अबाध क्रम प्रमुखता (कार्दिनलिटी ऑफ़ दी कॉन्टीनुम): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 69: Line 69:
यह कथन अब कर्ट गोडेल एवं [[पॉल कोहेन]] द्वारा दिखाए गए सदृश के स्वयंसिद्ध (जेडएफसी) के साथ जर्मेलो-फ्रेंकेल सेट सिद्धांत के सिद्धांतों से स्वतंत्र होने के लिए जाना जाता है।<ref>{{Cite book |last=Gödel |first=Kurt |date=1940-12-31 |title=Consistency of the Continuum Hypothesis. (AM-3) |url=http://dx.doi.org/10.1515/9781400881635 |doi=10.1515/9781400881635|isbn=9781400881635 }}</ref><ref>{{Cite journal |last=Cohen |first=Paul J. |title=सातत्य परिकल्पना की स्वतंत्रता|date=December 1963 |journal=Proceedings of the National Academy of Sciences |volume=50 |issue=6 |pages=1143–1148 |doi=10.1073/pnas.50.6.1143 |pmid=16578557 |pmc=221287 |bibcode=1963PNAS...50.1143C |issn=0027-8424|doi-access=free }}</ref><ref>{{Cite journal |last=Cohen |first=Paul J. |title=सातत्य परिकल्पना की स्वतंत्रता, द्वितीय|date=January 1964 |journal=Proceedings of the National Academy of Sciences |volume=51 |issue=1 |pages=105–110 |doi=10.1073/pnas.51.1.105 |pmid=16591132 |pmc=300611 |bibcode=1964PNAS...51..105C |issn=0027-8424|doi-access=free }}</ref> अर्थात्, परिकल्पना एवं उसका निषेध दोनों ही इन स्वयंसिद्धों के अनुरूप हैं। वास्तव में, प्रत्येक अशून्य प्राकृतिक संख्या n के लिए, समानता <math>{\mathfrak c}</math> = <math>\aleph_n</math> ZFC से स्वतंत्र है (केस <math>n=1</math> निरंतर परिकल्पना होने के सम्बन्ध में)। अधिकांश अन्य अलेफों के लिए भी यही सत्य है, चूंकि कुछ स्थितियो में, कोनिग के प्रमेय (सेट सिद्धांत) <math>\mathfrak{c}\neq\aleph_\omega</math> <math>\mathfrak{c}</math> द्वारा समानता से अस्वीकृति किया जा सकता है। ) विशेष रूप से  <math>\aleph_1</math> या  <math>\aleph_{\omega_1}</math> दोनो में से हो सकता है, जहाँ <math>\omega_1</math> [[पहला बेशुमार क्रमसूचक|प्रथम असंख्य क्रमसूचक]] है, इसलिए यह या तो  [[उत्तराधिकारी कार्डिनल|उत्तराधिकारी प्रमुख]] या [[सीमा कार्डिनल|सीमा प्रमुख]] हो सकता है, एवं या तो [[नियमित कार्डिनल|नियमित प्रमुख]] या [[एकवचन कार्डिनल|एकवचन प्रमुख]] हो सकता है।
यह कथन अब कर्ट गोडेल एवं [[पॉल कोहेन]] द्वारा दिखाए गए सदृश के स्वयंसिद्ध (जेडएफसी) के साथ जर्मेलो-फ्रेंकेल सेट सिद्धांत के सिद्धांतों से स्वतंत्र होने के लिए जाना जाता है।<ref>{{Cite book |last=Gödel |first=Kurt |date=1940-12-31 |title=Consistency of the Continuum Hypothesis. (AM-3) |url=http://dx.doi.org/10.1515/9781400881635 |doi=10.1515/9781400881635|isbn=9781400881635 }}</ref><ref>{{Cite journal |last=Cohen |first=Paul J. |title=सातत्य परिकल्पना की स्वतंत्रता|date=December 1963 |journal=Proceedings of the National Academy of Sciences |volume=50 |issue=6 |pages=1143–1148 |doi=10.1073/pnas.50.6.1143 |pmid=16578557 |pmc=221287 |bibcode=1963PNAS...50.1143C |issn=0027-8424|doi-access=free }}</ref><ref>{{Cite journal |last=Cohen |first=Paul J. |title=सातत्य परिकल्पना की स्वतंत्रता, द्वितीय|date=January 1964 |journal=Proceedings of the National Academy of Sciences |volume=51 |issue=1 |pages=105–110 |doi=10.1073/pnas.51.1.105 |pmid=16591132 |pmc=300611 |bibcode=1964PNAS...51..105C |issn=0027-8424|doi-access=free }}</ref> अर्थात्, परिकल्पना एवं उसका निषेध दोनों ही इन स्वयंसिद्धों के अनुरूप हैं। वास्तव में, प्रत्येक अशून्य प्राकृतिक संख्या n के लिए, समानता <math>{\mathfrak c}</math> = <math>\aleph_n</math> ZFC से स्वतंत्र है (केस <math>n=1</math> निरंतर परिकल्पना होने के सम्बन्ध में)। अधिकांश अन्य अलेफों के लिए भी यही सत्य है, चूंकि कुछ स्थितियो में, कोनिग के प्रमेय (सेट सिद्धांत) <math>\mathfrak{c}\neq\aleph_\omega</math> <math>\mathfrak{c}</math> द्वारा समानता से अस्वीकृति किया जा सकता है। ) विशेष रूप से  <math>\aleph_1</math> या  <math>\aleph_{\omega_1}</math> दोनो में से हो सकता है, जहाँ <math>\omega_1</math> [[पहला बेशुमार क्रमसूचक|प्रथम असंख्य क्रमसूचक]] है, इसलिए यह या तो  [[उत्तराधिकारी कार्डिनल|उत्तराधिकारी प्रमुख]] या [[सीमा कार्डिनल|सीमा प्रमुख]] हो सकता है, एवं या तो [[नियमित कार्डिनल|नियमित प्रमुख]] या [[एकवचन कार्डिनल|एकवचन प्रमुख]] हो सकता है।


== सातत्य == की प्रमुखता के साथ सेट करता है
सातत्य की प्रमुखता के साथ सेट करता है।


गणित में अध्ययन किए गए बहुत से सेटों में  प्रमुखता समान होती है <math>{\mathfrak c}</math>. कुछ सामान्य उदाहरण निम्नलिखित हैं:
गणित में अध्ययन किए गए बहुत से सेटों में  प्रमुखता समान <math>{\mathfrak c}</math> होती है। कुछ सामान्य उदाहरण निम्नलिखित हैं:


{{unordered list
{{unordered list
|the [[real number]]s <math>\mathbb{R}</math>
| [[वास्तविक संख्या]] <math>\mathbb{R}</math>
|any ([[Degeneracy (mathematics)|nondegenerate]]) closed or open [[Interval (mathematics)|interval]] in <math>\mathbb{R}</math> (such as the [[unit interval]] <math>[0,1]</math>)
|कोई ([[नॉनडीजेनरेट]]) संवृत या विवृत [[अंतराल ]] <math>\mathbb{R}</math> (such as the [[जैसे इकाई अंतराल]] हैI
|the [[irrational number]]s
|[[तर्कहीन संख्या]] s
|the [[transcendental numbers]]
|[[अनुवांशिक संख्या]]


We note that the set of real [[algebraic number]]s is countably infinite (assign to each formula its [[Gödel numbering|Gödel number]].) So the cardinality of the real algebraic numbers is <math>\aleph_0</math>. Furthermore, the real algebraic numbers and the real transcendental numbers are disjoint sets whose union is <math>\mathbb R</math>. Thus, since the cardinality of <math>\mathbb R</math> is <math>\mathfrak c</math>, the cardinality of the real transcendental numbers is <math>\mathfrak c - \aleph_0 = \mathfrak c</math>. A similar result follows for complex transcendental numbers, once we have proved that  <math>\left\vert \mathbb{C} \right\vert = \mathfrak c</math>.
पारलौकिक संख्याएँ हम ध्यान देते हैं कि वास्तविक बीजगणितीय संख्याओं का समुच्चय अनगिनत रूप से अनंत है (प्रत्येक सूत्र को उसकी गोडेल संख्या निर्दिष्ट करें।) इसलिए वास्तविक बीजगणितीय संख्याओं की ℵ 0 प्रमुखता है,
|the [[Cantor set]]
 
|[[Euclidean space]] <math>\mathbb{R}^n</math><ref name=Gouvea>[http://www.maa.org/sites/default/files/pdf/pubs/AMM-March11_Cantor.pdf Was Cantor Surprised?], [[Fernando Q. Gouvêa]], ''[[American Mathematical Monthly]]'', March 2011.</ref>
इसके अतिरिक्त, वास्तविक बीजगणितीय संख्याएँ और वास्तविक पारलौकिक संख्याएँ असंयुक्त समुच्चय हैं जिनका संघ {R} है,
 
इस प्रकार, की प्रमुखता के पश्चात
 
{R} है
 
{c}, वास्तविक पारलौकिक संख्याओं की प्रमुखता है
 
-
0
<nowiki>=</nowiki>
 
जटिल पारलौकिक संख्याओं के लिए समान परिणाम प्राप्त होता है, जब हम यह प्रमाणित कर देते हैंI
|
[[कैंटर सेट]]
|[[यूक्लिडियन अंतरिक्ष]] <math>\mathbb{R}^n</math><ref name=Gouvea>[http://www.maa.org/sites/default/files/pdf/pubs/AMM-March11_Cantor.pdf Was Cantor Surprised?], [[Fernando Q. Gouvêa]], ''[[American Mathematical Monthly]]'', March 2011.</ref>
|the [[complex number]]s <math>\mathbb{C}</math>
|the [[complex number]]s <math>\mathbb{C}</math>


Line 89: Line 105:
  (a,b) &\mapsto a+bi
  (a,b) &\mapsto a+bi
\end{align}</math>}}
\end{align}</math>}}
|the [[power set]] of the [[natural number]]s <math>\mathcal{P}(\mathbb{N})</math> (the set of all subsets of the natural numbers)
|प्राकृतिक संख्याओं का पावर सेट {P} {N}(प्राकृतिक संख्याओं के सभी सबसेट का सेट)
|the set of [[sequences]] of integers (i.e. all functions <math>\mathbb{N} \rightarrow \mathbb{Z}</math>, often denoted <math>\mathbb{Z}^\mathbb{N}</math>)
|पूर्णांकों के [[अनुक्रम]] का समुच्चय (अर्थात सभी फलन {N} प्रायः {Z} के रूप में दर्शाए जाते हैं,|वास्तविक संख्याओं के अनुक्रमों का समुच्चय <math>\mathbb {R}^\mathbb{N}</math>
|the set of sequences of real numbers, <math>\mathbb{R}^\mathbb{N}</math>
|सभी [[निरंतर कार्य|सतत]] कार्यों का सेट <math>\mathbb{R}</math> to <math>\mathbb{R}</math>
|the set of all [[continuous function|continuous]] functions from <math>\mathbb{R}</math> to <math>\mathbb{R}</math>
|[[यूक्लिडियन टोपोलॉजी]] पर<math>\mathbb{R}^n</math> (अर्थात सभी का सेट [[ओपन सेट]] <math>\mathbb{R}^n</math>)
|the [[Euclidean topology]] on <math>\mathbb{R}^n</math> (i.e. the set of all [[open set]]s in <math>\mathbb{R}^n</math>)
|[[बोरेल बीजगणित σ-बीजगणित]] पर<math>\mathbb{R}</math> (अर्थात सभी [[बोरेल सेट]] का सेट<math>\mathbb{R}</math>).
|the [[Borel algebra|Borel σ-algebra]] on <math>\mathbb{R}</math> (i.e. the set of all [[Borel set]]s in <math>\mathbb{R}</math>).
}}
}}


== अधिक प्रमुखता के साथ सेट ==
== अधिक प्रमुखता के साथ सेट ==


से अधिक  प्रमुखता के साथ सेट करता है <math>{\mathfrak c}</math> शामिल करना:
से अधिक  प्रमुखता के साथ सेट करता है <math>{\mathfrak c}</math> शामिल करना:

Revision as of 19:01, 24 May 2023

समुच्चय सिद्धान्त में, सातत्य की प्रमुखता वास्तविक संख्याओं के सेट (गणित) की प्रमुखता या आकार है। , जिसे कभी-कभी सातत्य (सेट सिद्धांत) कहा जाता है। यह अनंत सेट प्रमुख संख्या है एवं इसके द्वारा (लोअरकेस भंग सी ) या निरूपित किया जाता है। [1] वास्तविक संख्याएँ प्राकृतिक संख्या से अधिक हैं , इसके अतिरिक्त, के सत्ता स्थापित के समान तत्वों की संख्या है। प्रतीकात्मक रूप से, यदि प्रमुखता एलेफ के रूप में दर्शाया गया है, सातत्य की प्रमुखता है।

यह 1874 के स्वयं कैंटर के पूर्व अनगिनत प्रमाण में जॉर्ज कैंटर द्वारा सिद्ध किया गया था, जो कि भिन्न-भिन्न अनंतताओं के उनके महत्वपूर्ण अध्ययन का भाग था। असमानता को पश्चात 1891 में उनके कैंटर के विकर्ण नियम में एवं अधिक सरलता से कहा गया था। कैंटर ने विशेषण कार्यों के संदर्भ में प्रमुखता को परिभाषित किया। दो सेटों में समान प्रमुखता होती है, एवं यदि, उनके मध्य विशेषण फ़ंक्शन उपस्थित होता है।

किन्हीं भी दो वास्तविक संख्याओं a < b के मध्य, संभवता वे कितने भी निकट क्यों न हों, सदैव अपरिमित रूप से कई अन्य वास्तविक संख्याएँ होती हैं, एवं कैंटर ने दिखाया कि वे उतने ही हैं जितने कि वास्तविक संख्याओं के सम्पूर्ण सेट में निहित हैं। दूसरे शब्दों में, विवृत अंतराल (ए, बी) के साथ समतुल्य है यह कई अन्य अनंत सेटों के लिए भी उत्तम है, जैसे कि कोई भी n आयामी यूक्लिडियन अंतरिक्ष (अंतरिक्ष भरने वक्र देखें)। वह है,

सबसे अल्प अनंत प्रमुख संख्या है, दूसरा सबसे अल्प है । सातत्य परिकल्पना, जो प्रभुत्व करती है कि ऐसे कोई सेट नहीं हैं जिनकी प्रमुखता जटिलता से मध्य में हो एवं , अर्थात कि .[2] एवं इस परिकल्पना की सत्यता या असत्यता अनिर्णीत है और पसंद के स्वयंसिद्ध (जेडएफसी) के साथ व्यापक रूप से उपयोग किए गए ज़र्मेलो-फ्रेंकेल सेट सिद्धांत के अंदर सिद्ध नहीं किया जा सकता है।

गुण

असंख्य

जॉर्ज कैंटर ने अनंत सेटों के आकार की तुलना करने के लिए प्रमुखता की अवधारणा प्रस्तुत की। उन्होंने प्रसिद्ध रूप से दिखाया कि वास्तविक संख्याओं का समुच्चय असंख्य अनंत है। वह है , प्राकृतिक संख्या की प्रमुखता से जटिलता से अधिक है।

व्यवहार में, इसका अर्थ है कि पूर्णांकों की तुलना में वास्तव में अधिक वास्तविक संख्याएँ हैं। कैंटर ने इस कथन को कई भिन्न-भिन्न प्रविधियों से सिद्ध किया। इस विषय पर अधिक जानकारी के लिए, कैंटर का प्रथम असंख्य प्रमाण एवं कैंटर का विकर्ण नियम देखें।

प्रमुख समानता

कैंटर के प्रमेय को प्रमाणित करने के लिए कैंटर के विकर्ण नियम की भिन्नता का उपयोग किया जा सकता है, जिसमें कहा गया है कि किसी भी सेट की प्रमुखता उसके पावर सेट की तुलना में जटिलता से कम है। वह , है। वास्तव में, कोई दिखा सकता है, कि प्रमुखता के समान है। निम्नलिखितनुसार:

  1. मानचित्र को परिभाषित करें वास्तविक से परिमेय के घात समुच्चय तक, , प्रत्येक वास्तविक संख्या भेजकर सेट पर से कम या उसके समान सभी परिमेय क्योंकि तर्कसंगत घना सेट हैं, यह मानचित्र विशेषण फलन है, एवं क्योंकि परिमेय गणनीय हैं, हमारे पास वह है।
  2. होने में सेट में मूल्यों के साथ अनंत अनुक्रम का सेट होता है, इस सेट में प्रमुखता है (द्विआधारी अनुक्रमों के सेट के मध्य प्राकृतिक आपत्ति एवं संकेतक फ़ंक्शन द्वारा दिया गया है)। अब, ऐसे प्रत्येक क्रम से जुड़ें इकाई अंतराल में अद्वितीय वास्तविक संख्या त्रैमासिक अंक प्रणाली के साथ-अंकों द्वारा दिया गया विस्तार , अर्थात , भिन्नात्मक बिंदु के पश्चात -वाँ अंक है। आधार के संबंध में होता है। . इस मानचित्र की छवि को कैंटर सेट कहा जाता है। यह देखना कठिन नहीं है कि यह नक्शा अन्तक्षेपण है, अंक 1 के अंक से बचने के लिए उनके टर्नरी विस्तार में, इस तथ्य से उत्पन्न संघर्ष से बचते हैं कि वास्तविक संख्या का त्रि-विस्तार अद्वितीय नहीं है। हमारे पास वह है।

कैंटर-बर्नस्टीन-श्रोएडर प्रमेय द्वारा हम यह निष्कर्ष निकालते हैं।

प्रमुख समानता प्रमुख अंकगणित का उपयोग करके प्रदर्शित किया जा सकता है।

प्रमुख अंकगणित के नियमों का उपयोग करके, यह भी दिखाया जा सकता है।

जहाँ n कोई परिमित प्रमुख ≥ 2 है, और

जहाँ R के पावर सेट की प्रमुखता एवं है।

𝔠 = 2א‎0 के लिए वैकल्पिक व्याख्या

प्रत्येक वास्तविक संख्या का कम से कम अनंत दशमलव प्रसार होता है। उदाहरण के लिए,

1/2 = 0.50000...
1/3 = 0.33333...
π = 3.14159....

(यह पूर्व दो उदाहरणों के जैसे विस्तार दोहराने की स्थिति में भी सत्य है।)

किसी भी स्थिति में, अंकों की संख्या गणनीय सेट है, क्योंकि उन्हें प्राकृतिक संख्याओं के सेट के साथ पत्राचार में रखा जा सकता है। यह π के पूर्व, सौवें, या दस लाखवें अंक के विषय में कथन करने के लिए सचेत बनाता है। चूंकि प्राकृतिक संख्याओं में प्रमुखता होती है, इसके विस्तार में अंक प्रत्येक वास्तविक संख्या में है।

चूँकि प्रत्येक वास्तविक संख्या को पूर्णांक भाग एवं दशमलव अंश में तोड़ा जा सकता है, हम प्राप्त करते हैं।

जहां हमने इस तथ्य का उपयोग किया

दूसरी ओर, यदि मैप करते को हैं एवं विचार करें कि केवल 3 या 7 वाले दशमलव अंश वास्तविक संख्याओं का केवल भाग हैं, तो हम प्राप्त करते हैं।

एवं इस प्रकार

बेथ संख्या

बेथ संख्याओं एवं के क्रम को सेटिंग द्वारा परिभाषित किया गया है, इसलिए दूसरा बेथ नंबर है, बेथ-वन:

तीसरी बेथ संख्या, बेथ-टू, के पावर सेट की प्रमुखता है (अर्थात वास्तविक रेखा के सभी उपसमुच्चयों का समुच्चय)।

सतत परिकल्पना

प्रसिद्ध सातत्य परिकल्पना का प्रभुत्व है, कि दूसरा एलेफ संख्या भी है, [2]दूसरे शब्दों में, सातत्य परिकल्पना कहती है कि कोई समुच्चय नहीं है एवं जिनकी प्रमुखता जटिलता से मध्य में है।

यह कथन अब कर्ट गोडेल एवं पॉल कोहेन द्वारा दिखाए गए सदृश के स्वयंसिद्ध (जेडएफसी) के साथ जर्मेलो-फ्रेंकेल सेट सिद्धांत के सिद्धांतों से स्वतंत्र होने के लिए जाना जाता है।[3][4][5] अर्थात्, परिकल्पना एवं उसका निषेध दोनों ही इन स्वयंसिद्धों के अनुरूप हैं। वास्तव में, प्रत्येक अशून्य प्राकृतिक संख्या n के लिए, समानता = ZFC से स्वतंत्र है (केस निरंतर परिकल्पना होने के सम्बन्ध में)। अधिकांश अन्य अलेफों के लिए भी यही सत्य है, चूंकि कुछ स्थितियो में, कोनिग के प्रमेय (सेट सिद्धांत) द्वारा समानता से अस्वीकृति किया जा सकता है। ) विशेष रूप से या दोनो में से हो सकता है, जहाँ प्रथम असंख्य क्रमसूचक है, इसलिए यह या तो उत्तराधिकारी प्रमुख या सीमा प्रमुख हो सकता है, एवं या तो नियमित प्रमुख या एकवचन प्रमुख हो सकता है।

सातत्य की प्रमुखता के साथ सेट करता है।

गणित में अध्ययन किए गए बहुत से सेटों में प्रमुखता समान होती है। कुछ सामान्य उदाहरण निम्नलिखित हैं:

  • वास्तविक संख्या
  • कोई (नॉनडीजेनरेट) संवृत या विवृत अंतराल (such as the जैसे इकाई अंतराल हैI
  • तर्कहीन संख्या s
  • अनुवांशिक संख्या

    पारलौकिक संख्याएँ हम ध्यान देते हैं कि वास्तविक बीजगणितीय संख्याओं का समुच्चय अनगिनत रूप से अनंत है (प्रत्येक सूत्र को उसकी गोडेल संख्या निर्दिष्ट करें।) इसलिए वास्तविक बीजगणितीय संख्याओं की ℵ 0 प्रमुखता है,

    इसके अतिरिक्त, वास्तविक बीजगणितीय संख्याएँ और वास्तविक पारलौकिक संख्याएँ असंयुक्त समुच्चय हैं जिनका संघ {R} है,
      
    इस प्रकार, की प्रमुखता के पश्चात
      
    {R} है
      
    {c}, वास्तविक पारलौकिक संख्याओं की प्रमुखता है
      
    

    - ℵ 0 =

    जटिल पारलौकिक संख्याओं के लिए समान परिणाम प्राप्त होता है, जब हम यह प्रमाणित कर देते हैंI
  • कैंटर सेट
  • यूक्लिडियन अंतरिक्ष [6]
  • the complex numbers We note that, per Cantor's proof of the cardinality of Euclidean space,[6] . By definition, any can be uniquely expressed as for some . We therefore define the bijection
  • प्राकृतिक संख्याओं का पावर सेट {P} {N}(प्राकृतिक संख्याओं के सभी सबसेट का सेट)
  • पूर्णांकों के अनुक्रम का समुच्चय (अर्थात सभी फलन {N} प्रायः {Z} के रूप में दर्शाए जाते हैं,
  • वास्तविक संख्याओं के अनुक्रमों का समुच्चय
  • सभी सतत कार्यों का सेट to
  • यूक्लिडियन टोपोलॉजी पर (अर्थात सभी का सेट ओपन सेट )
  • बोरेल बीजगणित σ-बीजगणित पर (अर्थात सभी बोरेल सेट का सेट).

अधिक प्रमुखता के साथ सेट

से अधिक प्रमुखता के साथ सेट करता है शामिल करना:

  • के सभी उपसमूहों का समुच्चय (यानी, पावर सेट )
  • द सेट पॉवर सेट#फंक्शन के रूप में सबसेट को प्रस्तुत करना|2वास्तविक के सबसेट पर परिभाषित संकेतक कार्यों का आर (सेट के लिए समरूप है - संकेतक फ़ंक्शन शामिल करने के लिए प्रत्येक सबसेट के तत्वों को चुनता है)
  • सेट से सभी कार्यों की को
  • द लेबेस्ग्यू उपाय|लेबेस्गुए σ-बीजगणित का , यानी, सभी Lebesgue मापने योग्य सेट का सेट .
  • सभी Lebesgue इंटीग्रेशन का सेट|Lebesgue-integrable function from को
  • सभी मापने योग्य कार्यों का सेट| लेबेस्ग्यू-मापने योग्य कार्यों से को
  • स्टोन-चेक का कॉम्पेक्टिफिकेशन , एवं
  • संमिश्र संख्याओं के (विच्छेद) क्षेत्र के सभी स्वाकारणों का समुच्चय।

इन सभी में प्रमुखता है (बेथ संख्या # बेथ दो)।

संदर्भ

  1. "Transfinite number | mathematics". Encyclopedia Britannica (in English). Retrieved 2020-08-12.
  2. 2.0 2.1 Weisstein, Eric W. "सातत्य". mathworld.wolfram.com (in English). Retrieved 2020-08-12.
  3. Gödel, Kurt (1940-12-31). Consistency of the Continuum Hypothesis. (AM-3). doi:10.1515/9781400881635. ISBN 9781400881635.
  4. Cohen, Paul J. (December 1963). "सातत्य परिकल्पना की स्वतंत्रता". Proceedings of the National Academy of Sciences. 50 (6): 1143–1148. Bibcode:1963PNAS...50.1143C. doi:10.1073/pnas.50.6.1143. ISSN 0027-8424. PMC 221287. PMID 16578557.
  5. Cohen, Paul J. (January 1964). "सातत्य परिकल्पना की स्वतंत्रता, द्वितीय". Proceedings of the National Academy of Sciences. 51 (1): 105–110. Bibcode:1964PNAS...51..105C. doi:10.1073/pnas.51.1.105. ISSN 0027-8424. PMC 300611. PMID 16591132.
  6. 6.0 6.1 Was Cantor Surprised?, Fernando Q. Gouvêa, American Mathematical Monthly, March 2011.


ग्रन्थसूची

This article incorporates material from cardinality of the continuum on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.