आवधिक योग: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (5 revisions imported from alpha:आवधिक_योग) |
(No difference)
|
Revision as of 10:01, 11 June 2023
गणित में, किसी भी समाकलनीय फलन को P के पूर्णांक गुणजों द्वारा फलन के अनुवादों को जोड़ कर अवधि P के साथ एक आवधिक फलन में बनाया जा सकता है। इसे आवधिक योग कहा जाता है:
जब को वैकल्पिक रूप से फूरियर श्रृंखला के रूप में दर्शाया जाता है, तो फूरियर गुणांक निरंतर फूरियर रूपांतरण के मानो के समान होते हैं, के अंतराल पर वह तत्समक प्वासों योग सूत्र का एक रूप है[1][2]। इसी तरह, एक फूरियर श्रृंखला जिसका गुणांक निरंतर अंतराल (T ) पर के नमूने हैं, के आवधिक योग के समान है, जिसे असतत-समय फूरियर रूपांतरण के रूप में जाना जाता है।
डिराक डेल्टा कार्य का आवधिक योग डायराक कंघी है। इसी तरह, एक पूर्णांक कार्य का आवधिक योग डायराक कोम्ब के साथ इसका कनवल्शन है।
भागफल स्थान डोमेन के रूप में
यदि एक आवर्त फलन को इसके अतिरिक्त किसी फलन के भागफल स्थान (रैखिक बीजगणित) डोमेन का उपयोग करके दर्शाया जाता है
तब कोई लिख सकता है:
के तर्क वास्तविक संख्याओं के तुल्यता वर्ग हैं जो से विभाजित होने पर समान भिन्नात्मक भाग साझा करते हैं।
उद्धरण
- ↑ Zygmund, Antoni (1988). त्रिकोणमितीय श्रृंखला (2nd ed.). Cambridge University Press. ISBN 978-0521358859.
- ↑ Pinsky, Mark (2001). फूरियर विश्लेषण और वेवलेट्स का परिचय. Brooks/Cole. ISBN 978-0534376604.
यह भी देखें
- डायराक कॉम्ब
- वृत्ताकार कनवल्शन
- असतत-समय फूरियर रूपांतरण
श्रेणी:कार्य और मानचित्रण
श्रेणी:सिग्नल प्रोसेसिंग