क्रमिक अंकगणित: Difference between revisions
No edit summary |
No edit summary |
||
Line 82: | Line 82: | ||
उनमें से प्रत्येक अनुक्रम जैसे <math>\omega^{n_1} c_1 + \omega^{n_2} c_2 + \cdots + \omega^{n_k} c_k</math>, <math>\omega^\omega</math> से अल्प क्रमसूचक से युग्मित होता है और <math>\omega^\omega</math> छोटे क्रमसूचकों का सर्वोच्च है। | उनमें से प्रत्येक अनुक्रम जैसे <math>\omega^{n_1} c_1 + \omega^{n_2} c_2 + \cdots + \omega^{n_k} c_k</math>, <math>\omega^\omega</math> से अल्प क्रमसूचक से युग्मित होता है और <math>\omega^\omega</math> छोटे क्रमसूचकों का सर्वोच्च है। | ||
इस समुच्चय पर लेक्सिकोोग्राफ़िकल ऑर्डर उत्तम क्रम है जो दशमलव अंकन में लिखी गई प्राकृतिक संख्याओं के क्रम के समान होता है, | इस समुच्चय पर लेक्सिकोोग्राफ़िकल ऑर्डर उत्तम क्रम है जो दशमलव अंकन में लिखी गई प्राकृतिक संख्याओं के क्रम के समान होता है, अतिरिक्त इसके कि अंकों की स्थिति को परिवर्तित कर दिया जाए और केवल 0-9 अंकों के साथ आर्बिटरी प्राकृतिक संख्याएँ हैं: | ||
:(0,0,0,...) <(1,0,0,0,...) <(2,0,0,0,...) <... < | :(0,0,0,...) <(1,0,0,0,...) <(2,0,0,0,...) <... < | ||
Line 91: | Line 91: | ||
:: <... | :: <... | ||
सामान्यतः, ''α<sup>β</sup>'' प्राप्त करने के लिए क्रमसूचक α को दूसरे क्रमसूचक β की घात तक विस्तारित किया जा सकता है। | |||
हम देखतें है | हम देखतें है, | ||
* 1<sup>ω</sup> = 1, | * 1<sup>ω</sup> = 1, | ||
* 2<sup>ω</sup> = ω, | * 2<sup>ω</sup> = ω, | ||
* 2<sup>ω+1</sup> = ω·2 = ω+ω. | * 2<sup>ω+1</sup> = ω·2 = ω+ω. | ||
चूँकि समान संकेतन का उपयोग क्रमसूचक घातांक और [[कार्डिनल घातांक]] के लिए किया जाता है, क्रमसूचक घातांक कार्डिनल घातांक से अत्याधिक भिन्न होता है। उदाहरण के लिए, क्रमसूचक घातांक के साथ <math>2^\omega = \omega</math>, किन्तु <math>\aleph_0</math> के लिए (एलेफ संख्याओं की [[प्रमुखता]] <math>\omega</math>), <math>2^{\aleph_0} > \aleph_0</math> है। यहाँ, <math>2^{\aleph_0}</math> प्राकृतिक संख्याओं के समुच्चय से लेकर दो तत्वों वाले समुच्चय तक सभी फक्शंस के सेट की प्रमुखता है। (यह प्राकृतिक संख्याओं के समुच्चय के [[ सत्ता स्थापित | पावरसेट]] की कार्डिनैलिटी है और <math>\mathfrak c</math> [[सातत्य की प्रमुखता|कॉन्टिनम की कार्डिनैलिटी]] के समान है।) क्रमसूचक घातांक को कार्डिनल घातांक के साथ भ्रमित करने से बचने के लिए, क्रमसूचक प्रतीकों (जैसे ω) का उपयोग कर सकता है और उसके पश्चात कार्डिनल प्रतीकों (जैसे <math>\aleph_0</math>) का उपयोग कर सकता है। | |||
=== गुण === | === गुण === | ||
*α<sup>0</sup> = | *α<sup>0</sup> = 1 | ||
*यदि 0 <α, | *यदि 0 <α, तब 0<sup>α</sup> = 0 | ||
*1<sup>α</sup> = | *1<sup>α</sup> = 1 | ||
* | *''α''<sup>1</sup> = ''α'' | ||
* | *''α<sup>β</sup>''·''α<sup>γ</sup>'' = ''α<sup>β</sup>'' <sup>+ ''γ''</sup> | ||
* ( | * (''α<sup>β</sup>'')<sup>''γ''</sup> = ''α<sup>β</sup>''<sup>·''γ''</sup> | ||
* | *α, β, और γ हैं जिसके लिए (α·β)γ ≠ αγ·βγ हैं। उदाहरण के लिए, (ω·2)<sup>2</sup> = ω·2·ω·2 = ω<sup>2</sup>·2 ≠ ω<sup>2</sup>·4 | ||
* | *क्रमसूचक घातांक जटिलता से विस्तारित हो रहा है और उचित तर्क में निरंतर है: यदि γ> 1 और α < β, तब γα < γβ है। | ||
*यदि α <β, | *यदि α < β, तब αγ ≤ βγ, उदाहरण के लिए ध्यान दें कि 2 < 3 और 2ω = 3ω = ω है। | ||
*यदि α > 1 और | *यदि α> 1 और αβ = αγ, तब β = γ है। यदि α = 1 या α = 0 तब यह स्थिति नहीं है। | ||
* सभी α और β के लिए, यदि β > 1 और α > 0 तो अद्वितीय γ, δ, और ρ | * सभी α और β के लिए, यदि β > 1 और α > 0 तो अद्वितीय γ, δ, और ρ उपस्थित हैं जैसे कि α = β<sup>γ</sup>·δ + ρ ऐसा कि 0 < δ < β और ρ < β<sup>जी</सुप>. | ||
[[अर्न्स्ट जैकबस्टल]] ने दिखाया कि α का एकमात्र समाधान<sup>β</sup> = β<sup>α</sup> α≤β के साथ α=β, या α=2 और β=4 द्वारा दिया जाता है, या α कोई सीमा क्रमसूचक है और β=εα जहां ε एक एप्सिलॉन संख्या (गणित) है|ε-संख्या इससे बड़ी है एक।<ref>Ernst Jacobsthal, Vertauschbarkeit transfiniter Ordnungszahlen, Mathematische Annalen, Bd 64 (1907), 475-488. Available [http://gdz.sub.uni-goettingen.de/pdfcache/PPN235181684_0064/PPN235181684_0064___LOG_0050.pdf here]</ref> | [[अर्न्स्ट जैकबस्टल]] ने दिखाया कि α का एकमात्र समाधान<sup>β</sup> = β<sup>α</sup> α≤β के साथ α=β, या α=2 और β=4 द्वारा दिया जाता है, या α कोई सीमा क्रमसूचक है और β=εα जहां ε एक एप्सिलॉन संख्या (गणित) है|ε-संख्या इससे बड़ी है एक।<ref>Ernst Jacobsthal, Vertauschbarkeit transfiniter Ordnungszahlen, Mathematische Annalen, Bd 64 (1907), 475-488. Available [http://gdz.sub.uni-goettingen.de/pdfcache/PPN235181684_0064/PPN235181684_0064___LOG_0050.pdf here]</ref> |
Revision as of 22:52, 24 May 2023
समुच्चय सिद्धांत के गणितीय क्षेत्र में, साधारण अंकगणित क्रमिक संख्याओं के योग, गुणन और घातांक पर तीन सामान्य संक्रियाओं का वर्णन करता है। प्रत्येक को अनिवार्य रूप से दो भिन्न-भिन्न विधियों द्वारा परिभाषित किया जा सकता है, या तो ट्रांसफिनिट रिकर्सन का उपयोग करके अथवा स्पष्ट सुव्यवस्थित सेट का निर्माण करके जो ऑपरेशन के परिणाम का प्रतिनिधित्व करता है। कैंटर नॉर्मल फॉर्म क्रमसूचक संख्याओं को लिखने की मानकीकृत विधि प्रदान करता है। इन सामान्य क्रमसूचक संक्रियाओं के अतिरिक्त, क्रमसूचकों का "प्राकृतिक" अंकगणित और निम्बर संक्रियाएँ भी होती हैं।
जोड़
दो भिन्न-भिन्न सुव्यवस्थित समुच्चय S और T का संघ (सेट सिद्धांत) व्यवस्थित हो सकता है। उस संघ का क्रम-प्रकार क्रमसूचक है जो S और T के क्रम-प्रकारों को जोड़ने से उत्पन्न होता है। यदि दो सुव्यवस्थित समुच्चय पूर्व से ही असंयुक्त नहीं हैं तो उन्हें क्रम-समरूपी असंयुक्त समुच्चय द्वारा प्रतिस्थापित किया जा सकता है, उदाहरण के लिए, S को {0} × S से और T को {1} × T से प्रतिस्थापित किया गया है। इस प्रकार सुव्यवस्थित सेट S को सुव्यवस्थित सेट T के बाईं ओर अंकित किया जाता है, जिसका अर्थ है कि S T पर ऑर्डर परिभाषित किया गया है जिसमें S का प्रत्येक तत्व T के प्रत्येक तत्व से छोटा है। समुच्चय (गणित) S और T स्वयं उनके निकट उपस्थित पूर्व क्रम को बनाए रखते हैं।
योग α + β की परिभाषा, β पर ट्रांसफिनिट रिकर्सन द्वारा प्राप्त की जा सकती है:
- α + 0 = α
- α + S(β) = S(α + β), जहां S उत्तराधिकारी क्रमसूचक फंक्शन को दर्शाता है।
- जब β सीमा क्रमसूचक है।
प्राकृतिक संख्याओं पर क्रमिक जोड़ मानक जोड़ के समान होता है। प्रथम ट्रांसफ़िनिटी ऑर्डिनल ω सभी प्राकृतिक संख्याओं का समुच्चय है, जिसके पश्चात ω + 1, ω + 2, आदि हैं। क्रमसूचक ω + ω, प्राकृतिक संख्याओं के सामान्य क्रम में दो प्रतियों द्वारा प्राप्त किया जाता है और द्वितीय प्रति पूर्ण रूप से प्रथम प्रति के दाईं ओर होती है। द्वितीय प्रति के लिए 0' <1' < 2' <... अंकित करने पर ω + ω, 0 <1 <2 <3 <... <0' <1' <2' <... जैसा दिखता है।
यह ω से भिन्न होता है क्योंकि ω में केवल 0 का प्रत्यक्ष पूर्ववर्ती नहीं होता है यद्यपि ω + ω में दो तत्वों 0 और 0' का प्रत्यक्ष पूर्ववर्ती नहीं होता है।
गुण
साधारण जोड़ सामान्य रूप से क्रमविनिमेय नहीं है। उदाहरण के लिए 3 + ω = ω है, चूँकि 3 + ω के लिए क्रम संबंध 0 < 1 < 2 < 0 '< 1' < 2 ' <... होता है, जिसे ω में रीलेबल किया जा सकता है। इसके विपरीत ω + 3, ω के समान नहीं है क्योंकि क्रम संबंध 0 < 1 < 2 < ... < 0' < 1' < 2' में सबसे बड़ा तत्व (अर्थात्, 2') और ω नहीं है (ω और ω + 3 इक्विपोटेंट हैं, किन्तु क्रम-समरूपी नहीं हैं)।
साधारण जोड़ अभी भी साहचर्य है; जिसे निम्नलिखित उदाहरण द्वारा अवलोकित किया जा सकता है- (ω + 4) + ω = ω + (4 + ω) = ω + ω
जोड़ जटिलता से विस्तारित हो रहा है और उचित तर्क में निरंतर है-
किन्तु समान संबंध बाएँ तर्क के लिए मान्य नहीं है; इसके अतिरिक्त हमारे निकट है-
यदि α + β = α + γ और β = γ है, तो क्रमसूचक योग बायाँ-निरस्त होता है। इसके अतिरिक्त, कोई ऑर्डिनल β ≤ α के लिए बाएं डिवीजन को परिभाषित कर सकता है: अद्वितीय γ उपस्थित है जैसे α = β + γ। दूसरी ओर, उचित निरस्तीकरण कार्य नहीं होता है-
- किन्तु है
β ≤ α के लिए उचित घटाव कार्य नहीं करता उदाहरण के लिए, तब γ उपस्थित नहीं होता है जैसे कि γ + 42 = ω
यदि α से अल्प क्रमांक योग के अंतर्गत संवृत और 0 होते हैं तो α को कभी-कभी γ-संख्या कहा जाता है (जोड़ने योग्य अविभाज्य क्रमसूचक देखें)। ये पूर्णतः ωβ रूप के क्रमसूचक हैं।
गुणन
कार्टेशियन गुणन S×T, दो सुव्यवस्थित सेट S और T के लेक्सिकोग्राफिक ऑर्डर विधि द्वारा उचित रूप से व्यवस्थित किये जा सकते है जो कम से कम महत्वपूर्ण स्थिति को प्रथम रखता है। प्रभावी रूप से, T के प्रत्येक तत्व को S की असंयुक्त प्रति द्वारा प्रतिस्थापित कर दिया जाता है। कार्टेशियन गुणन का क्रम-प्रकार क्रमसूचक है जो S और T के क्रम-प्रकारों को गुणा करने से उत्पन्न होता है।
गुणन की परिभाषा आगमनात्मक रूप से भी दी जा सकती है (निम्नलिखित प्रेरण β पर है)-
- α·0 = 0.
- α · S(β) = (α · β) + α, उत्तराधिकारी क्रमसूचक S(β) के लिए है।
- , जब β सीमा क्रमसूचक है।
उदाहरण के रूप में, यहाँ ω·2 के लिए क्रम संबंध है-
- 00 < 10 < 20 < 30 < ... < 01 < 11 < 21 < 31 <...,
जिसका क्रम प्रकार ω + ω के समान है। इसके विपरीत, 2·ω इस प्रकार दिखता है-
- 00 < 10 < 01 < 11 < 02 < 12 < 03 < 13 <...
और पुनः लेबल लगाने के पश्चात, यह पूर्णतः ω जैसा दिखता है।
इस प्रकार, ω·2 = ω+ω ≠ ω = 2·ω, यह दर्शाता है कि क्रमांकों का गुणन सामान्य क्रमविनिमेय नहीं है।
प्राकृतिक संख्याओं पर पुनः क्रमसूचक गुणन मानक गुणन के समान है।
गुण
α·0 = 0·α = 0, और शून्य-उत्पाद गुण α·β = 0 α = 0 या β = 0 धारण करता है। क्रमसूचक 1, गुणक प्रमाण α·1 = 1·α = α है। गुणन संबद्ध (α·β)·γ = α·(β·γ) है। गुणन जटिलता से विस्तारित हो रहा है और उचित तर्क में निरंतर (α < β और γ > 0) γ·α < γ·β है। बाएं तर्क में गुणन जटिलता से विस्तारित नहीं हो रहा है, उदाहरण के लिए, 1 < 2 किन्तु 1·ω = 2·ω = ω है। चूँकि, यह विस्तारित हो रहा है अर्थात α ≤ β α·γ ≤ β·γ.
क्रमसूचकों का गुणन सामान्य क्रमविनिमेय नहीं है। विशेष रूप से, 1 से अधिक प्राकृतिक संख्या कभी भी किसी भी अनंत क्रमसूचक के साथ नहीं चलती है और यदि αm = βn है तो कुछ सकारात्मक प्राकृतिक संख्या m और n के लिए दो अनंत क्रमसूचक α, β के साथ चलती है। संबंध α, β के साथ संचार करता है, 1 से अधिक क्रमांक पर तुल्यता संबंध है, और सभी तुल्यता वर्ग अनगिनत रूप से अनंत हैं।
वितरणता, α(β + γ) = αβ + αγ में बाईं ओर होती है। चूँकि, दाईं ओर वितरण नियम (β + γ)α = βα+γα सामान्यतः सत्य नहीं है: (1 + 1)·ω = 2·ω = ω यद्यपि 1·ω + 1·ω = ω+ω, जो भिन्न है। यदि α > 0 और α·β = α·γ हैं तो β = γ होगा, यह बायां निरस्तीकरण नियम है। उचित निरस्तीकरण कार्य नहीं करता है, उदाहरण के लिए 1·ω = 2·ω = ω, किन्तु 1 और 2 भिन्न हैं। शेष गुण के साथ बाएँ विभाजन के लिए α और β मान्य है यदि β> 0, तब γ और δ अद्वितीय हैं जैसे कि α = β·γ + δ और δ < β, उचित विभाजन कार्य नहीं करते हैं: ऐसा α नहीं है जैसे कि α·ω ≤ ωω ≤ (α + 1)·ω.
क्रमसूचक संख्याएँ बाएँ निकट-सेमीरिंग बनाती हैं, किन्तु वलय (बीजगणित) नहीं बनाती हैं। इसलिए ऑर्डिनल्स यूक्लिडियन डोमेन नहीं हैं, क्योंकि वे वलय भी नहीं हैं – इसके अतिरिक्त, यूक्लिडियन मानदंड बाएं डिवीजन का उपयोग करके क्रमिक-महत्वपूर्ण होता है।
δ-संख्या (गुणात्मक रूप से अविघटनीय क्रमसूचक देखें) 1 से बड़ी ऑर्डिनल β है जैसे कि αβ=β, जब 0 < α < β होता है। इनमें क्रमसूचक 2 और β = ωωγ रूप के क्रमांक सम्मिलित हैं।
घातांक
क्रम प्रकार के माध्यम से परिभाषा को सबसे सरलता से वॉन न्यूमैन की ऑर्डिनल परिभाषा का उपयोग करके सभी छोटे क्रमसूचकों के सेट के रूप में अध्यन्न किया गया है। तत्पश्चात, क्रम प्रकार αβ का सेट बनाने के लिए β से α तक सभी फंक्शन्स पर विचार करें जैसे कि डोमेन β के तत्वों की केवल 1 परिमित संख्या α के गैर शून्य तत्व के लिए मैप करती है (अनिवार्य रूप से, हम सीमित समर्थन (गणित) के साथ फंक्शन्स पर विचार करते हैं)। क्रम प्रथम अतिअल्प महत्वपूर्ण स्थिति के साथ लेक्सिकोग्राफ़िक है।
घातांक की परिभाषा भी आगमनात्मक रूप से प्राप्त की जा सकती है (निम्नलिखित प्रेरण β, घातांक पर है)-
- α0 = 1
- αS(β) = (αβ) · α, उत्तराधिकारी क्रमसूचक S(β) के लिए है।
- , जब β सीमा क्रमसूचक है।
परिमित घातांक के लिए क्रमसूचक घातांक की परिभाषा सरल है। यदि घातांक परिमित संख्या है, तो घात पुनरावृत्त गुणन का परिणाम है। उदाहरण के लिए, ω2 = ω·ω क्रमसूचक गुणन की संक्रिया का प्रयोग करें। ध्यान दें कि ω·ω को 2 = {0,1} से ω = {0,1,2,...} तक के फंक्शन्स के सेट का उपयोग करके परिभाषित किया जा सकता है, महत्वपूर्ण स्थिति के साथ लेक्सिकोग्राफ़िक क्रम है-
- (0,0) <(1,0) <(2,0) <(3,0) <... <(0,1) <(1,1) <(2,1) <(3, 1) <... <(0,2) <(1,2) <(2,2) <...
यहाँ संक्षिप्तता के लिए, हमने फ़ंक्शन {(0,k), (1,m)} को क्रमित जोड़ी (k, m) से प्रतिस्थापित कर दिया है।
इसी प्रकार, किसी परिमित घातांक n के लिए, को n (डोमेन) से प्राकृतिक संख्याओं (कोडोमेन) तक के फंक्शन्स के सेट का उपयोग करके परिभाषित किया जा सकता है। इन फंक्शन्स को प्राकृतिक संख्याओं के n-टपल्स के रूप में संक्षिप्त किया जा सकता है।
किन्तु अपरिमित घातांकों के लिए, परिभाषा स्पष्ट नहीं हो सकती है। सीमा क्रमसूचक, जैसे ωω, सभी छोटे क्रमांकों का सर्वोच्च है। प्राकृतिक संख्याओं के सभी अनंत अनुक्रमों के समुच्चय का उपयोग करके ωω को परिभाषित करना स्वाभाविक प्रतीत हो सकता है। चूँकि, हम प्राप्त करते हैं कि इस समुच्चय पर निरपेक्षता (गणितीय तर्क) से परिभाषित क्रम सुव्यवस्थित नहीं है।[1] इस समस्या के समाधान के लिए परिभाषा समुच्चय को अनुक्रमों तक सीमित करती है जो केवल तर्कों की सीमित संख्या के लिए अशून्य होते हैं। यह स्वाभाविक रूप से आधार की परिमित घातों की सीमा के रूप में प्रेरित होता है (बीजगणित में प्रतिफल की अवधारणा के समान)। इसे अपरिमित संघ भी माना जा सकता है।
उनमें से प्रत्येक अनुक्रम जैसे , से अल्प क्रमसूचक से युग्मित होता है और छोटे क्रमसूचकों का सर्वोच्च है।
इस समुच्चय पर लेक्सिकोोग्राफ़िकल ऑर्डर उत्तम क्रम है जो दशमलव अंकन में लिखी गई प्राकृतिक संख्याओं के क्रम के समान होता है, अतिरिक्त इसके कि अंकों की स्थिति को परिवर्तित कर दिया जाए और केवल 0-9 अंकों के साथ आर्बिटरी प्राकृतिक संख्याएँ हैं:
- (0,0,0,...) <(1,0,0,0,...) <(2,0,0,0,...) <... <
- (0,1,0,0,0,...) <(1,1,0,0,0,...) <(2,1,0,0,0,...) <। .. <
- (0,2,0,0,0,...) <(1,2,0,0,0,...) <(2,2,0,0,0,...)
- <... <
- (0,0,1,0,0,0,...) <(1,0,1,0,0,0,...) <(2,0,1,0,0,0, ...)
- <...
सामान्यतः, αβ प्राप्त करने के लिए क्रमसूचक α को दूसरे क्रमसूचक β की घात तक विस्तारित किया जा सकता है।
हम देखतें है,
- 1ω = 1,
- 2ω = ω,
- 2ω+1 = ω·2 = ω+ω.
चूँकि समान संकेतन का उपयोग क्रमसूचक घातांक और कार्डिनल घातांक के लिए किया जाता है, क्रमसूचक घातांक कार्डिनल घातांक से अत्याधिक भिन्न होता है। उदाहरण के लिए, क्रमसूचक घातांक के साथ , किन्तु के लिए (एलेफ संख्याओं की प्रमुखता ), है। यहाँ, प्राकृतिक संख्याओं के समुच्चय से लेकर दो तत्वों वाले समुच्चय तक सभी फक्शंस के सेट की प्रमुखता है। (यह प्राकृतिक संख्याओं के समुच्चय के पावरसेट की कार्डिनैलिटी है और कॉन्टिनम की कार्डिनैलिटी के समान है।) क्रमसूचक घातांक को कार्डिनल घातांक के साथ भ्रमित करने से बचने के लिए, क्रमसूचक प्रतीकों (जैसे ω) का उपयोग कर सकता है और उसके पश्चात कार्डिनल प्रतीकों (जैसे ) का उपयोग कर सकता है।
गुण
- α0 = 1
- यदि 0 <α, तब 0α = 0
- 1α = 1
- α1 = α
- αβ·αγ = αβ + γ
- (αβ)γ = αβ·γ
- α, β, और γ हैं जिसके लिए (α·β)γ ≠ αγ·βγ हैं। उदाहरण के लिए, (ω·2)2 = ω·2·ω·2 = ω2·2 ≠ ω2·4
- क्रमसूचक घातांक जटिलता से विस्तारित हो रहा है और उचित तर्क में निरंतर है: यदि γ> 1 और α < β, तब γα < γβ है।
- यदि α < β, तब αγ ≤ βγ, उदाहरण के लिए ध्यान दें कि 2 < 3 और 2ω = 3ω = ω है।
- यदि α> 1 और αβ = αγ, तब β = γ है। यदि α = 1 या α = 0 तब यह स्थिति नहीं है।
- सभी α और β के लिए, यदि β > 1 और α > 0 तो अद्वितीय γ, δ, और ρ उपस्थित हैं जैसे कि α = βγ·δ + ρ ऐसा कि 0 < δ < β और ρ < βजी</सुप>.
अर्न्स्ट जैकबस्टल ने दिखाया कि α का एकमात्र समाधानβ = βα α≤β के साथ α=β, या α=2 और β=4 द्वारा दिया जाता है, या α कोई सीमा क्रमसूचक है और β=εα जहां ε एक एप्सिलॉन संख्या (गणित) है|ε-संख्या इससे बड़ी है एक।[2]
घातांक से परे
ऐसे क्रमिक संचालन होते हैं जो अनुक्रम, गुणन और घातांक द्वारा शुरू किए गए अनुक्रम को जारी रखते हैं, जिसमें टेट्रेशन, pentation और hexation के क्रमिक संस्करण शामिल हैं। वेब्लेन समारोह भी देखें।
कैंटर सामान्य रूप
प्रत्येक क्रमिक संख्या α को विशिष्ट रूप से लिखा जा सकता है , जहाँ k एक प्राकृत संख्या है, सकारात्मक पूर्णांक हैं, और क्रमवाचक संख्याएँ हैं। पतित मामला α = 0 तब होता है जब k = 0 होता है और कोई βs और cs नहीं होता है। Α के इस अपघटन को α का 'कैंटर सामान्य रूप' कहा जाता है, और इसे आधार-ω स्थितीय अंक प्रणाली माना जा सकता है। उच्चतम प्रतिपादक की उपाधि कहलाती है , और संतुष्ट करता है . समानता अगर और केवल अगर लागू होता है . उस स्थिति में कैंटर सामान्य रूप क्रमसूचक को छोटे वाले के संदर्भ में व्यक्त नहीं करता है; यह नीचे बताए अनुसार हो सकता है।
कैंटर नॉर्मल फॉर्म का एक मामूली बदलाव, जिसके साथ काम करना आमतौर पर थोड़ा आसान होता है, सभी नंबरों को सेट करना हैi 1 के बराबर और घातांकों को बराबर होने दें। दूसरे शब्दों में, प्रत्येक क्रमिक संख्या α को विशिष्ट रूप से लिखा जा सकता है , जहाँ k एक प्राकृतिक संख्या है, और क्रमवाचक संख्याएँ हैं।
कैंटर सामान्य रूप की एक और भिन्नता आधार δ विस्तार है, जहां ω को किसी भी क्रमसूचक δ>1 द्वारा प्रतिस्थापित किया जाता है, और संख्या ci सकारात्मक ordinals δ से कम हैं।
कैंटर सामान्य रूप हमें विशिष्ट रूप से अभिव्यक्त करने की अनुमति देता है - और ऑर्डर - ऑर्डिनल्स α जो कि प्राकृतिक संख्याओं से जोड़, गुणा और घातांक आधार के अंकगणितीय संचालन की एक सीमित संख्या से निर्मित होते हैं-: दूसरे शब्दों में, मानते हुए कैंटर सामान्य रूप में, हम घातांकों को भी व्यक्त कर सकते हैं कैंटर सामान्य रूप में, और के लिए समान धारणा बना रहा है जैसा कि α और इसी तरह पुनरावर्ती रूप से, हमें इन क्रमों के लिए अंकन की एक प्रणाली मिलती है (उदाहरण के लिए,
एक क्रमसूचक को दर्शाता है)।
क्रमसूचक ε0 (एप्सिलॉन संख्याएं (गणित)) कैंटर सामान्य रूप की परिमित-लंबाई अंकगणितीय अभिव्यक्तियों के क्रमिक मानों α का सेट है जो आनुवंशिक रूप से गैर-तुच्छ हैं जहां गैर-तुच्छ का अर्थ है β1<α जब 0<α। यह सबसे छोटा क्रमसूचक है जिसमें ω के संदर्भ में परिमित अंकगणितीय अभिव्यक्ति नहीं है, और सबसे छोटा क्रमिक है जैसे कि , यानी कैंटर नॉर्मल फॉर्म में एक्सपोनेंट खुद ऑर्डिनल से छोटा नहीं होता है। यह क्रम की सीमा है
क्रमसूचक ε0 अंकगणित में विभिन्न कारणों से महत्वपूर्ण है (अनिवार्य रूप से क्योंकि यह प्रथम-क्रम तर्क की प्रूफ-सैद्धांतिक शक्ति को मापता है | प्रथम-क्रम पियानो अभिगृहीत: अर्थात, पियानो के अभिगृहीत ε से कम किसी भी क्रमसूचक तक ट्रांसफिनिट इंडक्शन दिखा सकते हैं0 किन्तु ε तक नहीं0 अपने आप)।
कैंटर नॉर्मल फॉर्म भी हमें ऑर्डिनल्स के योग और उत्पादों की गणना करने की अनुमति देता है: योग की गणना करने के लिए, उदाहरण के लिए, किसी को केवल जानने की जरूरत है (में सूचीबद्ध गुणों को देखें) § Addition और § Multiplication) वह
अगर (अगर कोई वितरण नियम को बाईं ओर लागू कर सकता है और इसे इस रूप में फिर से लिख सकता है , और अगर अभिव्यक्ति पहले से ही कैंटर सामान्य रूप में है); और उत्पादों की गणना करने के लिए, आवश्यक तथ्य हैं कि कब कैंटर सामान्य रूप में है और , तब
और
यदि n एक शून्येतर प्राकृतिक संख्या है।
कैंटर सामान्य रूप में लिखे गए दो क्रमांकों की तुलना करने के लिए, पहले तुलना करें , तब , तब , तब , आदि .. पहले अंतर पर, जिस क्रमसूचक का बड़ा घटक होता है वह बड़ा क्रमसूचक होता है। यदि वे तब तक समान हैं जब तक एक दूसरे से पहले समाप्त नहीं हो जाता है, तो जो पहले समाप्त होता है वह छोटा होता है।
प्राइम्स में गुणनखंड
अर्न्स्ट जैकबस्टल ने दिखाया कि क्रमसूचक अद्वितीय गुणनखंड प्रमेय के एक रूप को संतुष्ट करते हैं: प्रत्येक गैर-शून्य क्रमसूचक को परिमित संख्याओं के गुणनफल के रूप में लिखा जा सकता है। प्राइम ऑर्डिनल्स में यह फैक्टराइजेशन सामान्य रूप से अद्वितीय नहीं है, किन्तु प्राइम्स में एक न्यूनतम फैक्टराइजेशन है जो परिमित प्रमुख कारकों के क्रम को बदलने के लिए अद्वितीय है। (Sierpiński 1958).
एक प्रमुख क्रमसूचक 1 से अधिक एक क्रमसूचक है जिसे दो छोटे क्रमसूचकों के उत्पाद के रूप में नहीं लिखा जा सकता है। कुछ प्रथम अभाज्य संख्याएँ हैं 2, 3, 5, ... , ω, ω+1, ω2+1, ओह3+1, ..., ओओह, ओहω+1, ωω+1+1, ... प्रधान क्रमसूचक तीन प्रकार के होते हैं:
- परिमित अभाज्य संख्याएँ 2, 3, 5, ...
- रूप के क्रमांक ωωα किसी भी क्रमिक α के लिए। ये प्रमुख अध्यादेश हैं जो सीमाएँ हैं, और Additively indecomposable ordinal#Multiplicatively_indecomposables हैं, transfinite ordinals जो गुणन के तहत बंद हैं।
- रूप के क्रमांक ωα+1 किसी भी क्रमिक α>0 के लिए। ये अनंत उत्तराधिकारी अभाज्य संख्याएँ हैं, और योगात्मक रूप से अविघटनीय अध्यादेशों के उत्तराधिकारी हैं, योज्य रूप से अविघटनीय अध्यादेश हैं।
अभाज्य संख्याओं में गुणनखंड अद्वितीय नहीं है: उदाहरण के लिए, 2×3=3×2, 2×ω=ω, (ω+1)×ω=ω×ω और ω×ωω</सुप> = ωω. चूँकि, निम्नलिखित अतिरिक्त शर्तों को पूरा करने वाले primes में एक अनूठा गुणनखंड है:
- हर लिमिट प्राइम हर सक्सेसर प्राइम से पहले आता है
- यदि अभाज्य गुणनखंडन के दो लगातार अभाज्य दोनों सीमाएँ या दोनों परिमित हैं, तो दूसरा अधिक से अधिक पहला है।
कैंटर सामान्य रूप का उपयोग करके इस प्रमुख कारक को आसानी से पढ़ा जा सकता है:
- पहले क्रमसूचक को एक उत्पाद αβ के रूप में लिखें जहां α कैंटर सामान्य रूप में ω की सबसे छोटी शक्ति है और β एक उत्तराधिकारी है।
- अगर α=ωγ तो कैंटर सामान्य रूप में γ लिखने से लिमिट प्राइम्स के उत्पाद के रूप में α का विस्तार होता है।
- अब β के कैंटर सामान्य रूप को देखें। अगर β = ωλ</सुप>म + ωμn + छोटे पद, तो β = (ωmn + छोटे पद)(ωλ−μ + 1)m एक छोटे क्रमसूचक और एक अभाज्य और एक पूर्णांक m का गुणनफल है। इसे दोहराते हुए और पूर्णांकों को अभाज्य संख्याओं में गुणनखंडित करने से β का अभाज्य गुणनखंड प्राप्त होता है।
तो कैंटर नॉर्मल फॉर्म का गुणन क्रमसूचक है
- (साथ )
अनंत प्राइम्स और पूर्णांकों के न्यूनतम उत्पाद में है
जहां प्रत्येक एनi परिमित प्राइम्स के एक गैर-बढ़ते अनुक्रम में इसके गुणनखंड द्वारा प्रतिस्थापित किया जाना चाहिए और
- साथ .
बड़े गणनीय अध्यादेश
जैसा कि ऊपर चर्चा की गई है, कैंटर नीचे दिए गए अध्यादेशों का सामान्य रूप है एक वर्णमाला में व्यक्त किया जा सकता है जिसमें केवल जोड़, गुणा और घातांक के लिए फ़ंक्शन प्रतीक होते हैं, साथ ही साथ प्रत्येक प्राकृतिक संख्या और के लिए निरंतर प्रतीक भी होते हैं। . हम केवल निरंतर प्रतीक 0 और उत्तराधिकारी के संचालन का उपयोग करके असीमित रूप से कई अंकों से दूर हो सकते हैं, (उदाहरण के लिए, पूर्णांक 4 को इस रूप में व्यक्त किया जा सकता है ). यह एक क्रमसूचक संकेतन का वर्णन करता है: एक परिमित वर्णमाला पर क्रमसूचकों के नामकरण के लिए एक प्रणाली। क्रमसूचक संकेतन की इस विशेष प्रणाली को अंकगणितीय क्रमिक अभिव्यक्तियों का संग्रह कहा जाता है, और नीचे दिए गए सभी क्रमों को व्यक्त कर सकता है है, पर व्यक्त नहीं कर सकता . ऐसे अन्य क्रमिक संकेतन हैं जो अध्यादेशों को अच्छी तरह से पकड़ने में सक्षम हैं , किन्तु क्योंकि किसी भी परिमित वर्णमाला पर केवल गिने-चुने तार हैं, किसी भी क्रमसूचक संकेतन के लिए नीचे क्रमसूचक होंगे (पहला बेशुमार क्रमसूचक) जो व्यक्त नहीं किया जा सकता। ऐसे अध्यादेशों को बड़े गणनीय अध्यादेशों के रूप में जाना जाता है।
जोड़, गुणन और घातांक के संचालन आदिम पुनरावर्ती क्रमिक कार्यों के सभी उदाहरण हैं, और अधिक सामान्य आदिम पुनरावर्ती क्रमिक कार्यों का उपयोग बड़े अध्यादेशों का वर्णन करने के लिए किया जा सकता है।
प्राकृतिक संचालन
अध्यादेशों पर प्राकृतिक योग और प्राकृतिक उत्पाद संचालन को 1906 में गेरहार्ड हेसनबर्ग द्वारा परिभाषित किया गया था, और कभी-कभी हेसेनबर्ग योग (या उत्पाद) कहा जाता है। (Sierpiński 1958). ये असली संख्याओं के जॉन कॉनवे के फील्ड (गणित) के जोड़ और गुणा (ऑर्डिनल्स तक सीमित) के समान हैं। उनके पास यह लाभ है कि वे साहचर्य और क्रमविनिमेय हैं, और प्राकृतिक उत्पाद प्राकृतिक राशि पर वितरित होते हैं। इन परिचालनों को क्रमविनिमेय बनाने की लागत यह है कि वे सही तर्क में निरंतरता खो देते हैं, जो साधारण योग और उत्पाद की संपत्ति है। α और β के प्राकृतिक योग को अक्सर α ⊕ β या α # β, और प्राकृतिक उत्पाद α ⊗ β या α ⨳ β द्वारा दर्शाया जाता है।
प्राकृतिक संक्रियाएँ अच्छी तरह से अर्ध-आदेश के सिद्धांत में सामने आती हैं; ऑर्डर प्रकार (अधिकतम रैखिक ऑर्डर) ओ(एस) और ओ(टी) के दो अच्छी तरह से आंशिक ऑर्डर एस और टी दिए गए हैं, डिसजॉइंट यूनियन का प्रकार ओ(एस) ⊕ ओ(टी) है, जबकि प्रत्यक्ष का प्रकार उत्पाद ओ(एस) ⊗ ओ(टी) है।[3] एस और टी को ऑर्डिनल्स α और β चुनकर इस संबंध को प्राकृतिक संचालन की परिभाषा के रूप में लिया जा सकता है; इसलिए α ⊕ β कुल ऑर्डर का अधिकतम ऑर्डर प्रकार है जो α और β के डिसजॉइंट यूनियन (आंशिक ऑर्डर के रूप में) को बढ़ाता है; जबकि α ⊗ β, α और β के प्रत्यक्ष उत्पाद (आंशिक आदेश के रूप में) को विस्तारित करने वाले कुल ऑर्डर का अधिकतम ऑर्डर प्रकार है।[4] इसका एक उपयोगी अनुप्रयोग तब होता है जब α और β दोनों कुछ बड़े कुल क्रम के उपसमुच्चय होते हैं; तब उनके संघ का ऑर्डर प्रकार अधिकतम α ⊕ β होता है। यदि वे दोनों किसी क्रमित समूह के उपसमुच्चय हैं, तो उनके योग का क्रम प्रकार अधिक से अधिक α ⊗ β होता है।
हम α और β के प्राकृतिक योग को आगमनात्मक रूप से भी परिभाषित कर सकते हैं (α और β पर एक साथ प्रेरण द्वारा) सभी γ < β के लिए α और γ के प्राकृतिक योग और सभी γ < α के लिए γ और β के प्राकृतिक योग से अधिक सबसे छोटा क्रमिक योग है। प्राकृतिक उत्पाद (पारस्परिक प्रेरण द्वारा) की एक आगमनात्मक परिभाषा भी है, किन्तु इसे लिखना कुछ कठिन है और हम ऐसा नहीं करेंगे (उस संदर्भ में परिभाषा के लिए वास्तविक संख्याओं पर लेख देखें, चूँकि, असली का उपयोग करता है घटाव, कुछ ऐसा जो स्पष्ट रूप से अध्यादेशों पर परिभाषित नहीं किया जा सकता)।
प्राकृतिक योग साहचर्य और क्रमविनिमेय है। यह हमेशा सामान्य योग से अधिक या बराबर होता है, किन्तु यह सख्ती से अधिक हो सकता है। उदाहरण के लिए, ω और 1 का प्राकृतिक योग ω+1 (सामान्य योग) है, किन्तु यह 1 और ω का प्राकृतिक योग भी है। प्राकृतिक उत्पाद साहचर्य और क्रमविनिमेय है और प्राकृतिक योग पर वितरित करता है। प्राकृतिक उत्पाद हमेशा सामान्य उत्पाद से बड़ा या बराबर होता है, किन्तु यह सख्ती से बड़ा हो सकता है। उदाहरण के लिए, ω और 2 का प्राकृतिक उत्पाद ω·2 (सामान्य उत्पाद) है, किन्तु यह 2 और ω का प्राकृतिक उत्पाद भी है।
फिर भी दो अध्यादेशों α और β के प्राकृतिक योग और उत्पाद को परिभाषित करने का एक और तरीका कैंटर सामान्य रूप का उपयोग करना है: कोई क्रमांक का अनुक्रम पा सकता है जी1 > ... > सीn और दो अनुक्रम (के1, ..., कn) और (जे1, ..., जेn) प्राकृतिक संख्या (शून्य सहित, किन्तु संतोषजनक कi + जेi > 0 सभी के लिए i) ऐसा कि
और परिभाषित करें
प्राकृतिक जोड़ के तहत, गामा संख्या ω द्वारा उत्पन्न मुफ्त कम्यूटेटिव मोनोइड के तत्वों के साथ अध्यादेशों की पहचान की जा सकती हैα. प्राकृतिक जोड़ और गुणन के तहत, डेल्टा संख्या ω द्वारा उत्पन्न मोटी हो जाओ के तत्वों के साथ अध्यादेशों की पहचान की जा सकती हैωα. ऑर्डिनल्स में प्राकृतिक उत्पाद के तहत प्राइम्स में अद्वितीय कारक नहीं होते हैं। जबकि पूर्ण बहुपद वलय में अद्वितीय गुणनखंड होता है, गैर-नकारात्मक गुणांक वाले बहुपदों का उपसमुच्चय नहीं होता है: उदाहरण के लिए, यदि x कोई डेल्टा संख्या है, तो
गैर-नकारात्मक गुणांक वाले बहुपदों के प्राकृतिक उत्पाद के रूप में दो असंगत अभिव्यक्तियाँ हैं जिन्हें आगे विघटित नहीं किया जा सकता है।
नम्बर अंकगणित
ऑर्डिनल्स और निम्बर्स के बीच एक-से-एक पत्राचार के आधार पर ऑर्डिनल्स पर अंकगणितीय ऑपरेशन होते हैं। निम्बरों पर तीन सामान्य संक्रियाएँ निम्बर जोड़, निंबर गुणन और मेक्स (गणित)|न्यूनतम अपवर्जन (मेक्स) हैं। निम्बर जोड़ प्राकृतिक संख्याओं पर बिटवाइज़ ऑपरेशन #XOR ऑपरेशन का एक सामान्यीकरण है। वह mex अध्यादेशों के एक सेट में सबसे छोटा क्रमसूचक है जो सेट में मौजूद नहीं है।
टिप्पणियाँ
- ↑ Feferman, S. (1964). "जबरदस्ती और सामान्य सेटों की धारणाओं के कुछ अनुप्रयोग". Fundamenta Mathematicae. 56 (3): 325–345. doi:10.4064/fm-56-3-325-345.
- ↑ Ernst Jacobsthal, Vertauschbarkeit transfiniter Ordnungszahlen, Mathematische Annalen, Bd 64 (1907), 475-488. Available here
- ↑ D. H. J. De Jongh and R. Parikh, Well-partial orderings and hierarchies, Indag. Math. 39 (1977), 195–206. Available here
- ↑ Philip W. Carruth, Arithmetic of ordinals with applications to the theory of ordered Abelian groups, Bull. Amer. Math. Soc. 48 (1942), 262–271. See Theorem 1. Available here
संदर्भ
- Thomas Jech (21 March 2006). Set Theory: The Third Millennium Edition, revised and expanded. Springer Science & Business Media. ISBN 978-3-540-44085-7.
- Kunen, Kenneth, 1980. Set Theory: An Introduction to Independence Proofs. Elsevier. ISBN 0-444-86839-9.
- Sierpiński, Wacław (1958), Cardinal and ordinal numbers, Polska Akademia Nauk Monografie Matematyczne, vol. 34, Warsaw: Państwowe Wydawnictwo Naukowe, MR 0095787