हिगुची आयाम: Difference between revisions

From Vigyanwiki
Line 13: Line 13:


== कार्यों के लिए आवेदन ==
== कार्यों के लिए आवेदन ==
वास्तविक मूल्यवान समारोह के लिए <math>f:[0,1] \to \mathbb{R}</math> कोई इकाई अंतराल को विभाजित कर सकता है <math>[0,1]</math> में <math>N</math> समान रूप से अंतराल <math>[t_j,t_{j+1})</math> और समय श्रृंखला में हिगुची एल्गोरिद्म लागू करें <math>X(j) = f(t_j)</math>. यह फ़ंक्शन के हिगुची भग्न आयाम में परिणत होता है <math>f</math>. यह दिखाया गया था कि इस मामले में हिगुची विधि के ग्राफ के बॉक्स-गिनती आयाम के लिए एक सन्निकटन प्राप्त होता है <math>f</math> क्योंकि यह एक ज्यामितीय दृष्टिकोण का अनुसरण करता है (लिहर और मासोपस्ट 2020 देखें<ref name=":1">{{Cite journal|last1=Liehr|first1=Lukas|last2=Massopust|first2=Peter|date=2020-01-15|title=हिगुची पद्धति की गणितीय वैधता पर|url=http://www.sciencedirect.com/science/article/pii/S0167278919303859|journal=Physica D: Nonlinear Phenomena|language=en|volume=402|pages=132265|doi=10.1016/j.physd.2019.132265|arxiv=1906.10558|s2cid=195584346|issn=0167-2789}}</ref>).
वास्तविक मूल्यवान समारोह के लिए <math>f:[0,1] \to \mathbb{R}</math> किसी इकाई अंतराल को विभाजित कर सकता है <math>[0,1]</math> में <math>N</math> समान रूप से अंतराल <math>[t_j,t_{j+1})</math> और समय श्रृंखला में हिगुची प्रारूप भी लागू कर सकता है<math>X(j) = f(t_j)</math>. यह समारोह के हिगुची भग्न आयाम में परिणत होता है तथा <math>f</math> में यह दिखाया गया था कि इस स्थान में हिगुची विधि के ग्राफ तथा बॉक्स गिनती आयाम के लिए एक सन्निकटन प्राप्त करते हैं क्योंकि <math>f</math> यह एक ज्यामितीय दृष्टिकोण का अनुसरण करता है।


== मजबूती और स्थिरता ==
== मजबूती और स्थिरता ==
फ्रैक्शनल ब्राउनियन फ़ंक्शंस और [[वीयरस्ट्रैस समारोह]] के अनुप्रयोगों से पता चलता है कि हिगुची फ्रैक्टल आयाम बॉक्स-आयाम के करीब हो सकता है।<ref name=":0">{{Cite journal|last=Higuchi|first=T.|date=1988-06-01|title=भग्न सिद्धांत के आधार पर एक अनियमित समय श्रृंखला के लिए दृष्टिकोण|url=https://dx.doi.org/10.1016%2F0167-2789%2888%2990081-4|journal=Physica D: Nonlinear Phenomena|language=en|volume=31|issue=2|pages=277–283|doi=10.1016/0167-2789(88)90081-4|bibcode=1988PhyD...31..277H|issn=0167-2789}}</ref><ref name=":1" />दूसरी ओर, विधि उस मामले में अस्थिर हो सकती है जहां डेटा <math>X(1), \dots, X(N)</math> आवधिक हैं या यदि इसके उपसमुच्चय एक क्षैतिज रेखा पर स्थित हैं (देखें लिहर और मासोपस्ट 2020<ref name=":1" />).
फ्रैक्शनल ब्राउनियन फ़ंक्शंस और [[वीयरस्ट्रैस समारोह]] के अनुप्रयोगों से पता चलता है कि हिगुची फ्रैक्टल आयाम बॉक्स-आयाम के करीब हो सकता है।<ref name=":0">{{Cite journal|last=Higuchi|first=T.|date=1988-06-01|title=भग्न सिद्धांत के आधार पर एक अनियमित समय श्रृंखला के लिए दृष्टिकोण|url=https://dx.doi.org/10.1016%2F0167-2789%2888%2990081-4|journal=Physica D: Nonlinear Phenomena|language=en|volume=31|issue=2|pages=277–283|doi=10.1016/0167-2789(88)90081-4|bibcode=1988PhyD...31..277H|issn=0167-2789}}</ref><ref name=":1">{{Cite journal|last1=Liehr|first1=Lukas|last2=Massopust|first2=Peter|date=2020-01-15|title=हिगुची पद्धति की गणितीय वैधता पर|url=http://www.sciencedirect.com/science/article/pii/S0167278919303859|journal=Physica D: Nonlinear Phenomena|language=en|volume=402|pages=132265|doi=10.1016/j.physd.2019.132265|arxiv=1906.10558|s2cid=195584346|issn=0167-2789}}</ref>दूसरी ओर, विधि उस मामले में अस्थिर हो सकती है जहां डेटा <math>X(1), \dots, X(N)</math> आवधिक हैं या यदि इसके उपसमुच्चय एक क्षैतिज रेखा पर स्थित हैं (देखें लिहर और मासोपस्ट 2020<ref name=":1" />).


== संदर्भ ==
== संदर्भ ==

Revision as of 08:36, 3 June 2023

भग्न ज्यामिति में हिगुची आयाम या हिगुची भग्न आयाम एचएफडी वास्तविक मूल्यवान कार्यक्रम या समय श्रृंखला ग्राफ के बॉक्स-गिनती आयाम के लिए एक अनुमानित मूल्य है यह मान प्रारूप सन्निकटन के माध्यम से प्राप्त किया जाता है इसलिए हम हिगुची पद्धति के बारे में भी बात करते हैं विज्ञान और रचना में इसके कई अनुप्रयोग हैं और इसे सीस्मोग्राम में प्राथमिक तरंगों की विशेषता जैसे विषयों पर लागू किया गया है [1] नैदानिक तंत्रिका[2] और अल्जाइमर रोग में विद्युतमष्तिकलेख में परिवर्तन का विश्लेषण करना है।[3]


विधि का निरूपण

विधि का मूल निरूपण या सूत्रीकरण टी. हिगुची ने किया एक समय श्रृंखला दी गई को मिलाकर डेटा अंक और एक पैरामीटर का हिगुची भग्न आयाम एचएफडी में निम्नलिखित तरीके से गणना की जाती है प्रत्येक के लिए और लंबाई परिभाषित करें द्वारा

लंबाई के औसत मूल्य द्वारा परिभाषित किया गया है लंबाई ,

डेटा बिंदुओं के माध्यम से सर्वोत्तम सही रैखिक कार्यक्रम का ढलान समय श्रृंखला के हिगुची भग्न आयाम के रूप में परिभाषित किया गया है।

कार्यों के लिए आवेदन

वास्तविक मूल्यवान समारोह के लिए किसी इकाई अंतराल को विभाजित कर सकता है में समान रूप से अंतराल और समय श्रृंखला में हिगुची प्रारूप भी लागू कर सकता है. यह समारोह के हिगुची भग्न आयाम में परिणत होता है तथा में यह दिखाया गया था कि इस स्थान में हिगुची विधि के ग्राफ तथा बॉक्स गिनती आयाम के लिए एक सन्निकटन प्राप्त करते हैं क्योंकि यह एक ज्यामितीय दृष्टिकोण का अनुसरण करता है।

मजबूती और स्थिरता

फ्रैक्शनल ब्राउनियन फ़ंक्शंस और वीयरस्ट्रैस समारोह के अनुप्रयोगों से पता चलता है कि हिगुची फ्रैक्टल आयाम बॉक्स-आयाम के करीब हो सकता है।[4][5]दूसरी ओर, विधि उस मामले में अस्थिर हो सकती है जहां डेटा आवधिक हैं या यदि इसके उपसमुच्चय एक क्षैतिज रेखा पर स्थित हैं (देखें लिहर और मासोपस्ट 2020[5]).

संदर्भ

  1. Gálvez-Coyt, Gonzalo; Muñoz-Diosdado, Alejandro; Peralta, José A.; Balderas-López, José A.; Angulo-Brown, Fernando (June 2012). "मैक्सिकन सबडक्शन ज़ोन से कुछ सीस्मोग्राम में प्राथमिक तरंगों को चिह्नित करने के लिए हिगुची की विधि के पैरामीटर". Acta Geophysica (in English). 60 (3): 910–927. Bibcode:2012AcGeo..60..910G. doi:10.2478/s11600-012-0033-9. ISSN 1895-6572. S2CID 129794825.
  2. Kesić, Srdjan; Spasić, Sladjana Z. (2016-09-01). "Application of Higuchi's fractal dimension from basic to clinical neurophysiology: A review". Computer Methods and Programs in Biomedicine (in English). 133: 55–70. doi:10.1016/j.cmpb.2016.05.014. ISSN 0169-2607. PMID 27393800.
  3. Nobukawa, Sou; Yamanishi, Teruya; Nishimura, Haruhiko; Wada, Yuji; Kikuchi, Mitsuru; Takahashi, Tetsuya (February 2019). "अल्जाइमर रोग ईईजी में एटिपिकल टेम्पोरल-स्केल-विशिष्ट भग्न परिवर्तन और संज्ञानात्मक गिरावट के लिए उनकी प्रासंगिकता". Cognitive Neurodynamics (in English). 13 (1): 1–11. doi:10.1007/s11571-018-9509-x. ISSN 1871-4080. PMC 6339858. PMID 30728867.
  4. Higuchi, T. (1988-06-01). "भग्न सिद्धांत के आधार पर एक अनियमित समय श्रृंखला के लिए दृष्टिकोण". Physica D: Nonlinear Phenomena (in English). 31 (2): 277–283. Bibcode:1988PhyD...31..277H. doi:10.1016/0167-2789(88)90081-4. ISSN 0167-2789.
  5. 5.0 5.1 Liehr, Lukas; Massopust, Peter (2020-01-15). "हिगुची पद्धति की गणितीय वैधता पर". Physica D: Nonlinear Phenomena (in English). 402: 132265. arXiv:1906.10558. doi:10.1016/j.physd.2019.132265. ISSN 0167-2789. S2CID 195584346.