संशोधित नोडल विश्लेषण: Difference between revisions
No edit summary |
No edit summary |
||
Line 81: | Line 81: | ||
जहाँ <math>A = \begin{pmatrix}G & -G& 1\\-G & G & 0\\1 & 0 & 0\end{pmatrix}</math>, <math>E = \begin{pmatrix} 0 & 0 & 0\\0& C& 0\\ 0& 0& 0\end{pmatrix}</math> और <math>f = \begin{pmatrix}0&0&V_s\end{pmatrix}^T</math>. | जहाँ <math>A = \begin{pmatrix}G & -G& 1\\-G & G & 0\\1 & 0 & 0\end{pmatrix}</math>, <math>E = \begin{pmatrix} 0 & 0 & 0\\0& C& 0\\ 0& 0& 0\end{pmatrix}</math> और <math>f = \begin{pmatrix}0&0&V_s\end{pmatrix}^T</math>. | ||
यह एक रेखीय अवकल बीजगणितीय समीकरण (डीएई) है, क्योंकि <math>E</math> एकवचन है। यह सिद्ध किया जा सकता है कि संशोधित नोडल विश्लेषण से आने वाले इस तरह के डीएई का विभेदन सूचकांक दो से कम या समान होगा जब तक कि केवल निष्क्रिय आरएलसी घटकों का उपयोग किया जाता है।<ref>Tischendorf C. Topological index of DAEs in the Circuit Simulation.</ref> | यह एक रेखीय अवकल बीजगणितीय समीकरण (डीएई) है, क्योंकि <math>E</math> एकवचन है। यह सिद्ध किया जा सकता है कि संशोधित नोडल विश्लेषण से आने वाले इस तरह के डीएई का विभेदन सूचकांक दो से कम या समान होगा जब तक कि केवल निष्क्रिय आरएलसी घटकों का उपयोग किया जाता है।<ref>Tischendorf C. Topological index of DAEs in the Circuit Simulation.</ref> सक्रिय घटकों का उपयोग करते समय, जैसे परिचालन प्रवर्धक, विभेदन सूचकांक इच्छानुसार से उच्च हो सकता है।<ref name="BrenanCampbell1996">{{cite book|author1=K. E. Brenan|author2=S. L. Campbell|author3=L. R. Petzold|author3-link = Linda Petzold|title=अवकल-बीजगणितीय समीकरणों में प्रारंभिक-मूल्य समस्याओं का संख्यात्मक समाधान|year=1996|publisher=SIAM|isbn=978-1-61197-122-4|pages=173–177}}</ref> | ||
== गैर-चिकनी विश्लेषण == | == गैर-चिकनी विश्लेषण == | ||
डीएई व्यक्तिगत घटकों के लिए सुचारू कार्य विशेषताओं को मानता है; उदाहरण के लिए, [[डायोड]] या शॉकली डायोड समीकरण के माध्यम से डीएई के साथ एक डायोड को एमएनए में मॉडल/प्रतिनिधित्व किया जा सकता है, किंतु एक स्पष्ट रूप से सरल (अधिक आदर्श) मॉडल का उपयोग नहीं किया जा सकता है | डीएई व्यक्तिगत घटकों के लिए सुचारू कार्य विशेषताओं को मानता है; उदाहरण के लिए, [[डायोड]] या शॉकली डायोड समीकरण के माध्यम से डीएई के साथ एक डायोड को एमएनए में मॉडल/प्रतिनिधित्व किया जा सकता है, किंतु एक स्पष्ट रूप से सरल (अधिक आदर्श) मॉडल का उपयोग नहीं किया जा सकता है वक्र के तेजी से घातीय आगे और टूटने वाले प्रवाहकत्त्व क्षेत्र सीधे सीधे लंबवत रेखाएं हैं। बाद के प्रकार के समीकरणों के साथ परिपथ विश्लेषण (एमएनए सहित) वास्तव में अधिक सम्मिलित है (डीएई का उपयोग करने से) और [[गैर-चिकनी गतिशील प्रणाली]] (एनएसडीएस) विश्लेषण का विषय है, जो अंतर समावेशन के सिद्धांत पर निर्भर करता है।<ref name="AcaryBonnefon2010">{{cite book|author1=Vincent Acary|author2=Olivier Bonnefon|author3=Bernard Brogliato|title=स्विच्ड सर्किट के लिए नॉनस्मूथ मॉडलिंग और सिमुलेशन|year=2010|publisher=Springer Science & Business Media|isbn=978-90-481-9681-4|pages=3–4 (for the diode example)}}</ref><ref name="Kunze2000">{{cite book|author=Markus Kunze|title=गैर-चिकनी गतिशील प्रणाली|url=https://archive.org/details/nonsmoothdynamic0000kunz|url-access=registration|year=2000|publisher=Springer Science & Business Media|isbn=978-3-540-67993-6}}</ref> | ||
'''<br />ण (एमएनए सहित) वास्तव में अधिक सम्मिलित है (डीएई का उपयोग | '''<br />ण (एमएनए सहित) वास्तव में अधिक सम्मिलित है (डीएई का उपयोग''' | ||
==संदर्भ == | ==संदर्भ == | ||
{{Reflist}} | {{Reflist}} |
Revision as of 09:23, 6 May 2023
विद्युत अभियन्त्रण में संशोधित नोडल विश्लेषण[1] या एमएनए नोडल विश्लेषण का एक विस्तार है जो न केवल परिपथ के नोड वोल्टेज (क्लासिकल नोडल विश्लेषण के अनुसार) को निर्धारित करता है, किंतु कुछ शाखा धाराओं को भी निर्धारित करता है। नोडल विश्लेषण (जैसे वोल्टेज-नियंत्रित वोल्टेज स्रोत) में वोल्टेज-परिभाषित घटकों का प्रतिनिधित्व करने की कठिनाई को कम करने के लिए संशोधित नोडल विश्लेषण को एक औपचारिकता के रूप में विकसित किया गया था। यह एक ऐसी औपचारिकता है। अन्य, जैसे विरल छवि सूत्रीकरण,[2] समान रूप से सामान्य हैं और आव्यूह परिवर्तनों के माध्यम से संबंधित हैं।
विधि
एमएनए तत्व के 'शाखा संवैधानिक समीकरण' या बीसीई का उपयोग करता है, अर्थात , उनका वोल्टेज - विद्युत प्रवाह विशेषता और किरचॉफ के परिपथ नियम विधि अधिकांशतः चार चरणों में की जाती है,[3] किंतु इसे घटाकर तीन किया जा सकता है:
स्टेप 1
परिपथ के किरचॉफ के वर्तमान नियम समीकरण लिखिए। विद्युत परिपथ के प्रत्येक नोड पर, नोड में आने और जाने वाली धाराओं को लिखें ध्यान रखें, चूंकि , एमएनए पद्धति में, स्वतंत्र वोल्टेज स्रोतों की धारा प्लस से माइनस तक ली जाती है (चित्र 1 देखें)। इसके अतिरिक्त , ध्यान दें कि प्रत्येक समीकरण का दाहिना हाथ 'सदैव' शून्य के समान होता है, जिससे नोड में आने वाली शाखा धाराओं को नकारात्मक संकेत दिया जाए और जो बाहर जाती हैं उन्हें सकारात्मक संकेत दिया जाए।
चरण दो
जितना संभव हो उतने शाखा धाराओं को खत्म करने के लिए परिपथ के नोड वोल्टेज के संदर्भ में बीसीई का उपयोग करें। नोड वोल्टेज के संदर्भ में बीसीई लिखने से एक चरण की बचत होती है। यदि बीसीई को शाखा वोल्टेज के संदर्भ में लिखा गया था, तो एक और कदम, अर्थात नोड वाले के लिए शाखाओं के वोल्टेज को बदलना आवश्यक होगा। इस आलेख में अक्षर ई का उपयोग नोड वोल्टेज के नाम के लिए किया जाता है, जबकि पत्र वी का उपयोग शाखा वोल्टेज के नाम के लिए किया जाता है।
चरण 3
अंत में, अप्रयुक्त समीकरण लिखिए।
उदाहरण
आंकड़ा एक आरसी श्रृंखला परिपथ दिखाता है और तालिका एक रैखिक प्रतिरोधी और एक रैखिक संधारित्र के बीसीई को दिखाती है। ध्यान दें कि प्रवेश अवरोध के स्थितियों में मैं, , के स्थान पर प्रयोग किया जाता है . अब हम ऊपर बताए अनुसार आगे बढ़ते हैं।
तत्व | शाखा समीकरण |
---|---|
अवरोध | |
संधारित्र |
स्टेप 1
इस स्थितियों में दो नोड हैं, और . इसके अतिरिक्त तीन धाराएँ हैं: , और हैं।
नोड e1 पर केसीएल का उत्पादन होता है:
और नोड e2 पर:
चरण दो
तालिका में प्रदान किए गए बीसीई के साथ और यह देखते हुए कि:
निम्नलिखित समीकरण परिणाम हैं:
चरण 3
ध्यान दें कि इस बिंदु पर दो समीकरण हैं किंतु तीन अज्ञात हैं। लापता समीकरण इस तथ्य से आता है कि
और अंत में हमारे पास तीन समीकरण और तीन अज्ञात हैं, जो एक हल करने योग्य रैखिक प्रणाली की ओर ले जाते हैं।
संशोधित नोडल विश्लेषण और डीएई
यदि वेक्टर परिभाषित है, तो उपरोक्त समीकरणों को रूप में रखा जा सकता है
जहाँ , और .
यह एक रेखीय अवकल बीजगणितीय समीकरण (डीएई) है, क्योंकि एकवचन है। यह सिद्ध किया जा सकता है कि संशोधित नोडल विश्लेषण से आने वाले इस तरह के डीएई का विभेदन सूचकांक दो से कम या समान होगा जब तक कि केवल निष्क्रिय आरएलसी घटकों का उपयोग किया जाता है।[4] सक्रिय घटकों का उपयोग करते समय, जैसे परिचालन प्रवर्धक, विभेदन सूचकांक इच्छानुसार से उच्च हो सकता है।[5]
गैर-चिकनी विश्लेषण
डीएई व्यक्तिगत घटकों के लिए सुचारू कार्य विशेषताओं को मानता है; उदाहरण के लिए, डायोड या शॉकली डायोड समीकरण के माध्यम से डीएई के साथ एक डायोड को एमएनए में मॉडल/प्रतिनिधित्व किया जा सकता है, किंतु एक स्पष्ट रूप से सरल (अधिक आदर्श) मॉडल का उपयोग नहीं किया जा सकता है वक्र के तेजी से घातीय आगे और टूटने वाले प्रवाहकत्त्व क्षेत्र सीधे सीधे लंबवत रेखाएं हैं। बाद के प्रकार के समीकरणों के साथ परिपथ विश्लेषण (एमएनए सहित) वास्तव में अधिक सम्मिलित है (डीएई का उपयोग करने से) और गैर-चिकनी गतिशील प्रणाली (एनएसडीएस) विश्लेषण का विषय है, जो अंतर समावेशन के सिद्धांत पर निर्भर करता है।[6][7]
ण (एमएनए सहित) वास्तव में अधिक सम्मिलित है (डीएई का उपयोग
संदर्भ
- ↑ Ho, Ruehli, and Brennan (April 1974). "नेटवर्क विश्लेषण के लिए संशोधित नोडल दृष्टिकोण". Proc. 1974 Int. Symposium on Circuits and Systems, San Francisco. pp. 505–509. doi:10.1109/TCS.1975.1084079.
{{cite conference}}
: CS1 maint: multiple names: authors list (link) - ↑ Hachtel, G., Brayton, R, and Gustavson, F. (January 1971). "विरल झांकी दृष्टिकोण नेटवर्क विश्लेषण और डिजाइन करने के लिए". IEEE Transactions on Circuit Theory. 18 (1): 101–113. doi:10.1109/TCT.1971.1083223.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ↑ Cheng, Chung-Kuan. Lecture Notes for CSE245: Computer-Aided Circuit Simulation and Verification. Spring 2006. Lecture 1.
- ↑ Tischendorf C. Topological index of DAEs in the Circuit Simulation.
- ↑ K. E. Brenan; S. L. Campbell; L. R. Petzold (1996). अवकल-बीजगणितीय समीकरणों में प्रारंभिक-मूल्य समस्याओं का संख्यात्मक समाधान. SIAM. pp. 173–177. ISBN 978-1-61197-122-4.
- ↑ Vincent Acary; Olivier Bonnefon; Bernard Brogliato (2010). स्विच्ड सर्किट के लिए नॉनस्मूथ मॉडलिंग और सिमुलेशन. Springer Science & Business Media. pp. 3–4 (for the diode example). ISBN 978-90-481-9681-4.
- ↑ Markus Kunze (2000). गैर-चिकनी गतिशील प्रणाली. Springer Science & Business Media. ISBN 978-3-540-67993-6.
बाहरी संबंध
- "Modified Nodal Analysis (DC algorithm description in Qucs technical documentation)". Retrieved 22 December 2012.