अबाध क्रम प्रमुखता (कार्दिनलिटी ऑफ़ दी कॉन्टीनुम): Difference between revisions
No edit summary |
No edit summary |
||
Line 96: | Line 96: | ||
| [[कैंटर समुच्चय]] | | [[कैंटर समुच्चय]] | ||
|[[यूक्लिडियन अंतरिक्ष]] <math>\mathbb{R}^n</math><ref name=Gouvea>[http://www.maa.org/sites/default/files/pdf/pubs/AMM-March11_Cantor.pdf Was Cantor Surprised?], [[Fernando Q. Gouvêa]], ''[[American Mathematical Monthly]]'', March 2011.</ref> | |[[यूक्लिडियन अंतरिक्ष]] <math>\mathbb{R}^n</math><ref name=Gouvea>[http://www.maa.org/sites/default/files/pdf/pubs/AMM-March11_Cantor.pdf Was Cantor Surprised?], [[Fernando Q. Gouvêa]], ''[[American Mathematical Monthly]]'', March 2011.</ref> | ||
| [[जटिल संख्या]] <math>\mathbb{C}</math> | |[[जटिल संख्या]] <math>\mathbb{C}</math> | ||
हम नोट करते हैं, कि यूक्लिडियन अंतरिक्ष की प्रमुखता के कैंटर के प्रमाण के अनुसार,<ref name=Gouvea /> <math>\left\vert \mathbb{R}^2 \right\vert = \mathfrak c</math>. परिभाषा के अनुसार, कोई भी <math>c\in \mathbb{C}</math> के रूप में विशिष्ट रूप से व्यक्त किया जा सकता है <math>a + bi</math> कुछ के लिए <math>a,b \in \mathbb{R}</math>. इसलिए हम आपत्ति को परिभाषित करते हैं। | हम नोट करते हैं, कि यूक्लिडियन अंतरिक्ष की प्रमुखता के कैंटर के प्रमाण के अनुसार,<ref name=Gouvea /> <math>\left\vert \mathbb{R}^2 \right\vert = \mathfrak c</math>. परिभाषा के अनुसार, कोई भी <math>c\in \mathbb{C}</math> के रूप में विशिष्ट रूप से व्यक्त किया जा सकता है <math>a + bi</math> कुछ के लिए <math>a,b \in \mathbb{R}</math>. इसलिए हम आपत्ति को परिभाषित करते हैं। | ||
Line 105: | Line 105: | ||
|प्राकृतिक संख्याओं का पावर समुच्चय {P} {N}(प्राकृतिक संख्याओं के सभी उपसमुच्चय का समुच्चय) | |प्राकृतिक संख्याओं का पावर समुच्चय {P} {N}(प्राकृतिक संख्याओं के सभी उपसमुच्चय का समुच्चय) | ||
|पूर्णांकों के [[अनुक्रम]] का समुच्चय (अर्थात सभी फलन {N} प्रायः {Z} के रूप में दर्शाए जाते हैं,|वास्तविक संख्याओं के अनुक्रमों का समुच्चय <math>\mathbb {R}^\mathbb{N}</math> | |पूर्णांकों के [[अनुक्रम]] का समुच्चय (अर्थात सभी फलन {N} प्रायः {Z} के रूप में दर्शाए जाते हैं,|वास्तविक संख्याओं के अनुक्रमों का समुच्चय <math>\mathbb {R}^\mathbb{N}</math> | ||
|सभी [[निरंतर कार्य|सतत]] कार्यों का समुच्चय <math>\mathbb{R}</math> to <math>\mathbb{R}</math> | |सभी [[निरंतर कार्य|सतत]] कार्यों का समुच्चय <math>\mathbb{R}</math> to <math>\mathbb{R}</math> हैं। | ||
|[[यूक्लिडियन टोपोलॉजी]] पर<math>\mathbb{R}^n</math> (अर्थात सभी का समुच्चय [[ओपन समुच्चय]] <math>\mathbb{R}^n</math>) | |[[यूक्लिडियन टोपोलॉजी]] पर <math>\mathbb{R}^n</math> (अर्थात सभी का समुच्चय [[ओपन समुच्चय]] <math>\mathbb{R}^n</math>) | ||
|[[बोरेल बीजगणित σ-बीजगणित]] पर<math>\mathbb{R}</math> (अर्थात सभी [[बोरेल समुच्चय]] का समुच्चय<math>\mathbb{R}</math>) | |[[बोरेल बीजगणित σ-बीजगणित]] पर <math>\mathbb{R}</math> (अर्थात सभी [[बोरेल समुच्चय]] का समुच्चय<math>\mathbb{R}</math>) हैं। | ||
}} | }} | ||
Revision as of 15:50, 29 May 2023
समुच्चय सिद्धान्त में, सातत्य की प्रमुखता वास्तविक संख्याओं के समुच्चय (गणित) की प्रमुखता या आकार है। , जिसे कभी-कभी सातत्य (समुच्चय सिद्धांत) कहा जाता है। यह अनंत समुच्चय प्रमुख संख्या है एवं इसे (लोअरकेस भंग सी ) या द्वारा निरूपित किया जाता है। [1] वास्तविक संख्याएँ प्राकृतिक संख्या से अधिक हैं , इसके अतिरिक्त, के सत्ता स्थापित के समान तत्वों की संख्या है। प्रतीकात्मक रूप से, यदि प्रमुखता एलेफ के रूप में दर्शाया गया है, सातत्य की प्रमुखता है।
यह 1874 के स्वयं कैंटर के पूर्व अनगिनत प्रमाण में जॉर्ज कैंटर द्वारा सिद्ध किया गया था, जो कि भिन्न-भिन्न अनंतताओं के उनके महत्वपूर्ण अध्ययन का भाग था। असमानता को पश्चात 1891 में उनके कैंटर के विकर्ण नियम में एवं अधिक सरलता से कहा गया था। कैंटर ने विशेषण कार्यों के संदर्भ में प्रमुखता को परिभाषित किया। दो समुच्चयों में समान प्रमुखता होती है, एवं यदि, उनके मध्य विशेषण फलन उपस्थित होता है।
किन्हीं भी दो वास्तविक संख्याओं a < b के मध्य, संभवता वे कितने भी निकट क्यों न हों, सदैव अपरिमित रूप से कई अन्य वास्तविक संख्याएँ होती हैं, एवं कैंटर ने दिखाया कि वे उतने ही हैं जितने कि वास्तविक संख्याओं के सम्पूर्ण समुच्चय में निहित हैं। दूसरे शब्दों में, विवृत अंतराल (a,b) के साथ समतुल्य है यह कई अन्य अनंत समुच्चयों के लिए भी उत्तम है, जैसे कि कोई भी n आयामी यूक्लिडियन अंतरिक्ष (अंतरिक्ष भरने वक्र देखें)। वह है,
सबसे अल्प अनंत प्रमुख संख्या है, दूसरा सबसे अल्प है। सातत्य परिकल्पना, जो प्रभुत्व करती है कि ऐसे कोई समुच्चय नहीं हैं जिनकी प्रमुखता जटिलता से मध्य में हो एवं , अर्थात कि .[2] एवं इस परिकल्पना की सत्यता या असत्यता अनिर्णीत है और लोकप्रिय के स्वयंसिद्ध (जेडएफसी) के साथ व्यापक रूप से उपयोग किए गए ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत के अंदर सिद्ध नहीं किया जा सकता है।
गुण
असंख्य
जॉर्ज कैंटर ने अनंत समुच्चयों के आकार की तुलना करने के लिए प्रमुखता की अवधारणा प्रस्तुत की। उन्होंने प्रसिद्ध रूप से दिखाया कि वास्तविक संख्याओं का समुच्चय असंख्य अनंत है। जो प्राकृतिक संख्या की प्रमुखता से जटिलता से अधिक है।
व्यवहार में, इसका अर्थ है कि पूर्णांकों की तुलना में वास्तव में अधिक वास्तविक संख्याएँ हैं। कैंटर ने इस कथन को कई भिन्न-भिन्न प्रविधियों से सिद्ध किया। इस विषय पर अधिक जानकारी के लिए, कैंटर का प्रथम असंख्य प्रमाण एवं कैंटर का विकर्ण नियम देखें।
प्रमुख समानता
कैंटर के प्रमेय को प्रमाणित करने के लिए कैंटर के विकर्ण नियम की भिन्नता का उपयोग किया जा सकता है, जिसमें कहा गया है कि किसी भी समुच्चय की प्रमुखता उसके पावर समुच्चय की तुलना में जटिलता से कम है। वह , है। वास्तव में, कोई दिखा सकता है, कि प्रमुखता के समान है। निम्नलिखितनुसार:
- मानचित्र को परिभाषित करें वास्तविक से परिमेय के घात समुच्चय तक, , प्रत्येक वास्तविक संख्या भेजकर समुच्चय पर से कम या उसके समान सभी परिमेय क्योंकि तर्कसंगत घना समुच्चय हैं, यह मानचित्र विशेषण फलन है, एवं क्योंकि परिमेय गणनीय हैं, हमारे पास वह है।
- समुच्चय में मूल्यों के साथ अनंत अनुक्रम का समुच्चय होता है, इस समुच्चय में प्रमुखता है (द्विआधारी अनुक्रमों के समुच्चय के मध्य प्राकृतिक आपत्ति एवं संकेतक फलन द्वारा दिया गया है)। अब, ऐसे प्रत्येक क्रम से जुड़ें इकाई अंतराल में अद्वितीय वास्तविक संख्या त्रैमासिक अंक प्रणाली के साथ-अंकों द्वारा दिया गया विस्तार , अर्थात , भिन्नात्मक बिंदु के पश्चात -वाँ अंक है। आधार के संबंध में होता है। . इस मानचित्र की छवि को कैंटर समुच्चय कहा जाता है। यह देखना कठिन नहीं है कि यह मैप अन्तक्षेपण है, 1 के अंक से बचने के लिए उनके टर्नरी विस्तार में, इस तथ्य से उत्पन्न संघर्ष से बचते हैं कि वास्तविक संख्या का त्रि-विस्तार अद्वितीय नहीं है। हमारे पास वह है।
कैंटर-बर्नस्टीन-श्रोएडर प्रमेय द्वारा हम यह निष्कर्ष निकालते हैं।
प्रमुख समानता प्रमुख अंकगणित का उपयोग करके प्रदर्शित किया जा सकता है।
प्रमुख अंकगणित के नियमों का उपयोग करके, यह भी दिखाया जा सकता है।
जहाँ n कोई परिमित प्रमुख ≥ 2 है, और
जहाँ R के पावर समुच्चय की प्रमुखता एवं है।
𝔠 = 2א0 के लिए वैकल्पिक व्याख्या
प्रत्येक वास्तविक संख्या का कम से कम अनंत दशमलव का प्रसार होता है। उदाहरण के लिए,
(यह पूर्व दो उदाहरणों के जैसे विस्तार दोहराने की स्थिति में भी सत्य है।)
किसी भी स्थिति में, अंकों की संख्या गणनीय समुच्चय है, क्योंकि उन्हें प्राकृतिक संख्याओं के समुच्चय के साथ पत्राचार में रखा जा सकता है। यह π के पूर्व, सौवें, या दस लाखवें अंक के विषय में कथन करने के लिए सचेत बनाता है। चूंकि प्राकृतिक संख्याओं में प्रमुखता होती है, इसके विस्तार में अंक प्रत्येक वास्तविक संख्या में है।
चूँकि प्रत्येक वास्तविक संख्या को पूर्णांक भाग एवं दशमलव अंश में विभक्त किया जा सकता है, हम प्राप्त करते हैं।
जहां हमने इस तथ्य का उपयोग किया
दूसरी ओर, यदि मैप करते को हैं एवं विचार करें कि केवल 3 या 7 वाले दशमलव अंश वास्तविक संख्याओं का केवल भाग हैं, तो हम प्राप्त करते हैं।
एवं इस प्रकार
बेथ संख्या
बेथ संख्याओं एवं के क्रम को समुच्चयिंग द्वारा परिभाषित किया गया है, इसलिए दूसरा बेथ नंबर है, बेथ-वन:
तीसरी बेथ संख्या, बेथ-टू, के पावर समुच्चय की प्रमुखता है (अर्थात वास्तविक रेखा के सभी उपसमुच्चयों का समुच्चय)।
सतत परिकल्पना
प्रसिद्ध सातत्य परिकल्पना का प्रभुत्व है, कि दूसरा एलेफ संख्या भी है, [2]दूसरे शब्दों में, सातत्य परिकल्पना कहती है कि कोई समुच्चय नहीं है एवं जिनकी प्रमुखता जटिलता से मध्य में है।
यह कथन अब कर्ट गोडेल एवं पॉल कोहेन द्वारा दिखाए गए सदृश के स्वयंसिद्ध (जेडएफसी) के साथ जर्मेलो-फ्रेंकेल समुच्चय सिद्धांत के सिद्धांतों से स्वतंत्र होने के लिए जाना जाता है।[3][4][5] अर्थात्, परिकल्पना एवं उसका निषेध दोनों ही इन स्वयंसिद्धों के अनुरूप हैं। वास्तव में, प्रत्येक अशून्य प्राकृतिक संख्या n के लिए, समानता = ZFC से स्वतंत्र है (केस निरंतर परिकल्पना होने के सम्बन्ध में)। अधिकांश अन्य अलेफों के लिए भी यही सत्य है, चूंकि कुछ स्थितियो में, कोनिग के प्रमेय (समुच्चय सिद्धांत) द्वारा समानता से अस्वीकृति किया जा सकता है। ) विशेष रूप से या दोनो में से हो सकता है, जहाँ प्रथम असंख्य क्रमसूचक है, इसलिए यह या तो उत्तराधिकारी प्रमुख या सीमा प्रमुख हो सकता है, एवं या तो नियमित प्रमुख या एकवचन प्रमुख हो सकता है।
सातत्य की प्रमुखता के साथ समुच्चय करता है।
गणित में अध्ययन किए गए अधिक समुच्चयों में प्रमुखता समान होती है। कुछ सामान्य उदाहरण निम्नलिखित हैं:
- वास्तविक संख्या
- कोई (नॉनडीजेनरेट) संवृत या विवृत अंतराल (जैसे की जैसे इकाई अंतराल हैI
- तर्कहीन संख्या s
- अनुवांशिक संख्या
पारलौकिक संख्याएँ हम ध्यान देते हैं कि वास्तविक बीजगणितीय संख्याओं का समुच्चय अनगिनत रूप से अनंत है (प्रत्येक सूत्र को उसकी गोडेल संख्या निर्दिष्ट करें।) इसलिए वास्तविक बीजगणितीय संख्याओं की ℵ 0 प्रमुखता है, इसके अतिरिक्त, वास्तविक बीजगणितीय संख्याएँ और वास्तविक पारलौकिक संख्याएँ असंयुक्त समुच्चय हैं जिनका संघ {R} है,
इस प्रकार, की प्रमुखता के पश्चात
{R} है {c}, वास्तविक पारलौकिक संख्याओं की प्रमुखता है
- ℵ 0 =
जटिल पारलौकिक संख्याओं के लिए समान परिणाम प्राप्त होता है, जब हम यह प्रमाणित कर देते हैंI - कैंटर समुच्चय
- यूक्लिडियन अंतरिक्ष [6]
- जटिल संख्या
हम नोट करते हैं, कि यूक्लिडियन अंतरिक्ष की प्रमुखता के कैंटर के प्रमाण के अनुसार,[6] . परिभाषा के अनुसार, कोई भी के रूप में विशिष्ट रूप से व्यक्त किया जा सकता है कुछ के लिए . इसलिए हम आपत्ति को परिभाषित करते हैं।
- प्राकृतिक संख्याओं का पावर समुच्चय {P} {N}(प्राकृतिक संख्याओं के सभी उपसमुच्चय का समुच्चय)
- पूर्णांकों के अनुक्रम का समुच्चय (अर्थात सभी फलन {N} प्रायः {Z} के रूप में दर्शाए जाते हैं,
- वास्तविक संख्याओं के अनुक्रमों का समुच्चय
- सभी सतत कार्यों का समुच्चय to हैं।
- यूक्लिडियन टोपोलॉजी पर (अर्थात सभी का समुच्चय ओपन समुच्चय )
- बोरेल बीजगणित σ-बीजगणित पर (अर्थात सभी बोरेल समुच्चय का समुच्चय) हैं।
अधिक प्रमुखता के साथ समुच्चय
अधिक प्रमुखता के साथ समुच्चय करता है।
- के सभी उपसमूहों का समुच्चय (अर्थात, पावर समुच्चय )
- वास्तविक के सबसमुच्चय पर परिभाषित संकेतक कार्यों का समुच्चय (समुच्चय के लिए समरूप है, - संकेतक फलन सम्मिलित करने के लिए प्रत्येक सबसमुच्चय के तत्वों का चयन करता है)।
- समुच्चय से सभी कार्यों से से
- लेबेस्गुए σ-बीजगणित का , अर्थात, सभी लेबेस्गुए मापने योग्य समुच्चय का समुच्चय
- सभी लेबेस्गुए इंटीग्रेशन का समुच्चय से
- सभी मापने योग्य कार्य का समुच्चय से
- स्टोन-चेक का कॉम्पेक्टिफिकेशन , एवं
- संमिश्र संख्याओं के (विच्छेद) क्षेत्र के सभी स्वाकारणों का समुच्चय।
इन सभी में प्रमुखता है ।
संदर्भ
- ↑ "Transfinite number | mathematics". Encyclopedia Britannica (in English). Retrieved 2020-08-12.
- ↑ 2.0 2.1 Weisstein, Eric W. "सातत्य". mathworld.wolfram.com (in English). Retrieved 2020-08-12.
- ↑ Gödel, Kurt (1940-12-31). Consistency of the Continuum Hypothesis. (AM-3). doi:10.1515/9781400881635. ISBN 9781400881635.
- ↑ Cohen, Paul J. (December 1963). "सातत्य परिकल्पना की स्वतंत्रता". Proceedings of the National Academy of Sciences. 50 (6): 1143–1148. Bibcode:1963PNAS...50.1143C. doi:10.1073/pnas.50.6.1143. ISSN 0027-8424. PMC 221287. PMID 16578557.
- ↑ Cohen, Paul J. (January 1964). "सातत्य परिकल्पना की स्वतंत्रता, द्वितीय". Proceedings of the National Academy of Sciences. 51 (1): 105–110. Bibcode:1964PNAS...51..105C. doi:10.1073/pnas.51.1.105. ISSN 0027-8424. PMC 300611. PMID 16591132.
- ↑ 6.0 6.1 Was Cantor Surprised?, Fernando Q. Gouvêa, American Mathematical Monthly, March 2011.
ग्रन्थसूची
- Paul Halmos, Naive set theory. Princeton, NJ: D. Van Nostrand Company, 1960. Reprinted by Springer-Verlag, New York, 1974. ISBN 0-387-90092-6 (Springer-Verlag edition).
- Jech, Thomas, 2003. Set Theory: The Third Millennium Edition, Revised and Expanded. Springer. ISBN 3-540-44085-2.
- Kunen, Kenneth, 1980. Set Theory: An Introduction to Independence Proofs. Elsevier. ISBN 0-444-86839-9.
This article incorporates material from cardinality of the continuum on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.