} \}</math> | ||
*एक माप को [[आंतरिक नियमित माप]] कहा जाता है यदि प्रत्येक मापने योग्य सेट आंतरिक नियमित है। कुछ लेखक एक अलग परिभाषा का उपयोग करते हैं: एक माप को आंतरिक नियमित कहा जाता है यदि प्रत्येक | *एक माप को [[आंतरिक नियमित माप]] कहा जाता है, यदि प्रत्येक मापने योग्य सेट आंतरिक नियमित है। कुछ लेखक एक अलग परिभाषा का उपयोग करते हैं: एक माप को आंतरिक नियमित कहा जाता है यदि प्रत्येक विवृत मापने योग्य सेट आंतरिक नियमित हो। | ||
*एक माप को बाहरी नियमित कहा जाता है यदि प्रत्येक मापने योग्य सेट बाहरी नियमित हो। | *एक माप को बाहरी नियमित कहा जाता है, यदि प्रत्येक मापने योग्य सेट बाहरी नियमित हो। | ||
*एक माप को नियमित कहा जाता है यदि यह बाहरी नियमित और आंतरिक नियमित है। | *एक माप को नियमित कहा जाता है, यदि यह बाहरी नियमित और आंतरिक नियमित है। | ||
== उदाहरण == | == उदाहरण == | ||
Line 18: | Line 18: | ||
* [[वास्तविक रेखा]] पर [[लेबेस्ग उपाय]] एक नियमित माप है: लेबेसेग माप के लिए नियमितता प्रमेय देखें। | * [[वास्तविक रेखा]] पर [[लेबेस्ग उपाय]] एक नियमित माप है: लेबेसेग माप के लिए नियमितता प्रमेय देखें। | ||
* किसी भी [[स्थानीय रूप से कॉम्पैक्ट]] σ-कॉम्पैक्ट हौसडॉर्फ स्पेस पर कोई भी | * किसी भी [[स्थानीय रूप से कॉम्पैक्ट]] σ-कॉम्पैक्ट हौसडॉर्फ स्पेस पर कोई भी बेयर माप [[संभाव्यता माप|प्रायिकता माप]] एक नियमित उपाय है। | ||
* स्थानीय रूप से कॉम्पैक्ट हॉसडॉर्फ स्पेस पर इसकी टोपोलॉजी, या कॉम्पैक्ट मेट्रिक स्पेस, या [[रेडॉन स्पेस]] के लिए कोई भी बोरेल उपाय | * स्थानीय रूप से कॉम्पैक्ट हॉसडॉर्फ स्पेस पर इसकी टोपोलॉजी, या कॉम्पैक्ट मेट्रिक स्पेस, या [[रेडॉन स्पेस]] के लिए कोई भी बोरेल उपाय प्रायिकता माप नियमित है। | ||
=== आंतरिक नियमित उपाय जो बाहरी नियमित नहीं हैं === | === आंतरिक नियमित उपाय जो बाहरी नियमित नहीं हैं === | ||
* अपनी सामान्य टोपोलॉजी के साथ वास्तविक रेखा पर माप का एक उदाहरण जो बाहरी नियमित नहीं है, वह | * अपनी सामान्य टोपोलॉजी के साथ वास्तविक रेखा पर माप का एक उदाहरण है, जो बाहरी नियमित नहीं है, वह माप μ है, जहाँ <math>\mu(\emptyset) = 0</math>, <math>\mu\left( \{1\}\right) = 0\,\,</math>, और <math>\mu(A) = \infty\,\,</math> किसी अन्य सेट <math>A</math> के लिए हैं। | ||
* समतल पर बोरेल माप जो किसी भी बोरेल सेट को उसके क्षैतिज खंडों के (1-आयामी) उपायों का योग प्रदान करता है, वह आंतरिक नियमित है, लेकिन बाहरी नियमित नहीं है, क्योंकि प्रत्येक गैर-खाली | * समतल पर बोरेल माप जो किसी भी बोरेल सेट को उसके क्षैतिज खंडों के (1-आयामी) उपायों का योग प्रदान करता है, वह आंतरिक नियमित है, लेकिन बाहरी नियमित नहीं है, क्योंकि प्रत्येक गैर-खाली विवृत सेट में अनंत माप होता है। इस उदाहरण का एक रूप लेबेस्गु माप के साथ वास्तविक रेखा की अनगिनत प्रतियों का एक असंबद्ध संघ है। | ||
* स्थानीय रूप से कॉम्पैक्ट | * स्थानीय रूप से कॉम्पैक्ट हॉसडॉर्फ स्पेस पर बोरेल माप μ का एक उदाहरण जो आंतरिक नियमित, σ-परिमित, और स्थानीय रूप से परिमित है, लेकिन बाहरी नियमित नहीं है, {{harvtxt|बॉरबाकी|2004|loc=खंड 1 का अभ्यास 5}} द्वारा निम्नानुसार दिया गया है। टोपोलॉजिकल स्पेस ''X'' ने बिंदुओं (0,''y'') के ''y''-अक्ष द्वारा दिए गए वास्तविक विमान के सबसेट को बिंदुओं (1/''n'',''m''/''n''<sup>2</sup>) के साथ m,n सकारात्मक पूर्णांक के साथ सेट किया है। टोपोलॉजी इस प्रकार दी गई है। एकल बिंदु (1/''n'',''m''/''n''<sup>2</sup>) सभी खुले सेट हैं। बिंदु (0,''y'') के पड़ोस का एक आधार वेजेज द्वारा दिया जाता है; जिसमें फॉर्म (''u'',''v'') के X में सभी बिंदु |''v'' − ''y''| ≤ |''u''| ≤ 1/''n'' सकारात्मक पूर्णांक n के लिए सम्मिलित होते हैं। यह स्पेस ''X'' स्थानीय रूप से कॉम्पैक्ट है। माप μ को y-अक्ष को माप 0 देकर और बिंदु (1/''n'',''m''/''n''<sup>2</sup>) को माप 1/''n''<sup>3</sup> देकर दिया जाता है। यह माप आंतरिक नियमित और स्थानीय रूप से परिमित है, लेकिन बाहरी नियमित नहीं है क्योंकि y-अक्ष वाले किसी भी विवृत सेट में माप अनंत है। | ||
=== बाहरी नियमित उपाय जो आंतरिक नियमित नहीं हैं === | === बाहरी नियमित उपाय जो आंतरिक नियमित नहीं हैं === | ||
*यदि μ पिछले उदाहरण में आंतरिक नियमित माप है, और M, M(S) = inf द्वारा दिया गया माप है<sub>''U''⊇''S''</sub>μ(यू) जहां बोरेल सेट एस वाले सभी | *यदि μ पिछले उदाहरण में आंतरिक नियमित माप है, और M, M(S) = inf द्वारा दिया गया माप है<sub>''U''⊇''S''</sub>μ(यू) जहां बोरेल सेट एस वाले सभी विवृत समुच्चयों पर इंफ लिया जाता है, फिर एम स्थानीय रूप से कॉम्पैक्ट हौसडॉर्फ स्पेस पर बाहरी नियमित रूप से सीमित बोरेल माप होता है जो मजबूत अर्थों में आंतरिक नियमित नहीं होता है, हालांकि सभी विवृत सेट हैं आंतरिक नियमित तो यह कमजोर अर्थों में आंतरिक नियमित है। उपाय एम और μ सभी विवृत समुच्चयों, सभी कॉम्पैक्ट समुच्चयों और उन सभी समुच्चयों पर मेल खाते हैं जिन पर एम का परिमित माप है। वाई-अक्ष में अनंत एम-माप है, हालांकि इसके सभी कॉम्पैक्ट सबसेट में माप 0 है। | ||
* असतत टोपोलॉजी के साथ एक [[मापने योग्य कार्डिनल]] में एक बोरेल संभाव्यता माप होता है जैसे कि प्रत्येक कॉम्पैक्ट सबसेट में माप 0 होता है, इसलिए यह माप बाहरी नियमित है लेकिन आंतरिक नियमित नहीं है। मापने योग्य कार्डिनल्स का अस्तित्व ZF सेट सिद्धांत में सिद्ध नहीं किया जा सकता है लेकिन (2013 तक) इसके अनुरूप माना जाता है। | * असतत टोपोलॉजी के साथ एक [[मापने योग्य कार्डिनल]] में एक बोरेल संभाव्यता माप होता है जैसे कि प्रत्येक कॉम्पैक्ट सबसेट में माप 0 होता है, इसलिए यह माप बाहरी नियमित है लेकिन आंतरिक नियमित नहीं है। मापने योग्य कार्डिनल्स का अस्तित्व ZF सेट सिद्धांत में सिद्ध नहीं किया जा सकता है लेकिन (2013 तक) इसके अनुरूप माना जाता है। | ||
=== उपाय जो न तो आंतरिक हैं और न ही बाहरी नियमित === | ====== उपाय जो न तो आंतरिक हैं और न ही बाहरी नियमित हैं ====== | ||
* विवृत इंटरवल द्वारा उत्पन्न टोपोलॉजी के साथ, पहले अनगिनत ऑर्डिनल Ω के बराबर सभी ऑर्डिनल्स का स्थान एक कॉम्पैक्ट हौसडॉर्फ स्पेस है। वह उपाय जो बोरेल समुच्चयों को माप 1 प्रदान करता है, जिसमें काउंटेबल ऑर्डिनल्स का एक अनबाउंड क्लोज्ड सबसेट होता है और अन्य बोरेल समुच्चयों को 0 असाइन करता है, वह एक बोरेल प्रायिकता माप है, जो न तो आंतरिक नियमित है और न ही बाहरी नियमित है। | |||
* | |||
== यह भी देखें == | == यह भी देखें == | ||
Line 40: | Line 39: | ||
* बोरेल का नियमित उपाय करें | * बोरेल का नियमित उपाय करें | ||
* [[रेडॉन माप]] | * [[रेडॉन माप]] | ||
* | * लेबेस्ग उपाय के लिए नियमितता प्रमेय | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 10:33, 2 June 2023
गणित में, टोपोलॉजिकल स्पेस पर एक नियमित माप एक उपाय (गणित) है, जिसके लिए प्रत्येक मापने योग्य सेट को ऊपर से विवृत मापनीय समुच्चयों द्वारा और नीचे से कॉम्पैक्ट मापने योग्य समुच्चयों द्वारा अनुमानित किया जा सकता है।
परिभाषा
माना (X, T) एक सांस्थितिक स्थान हो और Σ को X पर σ-बीजगणित होने दें। माना μ (X, Σ) पर एक उपाय बनें। X का एक मापने योग्य सबसेट A को आंतरिक नियमित कहा जाता है:
और कहा कि यदि बाहरी नियमित हो; तो
- एक माप को आंतरिक नियमित माप कहा जाता है, यदि प्रत्येक मापने योग्य सेट आंतरिक नियमित है। कुछ लेखक एक अलग परिभाषा का उपयोग करते हैं: एक माप को आंतरिक नियमित कहा जाता है यदि प्रत्येक विवृत मापने योग्य सेट आंतरिक नियमित हो।
- एक माप को बाहरी नियमित कहा जाता है, यदि प्रत्येक मापने योग्य सेट बाहरी नियमित हो।
- एक माप को नियमित कहा जाता है, यदि यह बाहरी नियमित और आंतरिक नियमित है।
उदाहरण
नियमित उपाय
- वास्तविक रेखा पर लेबेस्ग उपाय एक नियमित माप है: लेबेसेग माप के लिए नियमितता प्रमेय देखें।
- किसी भी स्थानीय रूप से कॉम्पैक्ट σ-कॉम्पैक्ट हौसडॉर्फ स्पेस पर कोई भी बेयर माप प्रायिकता माप एक नियमित उपाय है।
- स्थानीय रूप से कॉम्पैक्ट हॉसडॉर्फ स्पेस पर इसकी टोपोलॉजी, या कॉम्पैक्ट मेट्रिक स्पेस, या रेडॉन स्पेस के लिए कोई भी बोरेल उपाय प्रायिकता माप नियमित है।
आंतरिक नियमित उपाय जो बाहरी नियमित नहीं हैं
- अपनी सामान्य टोपोलॉजी के साथ वास्तविक रेखा पर माप का एक उदाहरण है, जो बाहरी नियमित नहीं है, वह माप μ है, जहाँ , , और किसी अन्य सेट के लिए हैं।
- समतल पर बोरेल माप जो किसी भी बोरेल सेट को उसके क्षैतिज खंडों के (1-आयामी) उपायों का योग प्रदान करता है, वह आंतरिक नियमित है, लेकिन बाहरी नियमित नहीं है, क्योंकि प्रत्येक गैर-खाली विवृत सेट में अनंत माप होता है। इस उदाहरण का एक रूप लेबेस्गु माप के साथ वास्तविक रेखा की अनगिनत प्रतियों का एक असंबद्ध संघ है।
- स्थानीय रूप से कॉम्पैक्ट हॉसडॉर्फ स्पेस पर बोरेल माप μ का एक उदाहरण जो आंतरिक नियमित, σ-परिमित, और स्थानीय रूप से परिमित है, लेकिन बाहरी नियमित नहीं है, बॉरबाकी (2004, खंड 1 का अभ्यास 5) द्वारा निम्नानुसार दिया गया है। टोपोलॉजिकल स्पेस X ने बिंदुओं (0,y) के y-अक्ष द्वारा दिए गए वास्तविक विमान के सबसेट को बिंदुओं (1/n,m/n2) के साथ m,n सकारात्मक पूर्णांक के साथ सेट किया है। टोपोलॉजी इस प्रकार दी गई है। एकल बिंदु (1/n,m/n2) सभी खुले सेट हैं। बिंदु (0,y) के पड़ोस का एक आधार वेजेज द्वारा दिया जाता है; जिसमें फॉर्म (u,v) के X में सभी बिंदु |v − y| ≤ |u| ≤ 1/n सकारात्मक पूर्णांक n के लिए सम्मिलित होते हैं। यह स्पेस X स्थानीय रूप से कॉम्पैक्ट है। माप μ को y-अक्ष को माप 0 देकर और बिंदु (1/n,m/n2) को माप 1/n3 देकर दिया जाता है। यह माप आंतरिक नियमित और स्थानीय रूप से परिमित है, लेकिन बाहरी नियमित नहीं है क्योंकि y-अक्ष वाले किसी भी विवृत सेट में माप अनंत है।
बाहरी नियमित उपाय जो आंतरिक नियमित नहीं हैं
- यदि μ पिछले उदाहरण में आंतरिक नियमित माप है, और M, M(S) = inf द्वारा दिया गया माप हैU⊇Sμ(यू) जहां बोरेल सेट एस वाले सभी विवृत समुच्चयों पर इंफ लिया जाता है, फिर एम स्थानीय रूप से कॉम्पैक्ट हौसडॉर्फ स्पेस पर बाहरी नियमित रूप से सीमित बोरेल माप होता है जो मजबूत अर्थों में आंतरिक नियमित नहीं होता है, हालांकि सभी विवृत सेट हैं आंतरिक नियमित तो यह कमजोर अर्थों में आंतरिक नियमित है। उपाय एम और μ सभी विवृत समुच्चयों, सभी कॉम्पैक्ट समुच्चयों और उन सभी समुच्चयों पर मेल खाते हैं जिन पर एम का परिमित माप है। वाई-अक्ष में अनंत एम-माप है, हालांकि इसके सभी कॉम्पैक्ट सबसेट में माप 0 है।
- असतत टोपोलॉजी के साथ एक मापने योग्य कार्डिनल में एक बोरेल संभाव्यता माप होता है जैसे कि प्रत्येक कॉम्पैक्ट सबसेट में माप 0 होता है, इसलिए यह माप बाहरी नियमित है लेकिन आंतरिक नियमित नहीं है। मापने योग्य कार्डिनल्स का अस्तित्व ZF सेट सिद्धांत में सिद्ध नहीं किया जा सकता है लेकिन (2013 तक) इसके अनुरूप माना जाता है।
उपाय जो न तो आंतरिक हैं और न ही बाहरी नियमित हैं
- विवृत इंटरवल द्वारा उत्पन्न टोपोलॉजी के साथ, पहले अनगिनत ऑर्डिनल Ω के बराबर सभी ऑर्डिनल्स का स्थान एक कॉम्पैक्ट हौसडॉर्फ स्पेस है। वह उपाय जो बोरेल समुच्चयों को माप 1 प्रदान करता है, जिसमें काउंटेबल ऑर्डिनल्स का एक अनबाउंड क्लोज्ड सबसेट होता है और अन्य बोरेल समुच्चयों को 0 असाइन करता है, वह एक बोरेल प्रायिकता माप है, जो न तो आंतरिक नियमित है और न ही बाहरी नियमित है।
यह भी देखें
- बोरेल का नियमित उपाय करें
- रेडॉन माप
- लेबेस्ग उपाय के लिए नियमितता प्रमेय
संदर्भ
- Billingsley, Patrick (1999). Convergence of Probability Measures. New York: John Wiley & Sons, Inc. ISBN 0-471-19745-9.
- Parthasarathy, K. R. (2005). Probability measures on metric spaces. AMS Chelsea Publishing, Providence, RI. p. xii+276. ISBN 0-8218-3889-X. MR2169627 (See chapter 2)
- Dudley, R. M. (1989). Real Analysis and Probability. Chapman & Hall.