सवलन भागफल (कोंवोलुशन क्वॉटेंट): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
गणित में, [[कनवल्शन]] कोशिएंट्स का एक स्पेस, फंक्शन्स के कनवल्शन रिंग (अमूर्त बीजगणित) के अंशों का एक क्षेत्र है: एक कनवल्शन भागफल कनवल्शन के ऑपरेशन (गणित) के लिए है क्योंकि [[पूर्णांक]]ों का भागफल [[गुणा]] करना है। कनवल्शन [[ लब्धि ]] का निर्माण [[डिराक डेल्टा समारोह]], [[ अभिन्न संचालिका ]] और [[ अंतर ऑपरेटर ]] के आसान बीजगणितीय प्रतिनिधित्व की अनुमति देता है, बिना [[अभिन्न रूपांतर]] से सीधे निपटने के लिए, जो अक्सर तकनीकी कठिनाइयों के अधीन होते हैं कि वे अभिसरण करते हैं या नहीं।
गणित में, [[कनवल्शन]] कोशिएंट्स का स्पेस, फंक्शन्स के कनवल्शन रिंग (अमूर्त बीजगणित) के अंशों का क्षेत्र है: कनवल्शन भागफल कनवल्शन के ऑपरेशन (गणित) के लिए है क्योंकि [[पूर्णांक]]ों का भागफल [[गुणा]] करना है। कनवल्शन [[ लब्धि ]] का निर्माण [[डिराक डेल्टा समारोह]], [[ अभिन्न संचालिका ]] और [[ अंतर ऑपरेटर ]] के आसान बीजगणितीय प्रतिनिधित्व की अनुमति देता है, बिना [[अभिन्न रूपांतर]] से सीधे निपटने के लिए, जो अक्सर तकनीकी कठिनाइयों के अधीन होते हैं कि वे अभिसरण करते हैं या नहीं।


कनवल्शन कोशेंट द्वारा पेश किया गया था {{harvs|txt|last=Mikusiński|authorlink=Jan Mikusiński|year=1949}}, और उनके सिद्धांत को कभी-कभी मिकुसिन्स्की की संक्रियात्मक कलन कहा जाता है।
कनवल्शन कोशेंट द्वारा पेश किया गया था {{harvs|txt|last=Mikusiński|authorlink=Jan Mikusiński|year=1949}}, और उनके सिद्धांत को कभी-कभी मिकुसिन्स्की की संक्रियात्मक कलन कहा जाता है।
Line 6: Line 6:


: <math> (f*g)(x) = \int_0^x f(u) g(x-u) \, du. </math>
: <math> (f*g)(x) = \int_0^x f(u) g(x-u) \, du. </math>
यह [[Titchmarsh कनवल्शन प्रमेय]] से अनुसरण करता है कि यदि कनवल्शन <math display="inline"> f*g </math> दो कार्यों का <math display="inline"> f,g</math> जो लगातार चालू हैं <math display="inline"> [0,+\infty) </math> उस अंतराल पर हर जगह 0 के बराबर है, तो कम से कम एक <math display="inline"> f,g</math> उस अंतराल पर हर जगह 0 है। एक परिणाम यह है कि अगर <math display="inline"> f,g,h</math> लगातार चालू हैं <math display="inline"> [0,+\infty) </math> तब <math display="inline> h*f = h*g</math> केवल <math display="inline"> f = g.</math> यह तथ्य कनवल्शन भागफल को यह कहकर परिभाषित करना संभव बनाता है कि दो फ़ंक्शन (गणित) ƒ, g के लिए, जोड़ी (ƒ, g) में जोड़ी (h * ƒ,h * g) के समान कनवल्शन भागफल है।
यह [[Titchmarsh कनवल्शन प्रमेय]] से अनुसरण करता है कि यदि कनवल्शन <math display="inline"> f*g </math> दो कार्यों का <math display="inline"> f,g</math> जो लगातार चालू हैं <math display="inline"> [0,+\infty) </math> उस अंतराल पर हर जगह 0 के बराबर है, तो कम से कम एक <math display="inline"> f,g</math> उस अंतराल पर हर जगह 0 है। परिणाम यह है कि अगर <math display="inline"> f,g,h</math> लगातार चालू हैं <math display="inline"> [0,+\infty) </math> तब <math display="inline> h*f = h*g</math> केवल <math display="inline"> f = g.</math> यह तथ्य कनवल्शन भागफल को यह कहकर परिभाषित करना संभव बनाता है कि दो फ़ंक्शन (गणित) ƒ, g के लिए, जोड़ी (ƒ, g) में जोड़ी (h * ƒ,h * g) के समान कनवल्शन भागफल है।


जैसा कि पूर्णांकों से परिमेय संख्याओं के निर्माण के साथ होता है, कनवल्शन कोशेंट्स का क्षेत्र कनवल्शन रिंग का सीधा विस्तार होता है जिससे इसे बनाया गया था। हर साधारण समारोह <math>f</math> मूल स्थान में कैनोनिक रूप से कनवल्शन कोशेंट के स्थान में (समतुल्यता वर्ग) जोड़ी के रूप में एम्बेड होता है <math>(f*g, g)</math>, उसी तरह से जैसे साधारण पूर्णांक परिमेय संख्याओं में विहित रूप से एम्बेड होते हैं। हमारे नए स्थान के गैर-कार्यात्मक तत्वों को ऑपरेटरों या सामान्यीकृत कार्यों के रूप में माना जा सकता है, जिनके कार्यों पर बीजगणितीय क्रिया हमेशा अच्छी तरह से परिभाषित होती है, भले ही उनका सामान्य कार्य स्थान में कोई प्रतिनिधित्व न हो।
जैसा कि पूर्णांकों से परिमेय संख्याओं के निर्माण के साथ होता है, कनवल्शन कोशेंट्स का क्षेत्र कनवल्शन रिंग का सीधा विस्तार होता है जिससे इसे बनाया गया था। हर साधारण समारोह <math>f</math> मूल स्थान में कैनोनिक रूप से कनवल्शन कोशेंट के स्थान में (समतुल्यता वर्ग) जोड़ी के रूप में एम्बेड होता है <math>(f*g, g)</math>, उसी तरह से जैसे साधारण पूर्णांक परिमेय संख्याओं में विहित रूप से एम्बेड होते हैं। हमारे नए स्थान के गैर-कार्यात्मक तत्वों को ऑपरेटरों या सामान्यीकृत कार्यों के रूप में माना जा सकता है, जिनके कार्यों पर बीजगणितीय क्रिया हमेशा अच्छी तरह से परिभाषित होती है, भले ही उनका सामान्य कार्य स्थान में कोई प्रतिनिधित्व न हो।
Line 13: Line 13:


'''कनवल्शन कोशेंट द्वारा पेश किया गया था {{harvs|txt|last=Mikusiński|authorlink=Jan Mikusiński|year=1949}}, और उनके सिद्धांत को कभी-कभी मिकुसिन्स्की की संक्रियात्मक कलन कहा जाता है।'''
'''कनवल्शन कोशेंट द्वारा पेश किया गया था {{harvs|txt|last=Mikusiński|authorlink=Jan Mikusiński|year=1949}}, और उनके सिद्धांत को कभी-कभी मिकुसिन्स्की की संक्रियात्मक कलन कहा जाता है।'''
'''एक प्रकार का कनवल्शन <math display="inline"> (f,g)\mapsto f*g </math> जिसके साथ यह सिद्धांत संबंधित है, द्वारा परिभाषित किया गया है'''


==संदर्भ==
==संदर्भ==

Revision as of 17:10, 17 May 2023

गणित में, कनवल्शन कोशिएंट्स का स्पेस, फंक्शन्स के कनवल्शन रिंग (अमूर्त बीजगणित) के अंशों का क्षेत्र है: कनवल्शन भागफल कनवल्शन के ऑपरेशन (गणित) के लिए है क्योंकि पूर्णांकों का भागफल गुणा करना है। कनवल्शन लब्धि का निर्माण डिराक डेल्टा समारोह, अभिन्न संचालिका और अंतर ऑपरेटर के आसान बीजगणितीय प्रतिनिधित्व की अनुमति देता है, बिना अभिन्न रूपांतर से सीधे निपटने के लिए, जो अक्सर तकनीकी कठिनाइयों के अधीन होते हैं कि वे अभिसरण करते हैं या नहीं।

कनवल्शन कोशेंट द्वारा पेश किया गया था Mikusiński (1949), और उनके सिद्धांत को कभी-कभी मिकुसिन्स्की की संक्रियात्मक कलन कहा जाता है।

एक प्रकार का कनवल्शन जिसके साथ यह सिद्धांत संबंधित है, द्वारा परिभाषित किया गया है

यह Titchmarsh कनवल्शन प्रमेय से अनुसरण करता है कि यदि कनवल्शन दो कार्यों का जो लगातार चालू हैं उस अंतराल पर हर जगह 0 के बराबर है, तो कम से कम एक उस अंतराल पर हर जगह 0 है। परिणाम यह है कि अगर लगातार चालू हैं तब केवल यह तथ्य कनवल्शन भागफल को यह कहकर परिभाषित करना संभव बनाता है कि दो फ़ंक्शन (गणित) ƒ, g के लिए, जोड़ी (ƒ, g) में जोड़ी (h * ƒ,h * g) के समान कनवल्शन भागफल है।

जैसा कि पूर्णांकों से परिमेय संख्याओं के निर्माण के साथ होता है, कनवल्शन कोशेंट्स का क्षेत्र कनवल्शन रिंग का सीधा विस्तार होता है जिससे इसे बनाया गया था। हर साधारण समारोह मूल स्थान में कैनोनिक रूप से कनवल्शन कोशेंट के स्थान में (समतुल्यता वर्ग) जोड़ी के रूप में एम्बेड होता है , उसी तरह से जैसे साधारण पूर्णांक परिमेय संख्याओं में विहित रूप से एम्बेड होते हैं। हमारे नए स्थान के गैर-कार्यात्मक तत्वों को ऑपरेटरों या सामान्यीकृत कार्यों के रूप में माना जा सकता है, जिनके कार्यों पर बीजगणितीय क्रिया हमेशा अच्छी तरह से परिभाषित होती है, भले ही उनका सामान्य कार्य स्थान में कोई प्रतिनिधित्व न हो।

यदि हम सकारात्मक अर्ध-पंक्ति कार्यों के कनवल्शन रिंग से शुरू करते हैं, तो उपरोक्त निर्माण व्यवहार में लाप्लास परिवर्तन के समान है, और साधारण लाप्लास-स्पेस रूपांतरण चार्ट का उपयोग गैर-फ़ंक्शन ऑपरेटरों को सामान्य कार्यों में शामिल करने के लिए किया जा सकता है (यदि वे मौजूद हैं) ). फिर भी, जैसा कि ऊपर उल्लेख किया गया है, अंतरिक्ष के निर्माण के लिए बीजगणितीय दृष्टिकोण पारंपरिक अभिन्न परिवर्तन निर्माण के साथ कई तकनीकी रूप से चुनौतीपूर्ण अभिसरण समस्याओं को दरकिनार करते हुए, परिवर्तन या इसके व्युत्क्रम को स्पष्ट रूप से परिभाषित करने की आवश्यकता को दरकिनार कर देता है।

कनवल्शन कोशेंट द्वारा पेश किया गया था Mikusiński (1949), और उनके सिद्धांत को कभी-कभी मिकुसिन्स्की की संक्रियात्मक कलन कहा जाता है।

संदर्भ

  • Mikusiński, Jan G. (1949), "Sur les fondements du calcul opératoire", Studia Math., 11: 41–70, MR 0036949
  • Mikusiński, Jan (1959) [1953], Operational calculus, International Series of Monographs on Pure and Applied Mathematics, vol. 8, New York-London-Paris-Los Angeles: Pergamon Press, MR 0105594