प्रतिसमरूपता: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
{{Short description|Homomorphism reversing the order of something}} | {{Short description|Homomorphism reversing the order of something}} | ||
[[गणित]] में, एक '''प्रतिसमरूपता (एंटीहोमोमोर्फिज्म)''' एक प्रकार का फलन है जो गुणन के साथ समुच्चयों पर परिभाषित होता है जो [[गुणन के क्रम]] को उत्क्रमित कर देता है। एक '''एंटीऑटोमोर्फिज्म''' एक '''एकैकी आच्छादी''' प्रतिसमरूपता है, यानी एक [[ समरूपतावाद |एंटीसोमोर्फिज्म]], एक समुच्चय से लेकर स्वयं तक है। एकैक आच्छादन से यह पता चलता है कि एंटीऑटोमोर्फिज्म में व्युत्क्रम होते हैं, और यह कि एंटीऑटोमोर्फिज्म का व्युत्क्रम भी एक एंटीऑटोमोर्फिज्म होता है। | [[गणित]] में, एक '''प्रतिसमरूपता (एंटीहोमोमोर्फिज्म)''' एक प्रकार का फलन है जो गुणन के साथ समुच्चयों पर परिभाषित होता है जो [[गुणन के क्रम]] को उत्क्रमित कर देता है। एक '''एंटीऑटोमोर्फिज्म''' एक '''एकैकी आच्छादी''' प्रतिसमरूपता है, यानी एक [[ समरूपतावाद |एंटीसोमोर्फिज्म]], एक समुच्चय से लेकर स्वयं तक है। एकैक आच्छादन से यह पता चलता है कि एंटीऑटोमोर्फिज्म में व्युत्क्रम होते हैं, और यह कि एंटीऑटोमोर्फिज्म का व्युत्क्रम भी एक एंटीऑटोमोर्फिज्म होता है। | ||
Line 15: | Line 14: | ||
''X'' में सभी ''x'', ''y'' के लिए। | ''X'' में सभी ''x'', ''y'' के लिए। | ||
वह प्रतिचित्र जो ''x'' को ''x<sup>−1</sup>'' भेजता है, समूह एंटीऑटोमोर्फिज्म का एक उदाहरण है। एक अन्य महत्वपूर्ण उदाहरण [[रैखिक बीजगणित]] में [[ खिसकाना | | वह प्रतिचित्र जो ''x'' को ''x<sup>−1</sup>'' भेजता है, समूह एंटीऑटोमोर्फिज्म का एक उदाहरण है। एक अन्य महत्वपूर्ण उदाहरण [[रैखिक बीजगणित]] में [[ खिसकाना |परिवर्त]] प्रचालन है, जो पंक्ति सदिश को [[स्तंभ सदिश]] में ले जाता है। किसी सदिश-आव्यूह समीकरण को तुल्यमान समीकरण में परिवर्त किया जा सकता है जहां गुणकों का क्रम उत्क्रमित होता है। | ||
आव्यूहों के साथ, परिवर्त प्रतिचित्र द्वारा एंटीऑटोमोर्फिज़्म का एक उदाहरण दिया गया है। चूंकि व्युत्क्रम और मैट्रिक्स परिवर्तन दोनों ही एंटीऑटोमोर्फिज़्म देते हैं, इसलिए उनका संयोजन एक ऑटोमोर्फिज़्म है। इस अंतर्वलन को अक्सर विरोधाभासी प्रतिचित्र कहा जाता है, और यह [[सामान्य रैखिक समूह]] {{nowrap|GL(''n'', ''F'')}} के बाहरी ऑटोमोर्फिज्म का एक उदाहरण प्रदान करता है, जहां F एक क्षेत्र है, सिवाय इसके कि जब {{nowrap|1={{abs|''F''}} = 2}} और {{nowrap|1=''n'' = 1 या 2}}, या {{nowrap|1={{abs|''F''}} = 3}} और {{nowrap|1=''n'' = 1}} (अर्थात, समूहों {{nowrap|GL(1, 2)}}, {{nowrap|GL(2, 2)}}, और {{nowrap|GL(1, 3)}} के लिए) | | आव्यूहों के साथ, परिवर्त प्रतिचित्र द्वारा एंटीऑटोमोर्फिज़्म का एक उदाहरण दिया गया है। चूंकि व्युत्क्रम और मैट्रिक्स परिवर्तन दोनों ही एंटीऑटोमोर्फिज़्म देते हैं, इसलिए उनका संयोजन एक ऑटोमोर्फिज़्म है। इस अंतर्वलन को अक्सर विरोधाभासी प्रतिचित्र कहा जाता है, और यह [[सामान्य रैखिक समूह]] {{nowrap|GL(''n'', ''F'')}} के बाहरी ऑटोमोर्फिज्म का एक उदाहरण प्रदान करता है, जहां F एक क्षेत्र है, सिवाय इसके कि जब {{nowrap|1={{abs|''F''}} = 2}} और {{nowrap|1=''n'' = 1 या 2}}, या {{nowrap|1={{abs|''F''}} = 3}} और {{nowrap|1=''n'' = 1}} (अर्थात, समूहों {{nowrap|GL(1, 2)}}, {{nowrap|GL(2, 2)}}, और {{nowrap|GL(1, 3)}} के लिए) | |
Revision as of 15:14, 5 June 2023
गणित में, एक प्रतिसमरूपता (एंटीहोमोमोर्फिज्म) एक प्रकार का फलन है जो गुणन के साथ समुच्चयों पर परिभाषित होता है जो गुणन के क्रम को उत्क्रमित कर देता है। एक एंटीऑटोमोर्फिज्म एक एकैकी आच्छादी प्रतिसमरूपता है, यानी एक एंटीसोमोर्फिज्म, एक समुच्चय से लेकर स्वयं तक है। एकैक आच्छादन से यह पता चलता है कि एंटीऑटोमोर्फिज्म में व्युत्क्रम होते हैं, और यह कि एंटीऑटोमोर्फिज्म का व्युत्क्रम भी एक एंटीऑटोमोर्फिज्म होता है।
परिभाषा
अनौपचारिक रूप से, एक प्रतिसमरूपता एक प्रतिचित्र है जो गुणन के क्रम को बदलता है। औपचारिक रूप से, संरचनाओं और के बीच एक प्रतिसमरूपता एक समरूपता है, जहां एक समुच्चय के रूप में के बराबर है, लेकिन इसका गुणन पर परिभाषित के उत्क्रम है। पर द्वारा (आम तौर पर अविनिमेय) गुणन को निर्दिष्ट करना, पर गुणन, द्वारा चिह्नित , द्वारा परिभाषित किया गया है। वस्तु को (क्रमशः, विपरीत समूह, विपरीत बीजगणित, विपरीत श्रेणी आदि) के विपरीत वस्तु कहा जाता है।
यह परिभाषा समरूपता के तुल्य है (प्रतिचित्र लागू करने से पहले या बाद में प्रचालन को उत्क्रमित कर देना तुल्यमान है)। औपचारिक रूप से, को भेजना (सेन्डिंग) और प्रतिचित्रों पर सर्वसमिका के रूप में कार्य करना एक फलननिर्धारक (वास्तव में, एक अंतर्वलन) है।
उदाहरण
समूह सिद्धांत में, एक प्रतिसमरूपता दो समूहों के बीच एक प्रतिचित्र है जो गुणन के क्रम को उत्क्रमित कर देता है। तो अगर φ : X → Y एक समूह प्रतिसमरूपता है,
- φ(xy) = φ(y)φ(x)
X में सभी x, y के लिए।
वह प्रतिचित्र जो x को x−1 भेजता है, समूह एंटीऑटोमोर्फिज्म का एक उदाहरण है। एक अन्य महत्वपूर्ण उदाहरण रैखिक बीजगणित में परिवर्त प्रचालन है, जो पंक्ति सदिश को स्तंभ सदिश में ले जाता है। किसी सदिश-आव्यूह समीकरण को तुल्यमान समीकरण में परिवर्त किया जा सकता है जहां गुणकों का क्रम उत्क्रमित होता है।
आव्यूहों के साथ, परिवर्त प्रतिचित्र द्वारा एंटीऑटोमोर्फिज़्म का एक उदाहरण दिया गया है। चूंकि व्युत्क्रम और मैट्रिक्स परिवर्तन दोनों ही एंटीऑटोमोर्फिज़्म देते हैं, इसलिए उनका संयोजन एक ऑटोमोर्फिज़्म है। इस अंतर्वलन को अक्सर विरोधाभासी प्रतिचित्र कहा जाता है, और यह सामान्य रैखिक समूह GL(n, F) के बाहरी ऑटोमोर्फिज्म का एक उदाहरण प्रदान करता है, जहां F एक क्षेत्र है, सिवाय इसके कि जब |F| = 2 और n = 1 या 2, या |F| = 3 और n = 1 (अर्थात, समूहों GL(1, 2), GL(2, 2), और GL(1, 3) के लिए) |
रिंग सिद्धांत में, एक प्रतिसमरूपता दो रिंगों के बीच का एक प्रतिचित्र है जो योग को संरक्षित करता है, लेकिन गुणन के क्रम को उत्क्रमित कर देता है। अतः φ : X → Y एक रिंग प्रतिसमरूपता है अगर और केवल अगर:
- φ(1) = 1
- φ(x + y) = φ(x) + φ(y)
- φ(xy) = φ(y)φ(x)
X में सभी x, y के लिए।[1]
क्षेत्र K पर बीजगणित के लिए, φ अंतर्निहित सदिश समष्टि का K-रैखिक प्रतिचित्र होना चाहिए। यदि अंतर्निहित क्षेत्र में एक अंतर्वलन है, तो इसके बजाय φ को संयुग्म-रैखिक होने के लिए कहा जा सकता है, जैसा कि नीचे संयुग्मित परिवर्त में है।
अंतर्वलन
अक्सर ऐसा होता है कि एंटीऑटोमोर्फिज्म अंतर्वलन होते हैं, यानी एंटीऑटोमोर्फिज्म का वर्ग तत्समक प्रतिचित्र होता है; इन्हें अंतर्वलन एंटीऑटोमॉर्फिज्म भी कहा जाता है। उदाहरण के लिए, किसी भी समूह में वह प्रतिचित्र जो x को उसके व्युत्क्रम x−1 पर भेजता है, एक अंतर्वलन एंटीऑटोमोर्फिज्म है।
एक अंतर्वलन एंटीऑटोमोर्फिज्म वाली रिंग को *-रिंग कहा जाता है, और ये उदाहरणों का एक महत्वपूर्ण वर्ग बनाते हैं।
गुण
यदि स्रोत X या टार्गेट Y योग्यतानुपाती है, तो एक प्रतिसमरूपता एक समरूपता के समान है।
दो प्रतिसमरूपता का संयोजन हमेशा एक समरूपता होता है, क्योंकि क्रम को दो बार उत्क्रम करने से क्रम संरक्षित रहता है। एक समरूपता के साथ एक प्रतिसमरूपता का संयोजन एक और प्रतिसमरूपता देता है।
यह भी देखें
संदर्भ
- ↑ Jacobson, Nathan (1943). अंगूठियों का सिद्धांत. Mathematical Surveys and Monographs. Vol. 2. American Mathematical Society. p. 16. ISBN 0821815024.