सिलिकॉन-जर्मेनियम: Difference between revisions
(Created page with "{{Short description|Chemical compound}} कहना ({{IPAc-en|ˈ|s|ɪ|ɡ|iː}} या {{IPAc-en|ˈ|s|aɪ|dʒ|iː}}), या सिलिकॉन-जर्मेनि...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Chemical compound}} | {{Short description|Chemical compound}} | ||
SiGe या सिलिकॉन-जर्मेनियम, सिलिकॉन और जर्मेनियम के किसी भी मोलर अनुपात के साथ अर्थात Si1-xGex के आणविक सूत्र के साथ एक मिश्र धातु है। यह प्रायः विषम द्विध्रुवीय ट्रांजिस्टर के लिए एकीकृत सर्किट (IC) में अर्धचालक सामग्री के रूप में या CMOS ट्रांजिस्टर के लिए विभेद-उत्प्रेरण परत के रूप में उपयोग किया जाता है। IBM ने 1989 में प्रौद्योगिकी को मुख्यधारा के निर्माण में पेश किया।<ref>Ouellette, Jennifer (June/July 2002). [http://www.aip.org/tip/INPHFA/vol-8/iss-3/p22.pdf "Silicon–Germanium Gives Semiconductors the Edge"]. {{webarchive|url=https://web.archive.org/web/20080517072053/http://www.aip.org/tip/INPHFA/vol-8/iss-3/p22.pdf |date=2008-05-17 }}, ''The Industrial Physicist''.</ref> यह अपेक्षाकृत नई तकनीक मिश्रित-सिग्नल एकीकृत सर्किट | यह अपेक्षाकृत नई तकनीक मिश्रित-सिग्नल सर्किट और एनालॉग सर्किट में अवसर प्रदान करती है। SiGe का उपयोग उच्च तापमान अनुप्रयोगों (>700 K) के लिए [[ ताप विद्युत ]] सामग्री के रूप में भी किया जाता है। | |||
== उत्पादन == | === उत्पादन === | ||
अर्धचालक के रूप में सिलिकॉन-जर्मेनियम के उपयोग का समर्थन बर्नी मेयर्सन ने किया था।<ref>{{cite journal|author1-link=Bernard S. Meyerson |last1=Meyerson |first1=Bernard S. |title=हाई-स्पीड सिलिकॉन-जर्मेनियम इलेक्ट्रॉनिक्स|journal=Scientific American |date=March 1994 |volume=270 |issue=3 |pages=62–67 |doi=10.1038/scientificamerican0394-62 |bibcode=1994SciAm.270c..62M }}</ref> दशकों से इसकी प्राप्ति में देरी करने वाली चुनौती यह थी कि जर्मेनियम परमाणु सिलिकॉन परमाणुओं की तुलना में लगभग 4% बड़े होते हैं। सामान्य उच्च तापमान पर जिस पर सिलिकॉन ट्रांजिस्टर गढ़े गए थे, इन बड़े परमाणुओं को क्रिस्टलीय सिलिकॉन में जोड़कर प्रेरित विभेद ने बड़ी संख्या में दोष उत्पन्न किए, जिसके परिणामस्वरूप सामग्री का कोई उपयोग नहीं हुआ। मेयर्सन और सहकर्मियों की खोज की<ref>"Bistable Conditions for Low Temperature Silicon Epitaxy," Bernard S. Meyerson, Franz Himpsel and Kevin J. Uram, Appl. Phys. Lett. 57, 1034 (1990).</ref> उच्च तापमान प्रसंस्करण के लिए तत्कालीन विश्वास की आवश्यकता त्रुटिपूर्ण थी, जिससे पर्याप्त रूप से कम तापमान <ref>B. S. Meyerson, "UHV/CVD growth of Si and Si:Ge alloys: chemistry, physics, and device applications," in ''Proceedings of the IEEE'', vol. 80, no. 10, pp. 1592-1608, Oct. 1992, doi: 10.1109/5.168668.</ref> पर SiGe विकास की अनुमति मिली, जैसे कि सभी व्यावहारिक उद्देश्यों के लिए कोई दोष नहीं बनाया गया था। एक बार उस बुनियादी अवरोध को हल करने के बाद, यह दर्शाया गया कि परिणामी SiGe सामग्री को पारंपरिक कम लागत वाले सिलिकॉन प्रसंस्करण टूलसेट का उपयोग करके उच्च प्रदर्शन वाले इलेक्ट्रॉनिक् में निर्मित किया जा सकता है।अधिक प्रासंगिक, परिणामी ट्रांजिस्टर का प्रदर्शन पारंपरिक रूप से निर्मित सिलिकॉन उपकरणों की सीमा से कहीं अधिक था, जो कम लागत वाली वाणिज्यिक बेतार संप्रेषण तकनीकों की एक नई पीढ़ी को सक्षम करता था।<ref>"SiGe HBTs Reach the Microwave and Millimeter-Wave Frontier," C. Kermarrec, T. Tewksbury, G. Dave, R. Baines, B. Meyerson, D. Harame and M. Gilbert, Proceedings of the 1994 Bipolar/BiCMOS Circuits & Technology Meeting, Minneapolis, Minn., Oct. 10-11, 1994, Sponsored by IEEE, (1994).</ref>जैसे कि वाईफाई। SiGe प्रक्रियाएं सिलिकॉन CMOS निर्माण के समान लागत प्राप्त करती हैं और गैलियम आर्सेनाइड जैसी अन्य विषम तकनीकों की तुलना में कम होती हैं।हाल ही में, ऑर्गेनोजर्मेनियम पूर्ववर्ती (जैसे आइसोबुटिलजर्मेन, एल्काइलजर्मेनियम ट्राइक्लोराइड्,और डाइमिथाइलैमिनोजर्मेनियम ट्राइक्लोराइड) की उच्च शुद्धता Ge, SiGe, और तनावपूर्ण सिलिकॉन जैसी Ge-युक्त फिल्मों के MOVPE निक्षेपण के लिए जर्मनी के लिए कम खतरनाक तरल विकल्प के रूप में जांच की गई है।<ref>{{cite journal |last1=Woelk |first1=Egbert |last2=Shenai-Khatkhate |first2=Deodatta V. |last3=DiCarlo |first3=Ronald L. |last4=Amamchyan |first4=Artashes |last5=Power |first5=Michael B. |last6=Lamare |first6=Bruno |last7=Beaudoin |first7=Grégoire |last8=Sagnes |first8=Isabelle |title=उच्च शुद्धता वाली जर्मेनियम फिल्मों के लिए नॉवेल ऑर्गोजर्मेनियम OMVPE प्रीकर्सर डिजाइन करना|journal=Journal of Crystal Growth |date=January 2006 |volume=287 |issue=2 |pages=684–687 |doi=10.1016/j.jcrysgro.2005.10.094 |bibcode=2006JCrGr.287..684W }}</ref><ref>{{cite journal |last1=Shenai |first1=Deo V. |last2=DiCarlo |first2=Ronald L. |last3=Power |first3=Michael B. |last4=Amamchyan |first4=Artashes |last5=Goyette |first5=Randall J. |last6=Woelk |first6=Egbert |title=MOVPE द्वारा आराम से ग्रेडेड SiGe परतों और तनावग्रस्त सिलिकॉन के लिए सुरक्षित वैकल्पिक तरल जर्मेनियम अग्रदूत|journal=Journal of Crystal Growth |date=January 2007 |volume=298 |pages=172–175 |doi=10.1016/j.jcrysgro.2006.10.194 |bibcode=2007JCrGr.298..172S }}</ref>,कई अर्धचालक प्रौद्योगिकी कंपनियों द्वारा SiGe फाउंड्री सेवाओं की पेशकश की जाती है। AMD ने SiGe स्ट्रेस्ड-सिलिकॉन तकनीक के लिए IBM के साथ एक संयुक्त विकास का खुलासा किया,<ref>[https://www.amd.com/us-en/Corporate/VirtualPressRoom/0,,51_104_543~103048,00.html AMD And IBM Unveil New, Higher Performance, More Power Efficient 65nm Process Technologies At Gathering Of Industry’s Top R&D Firms], retrieved at March 16, 2007.</ref>जो 65 nm प्रक्रिया को लक्षित करता है। TSMC SiGe निर्माण क्षमता भी बेचता है। | |||
जुलाई 2015 में, | जुलाई 2015 में, IBM ने घोषणा की कि उसने 7 nm सिलिकॉन-जर्मेनियम प्रक्रिया का उपयोग करके ट्रांजिस्टर के कामकाजी नमूने बनाए हैं, जो एक समकालीन प्रक्रिया की तुलना में ट्रांजिस्टर की मात्रा में चार गुना वृद्धि का वादा करता है।<ref>{{cite news |last1=Markoff |first1=John |title=आईबीएम ने बहुत अधिक क्षमता वाली चिप के कार्यशील संस्करण का खुलासा किया|url=https://www.nytimes.com/2015/07/09/technology/ibm-announces-computer-chips-more-powerful-than-any-in-existence.html |work=The New York Times |date=9 July 2015 }}</ref> | ||
=== SiGe ट्रांजिस्टर === | |||
== SiGe ट्रांजिस्टर == | |||
{{Unreferenced section|date=December 2008}} | {{Unreferenced section|date=December 2008}} | ||
{{Too technical|section|date=December 2017}} | {{Too technical|section|date=December 2017}} | ||
SiGe CMOS लॉजिक को | SiGe CMOS लॉजिक को विषमसंधि द्विध्रुवी ट्रांजिस्टर के साथ एकीकृत करने की अनुमति देता है,<ref>"A 200 mm SiGe HBT BiCMOS Technology for Mixed Signal Applications," K. Schonenberg, M. Gilbert, G.D. Berg, S. Wu, M. Soyuer, K. A. Tallman, K. J. Stein, R. A. Groves, S. Subbanna, D.B. Colavito, D.A. Sunderland and B.S. Meyerson," Proceedings of the 1995 Bipolar/BiCMOS Circuits and Technology Meeting, p. 89-92, 1995.</ref>इसे मिश्रित-सिग्नल एकीकृत सर्किट के लिए उपयुक्त बनाता है।<ref>{{cite book |last1=Cressler |first1=J. D. |last2=Niu |first2=G. |title=सिलिकॉन-जर्मेनियम हेटेरोजंक्शन द्विध्रुवी ट्रांजिस्टर|date=2003 |publisher=Artech House |page=13 |url=https://ieeexplore.ieee.org/document/9100198}}</ref> पारंपरिक होमोजंक्शन द्विध्रुवी ट्रांजिस्टर की तुलना में विषमसंधि द्विध्रुवी ट्रांजिस्टर का फॉरवर्ड गेन और रिवर्स गेन कम होता है। यह बेहतर निम्न-वर्तमान और उच्च-आवृत्ति प्रदर्शन में अनुवाद करता है। यह बेहतर निम्न-वर्तमान और उच्च-आवृत्ति प्रदर्शन में अनुवाद करता है।समायोज्य बैंड अंतराल के साथ विषमसंधि तकनीक होने के नाते, SiGe सिलिकॉन-ओनली टी की तुलना में अधिक लचीले बैंडगैप ट्यूनिंग का अवसर प्रदान करता है। | ||
सिलिकॉन-जर्मेनियम ऑन इंसुलेटर (SGOI) वर्तमान में कंप्यूटर चिप्स में कार्यरत सिलिकॉन ऑन इंसुलेटर (SOI) तकनीक के अनुरूप एक तकनीक है। SGOI MOS ट्रांजिस्टर गेट के नीचे क्रिस्टल जाली को दबाकर माइक्रोचिप्स के अंदर ट्रांजिस्टर की गति बढ़ाता है, जिसके परिणामस्वरूप बेहतर इलेक्ट्रॉन गतिशीलता और उच्च चलन धाराएं होती हैं। SiGe MOSFET, SiGe के कम बंधअंतराल मान के कारण कम जंक्शन रिसाव भी प्रदान कर सकता है। यद्यपि SGOI MOSFETs के साथ एक प्रमुख मुद्दा है। | |||
== यह भी देखें == | === थर्मोइलेक्ट्रिक अनुप्रयोग === | ||
वायेजर 1 और 2 अंतरिक्ष यान में एक सिलिकॉन-जर्मेनियम थर्मोइलेक्ट्रिक यन्त्र MHW-RTG3 का उपयोग किया गया था।<ref>{{cite web |title=थर्मोइलेक्ट्रिक्स इतिहास समयरेखा|website=Alphabet Energy |url=http://www.alphabetenergy.com/thermoelectrics-timeline/ |url-status=dead |archive-url=https://web.archive.org/web/20190817002913/http://www.alphabetenergy.com/thermoelectrics-timeline/ |archive-date=2019-08-17}}</ref>सिलिकॉन-जर्मेनियम थर्मोइलेक्ट्रिक उपकरणों का उपयोग अन्य MHW-RTGs और GPHS-RTGs में कैसिनी, गैलीलियो, यूलिसिस पर भी किया गया था।<ref>{{cite conference |authors=G. L. Bennett, J. J. Lombardo, R. J. Hemler, G. Silverman, C. W. Whitmore, W. R. Amos, E. W. Johnson, A. Schock, R. W. Zocher, T. K. Keenan, J. C. Hagan, R. W. Englehart |title=Mission of Daring: The General-Purpose Heat Source Radioisotope Thermoelectric Generator |conference=4th International Energy Conversion Engineering Conference and Exhibit (IECEC) |date=26–29 June 2006 |place=San Diego, California |url=https://fas.org/nuke/space/gphs.pdf}}</ref> | |||
=== प्रकाश उत्सर्जन === | |||
एक हेक्सागोनल SiGe मिश्र धातु की संरचना को नियंत्रित करके, आइंडहोवन प्रौद्योगिकी विश्वविद्यालय के शोधकर्ताओं ने एक ऐसी सामग्री विकसित की है जो प्रकाश उत्सर्जित कर सकती है।<ref>{{cite journal |last1=Fadaly |first1=Elham M. T. |last2=Dijkstra |first2=Alain |last3=Suckert |first3=Jens Renè |last4=Ziss |first4=Dorian |last5=van Tilburg |first5=Marvin A. J. |last6=Mao |first6=Chenyang |last7=Ren |first7=Yizhen |last8=van Lange |first8=Victor T. |last9=Korzun |first9=Ksenia |last10=Kölling |first10=Sebastian |last11=Verheijen |first11=Marcel A. |last12=Busse |first12=David |last13=Rödl |first13=Claudia |last14=Furthmüller |first14=Jürgen |last15=Bechstedt |first15=Friedhelm |last16=Stangl |first16=Julian |last17=Finley |first17=Jonathan J. |last18=Botti |first18=Silvana |author-link18=Silvana Botti |last19=Haverkort |first19=Jos E. M. |last20=Bakkers |first20=Erik P. A. M. |title=हेक्सागोनल Ge और SiGe मिश्र धातुओं से प्रत्यक्ष-बैंडगैप उत्सर्जन|journal=Nature |date=April 2020 |volume=580 |issue=7802 |pages=205–209 |doi=10.1038/s41586-020-2150-y |pmid=32269353 |arxiv=1911.00726 |bibcode=2020Natur.580..205F |s2cid=207870211 }}</ref> अपने इलेक्ट्रॉनिक गुणों के संयोजन में, यह विद्युत प्रवाह के अतिरिक्त प्रकाश का उपयोग करके डेटा स्थानांतरण को सक्षम करने के लिए एकल चिप में एकीकृत लेजर के उत्पादन की संभावना को प्रदर्शित करता है, ऊर्जा की खपत को कम करते हुए डेटा स्थानांतरण को गति देता है और शीतलन प्रणाली की आवश्यकता होती है।नीदरलैंड में आइंडहोवन यूनिवर्सिटी ऑफ टेक्नोलॉजी में प्रमुख लेखक एल्हम फडली, एलेन डिजस्ट्रा और एरिक बकर्स और जर्मनी में फ्रेडरिक-शिलर-यूनिवर्सिटेट जेना में जेन्स रेने सक्र्ट के साथ अंतर्राष्ट्रीय टीम को पत्रिका[[ भौतिकी की दुनिया | भौतिकी की दुनिया]] द्वारा 2020 ब्रेकथ्रू ऑफ द ईयर अवार्ड से सम्मानित किया गया। <ref>{{cite web |author=Hamish Johnston |title=''Physics World'' announces its Breakthrough of the Year finalists for 2020 |date=10 Dec 2020 |website=Physics World |url=https://physicsworld.com/a/physics-world-announces-its-breakthrough-of-the-year-finalists-for-2020/}}</ref> | |||
=== यह भी देखें === | |||
* लो-κ डाइलेक्ट्रिक | * लो-κ डाइलेक्ट्रिक | ||
* इन्सुलेटर पर सिलिकॉन | * इन्सुलेटर पर सिलिकॉन | ||
Line 32: | Line 24: | ||
* [[अंतरिक्ष अन्वेषण में सिलिकॉन-जर्मेनियम थर्मोइलेक्ट्रिक्स का अनुप्रयोग]] | * [[अंतरिक्ष अन्वेषण में सिलिकॉन-जर्मेनियम थर्मोइलेक्ट्रिक्स का अनुप्रयोग]] | ||
==संदर्भ== | ===संदर्भ=== | ||
{{reflist}} | {{reflist}} | ||
==अग्रिम पठन== | ===अग्रिम पठन=== | ||
*{{cite book|author1=Raminderpal Singh|author2=Modest M. Oprysko|author3=David Harame|title=Silicon Germanium: Technology, Modeling, and Design|year=2004|publisher=IEEE Press / John Wiley & Sons|isbn=978-0-471-66091-0}} | *{{cite book|author1=Raminderpal Singh|author2=Modest M. Oprysko|author3=David Harame|title=Silicon Germanium: Technology, Modeling, and Design|year=2004|publisher=IEEE Press / John Wiley & Sons|isbn=978-0-471-66091-0}} | ||
*{{cite book|author=John D. Cressler|title=Circuits and Applications Using Silicon Heterostructure Devices|year=2007|publisher=CRC Press|isbn=978-1-4200-6695-1}} | *{{cite book|author=John D. Cressler|title=Circuits and Applications Using Silicon Heterostructure Devices|year=2007|publisher=CRC Press|isbn=978-1-4200-6695-1}} | ||
==बाहरी संबंध== | ===बाहरी संबंध=== | ||
*[https://web.archive.org/web/20070310201202/http://www.reed-electronics.com/semiconductor/article/CA6319057?industryid=3102 Ge Precursors for Strained Si and Compound Semiconductors]; ''Semiconductor International'', April 1, 2006. | *[https://web.archive.org/web/20070310201202/http://www.reed-electronics.com/semiconductor/article/CA6319057?industryid=3102 Ge Precursors for Strained Si and Compound Semiconductors]; ''Semiconductor International'', April 1, 2006. | ||
Revision as of 12:08, 6 June 2023
SiGe या सिलिकॉन-जर्मेनियम, सिलिकॉन और जर्मेनियम के किसी भी मोलर अनुपात के साथ अर्थात Si1-xGex के आणविक सूत्र के साथ एक मिश्र धातु है। यह प्रायः विषम द्विध्रुवीय ट्रांजिस्टर के लिए एकीकृत सर्किट (IC) में अर्धचालक सामग्री के रूप में या CMOS ट्रांजिस्टर के लिए विभेद-उत्प्रेरण परत के रूप में उपयोग किया जाता है। IBM ने 1989 में प्रौद्योगिकी को मुख्यधारा के निर्माण में पेश किया।[1] यह अपेक्षाकृत नई तकनीक मिश्रित-सिग्नल एकीकृत सर्किट | यह अपेक्षाकृत नई तकनीक मिश्रित-सिग्नल सर्किट और एनालॉग सर्किट में अवसर प्रदान करती है। SiGe का उपयोग उच्च तापमान अनुप्रयोगों (>700 K) के लिए ताप विद्युत सामग्री के रूप में भी किया जाता है।
उत्पादन
अर्धचालक के रूप में सिलिकॉन-जर्मेनियम के उपयोग का समर्थन बर्नी मेयर्सन ने किया था।[2] दशकों से इसकी प्राप्ति में देरी करने वाली चुनौती यह थी कि जर्मेनियम परमाणु सिलिकॉन परमाणुओं की तुलना में लगभग 4% बड़े होते हैं। सामान्य उच्च तापमान पर जिस पर सिलिकॉन ट्रांजिस्टर गढ़े गए थे, इन बड़े परमाणुओं को क्रिस्टलीय सिलिकॉन में जोड़कर प्रेरित विभेद ने बड़ी संख्या में दोष उत्पन्न किए, जिसके परिणामस्वरूप सामग्री का कोई उपयोग नहीं हुआ। मेयर्सन और सहकर्मियों की खोज की[3] उच्च तापमान प्रसंस्करण के लिए तत्कालीन विश्वास की आवश्यकता त्रुटिपूर्ण थी, जिससे पर्याप्त रूप से कम तापमान [4] पर SiGe विकास की अनुमति मिली, जैसे कि सभी व्यावहारिक उद्देश्यों के लिए कोई दोष नहीं बनाया गया था। एक बार उस बुनियादी अवरोध को हल करने के बाद, यह दर्शाया गया कि परिणामी SiGe सामग्री को पारंपरिक कम लागत वाले सिलिकॉन प्रसंस्करण टूलसेट का उपयोग करके उच्च प्रदर्शन वाले इलेक्ट्रॉनिक् में निर्मित किया जा सकता है।अधिक प्रासंगिक, परिणामी ट्रांजिस्टर का प्रदर्शन पारंपरिक रूप से निर्मित सिलिकॉन उपकरणों की सीमा से कहीं अधिक था, जो कम लागत वाली वाणिज्यिक बेतार संप्रेषण तकनीकों की एक नई पीढ़ी को सक्षम करता था।[5]जैसे कि वाईफाई। SiGe प्रक्रियाएं सिलिकॉन CMOS निर्माण के समान लागत प्राप्त करती हैं और गैलियम आर्सेनाइड जैसी अन्य विषम तकनीकों की तुलना में कम होती हैं।हाल ही में, ऑर्गेनोजर्मेनियम पूर्ववर्ती (जैसे आइसोबुटिलजर्मेन, एल्काइलजर्मेनियम ट्राइक्लोराइड्,और डाइमिथाइलैमिनोजर्मेनियम ट्राइक्लोराइड) की उच्च शुद्धता Ge, SiGe, और तनावपूर्ण सिलिकॉन जैसी Ge-युक्त फिल्मों के MOVPE निक्षेपण के लिए जर्मनी के लिए कम खतरनाक तरल विकल्प के रूप में जांच की गई है।[6][7],कई अर्धचालक प्रौद्योगिकी कंपनियों द्वारा SiGe फाउंड्री सेवाओं की पेशकश की जाती है। AMD ने SiGe स्ट्रेस्ड-सिलिकॉन तकनीक के लिए IBM के साथ एक संयुक्त विकास का खुलासा किया,[8]जो 65 nm प्रक्रिया को लक्षित करता है। TSMC SiGe निर्माण क्षमता भी बेचता है।
जुलाई 2015 में, IBM ने घोषणा की कि उसने 7 nm सिलिकॉन-जर्मेनियम प्रक्रिया का उपयोग करके ट्रांजिस्टर के कामकाजी नमूने बनाए हैं, जो एक समकालीन प्रक्रिया की तुलना में ट्रांजिस्टर की मात्रा में चार गुना वृद्धि का वादा करता है।[9]
SiGe ट्रांजिस्टर
This section does not cite any sources. (December 2008) (Learn how and when to remove this template message) |
This section may be too technical for most readers to understand.December 2017) (Learn how and when to remove this template message) ( |
SiGe CMOS लॉजिक को विषमसंधि द्विध्रुवी ट्रांजिस्टर के साथ एकीकृत करने की अनुमति देता है,[10]इसे मिश्रित-सिग्नल एकीकृत सर्किट के लिए उपयुक्त बनाता है।[11] पारंपरिक होमोजंक्शन द्विध्रुवी ट्रांजिस्टर की तुलना में विषमसंधि द्विध्रुवी ट्रांजिस्टर का फॉरवर्ड गेन और रिवर्स गेन कम होता है। यह बेहतर निम्न-वर्तमान और उच्च-आवृत्ति प्रदर्शन में अनुवाद करता है। यह बेहतर निम्न-वर्तमान और उच्च-आवृत्ति प्रदर्शन में अनुवाद करता है।समायोज्य बैंड अंतराल के साथ विषमसंधि तकनीक होने के नाते, SiGe सिलिकॉन-ओनली टी की तुलना में अधिक लचीले बैंडगैप ट्यूनिंग का अवसर प्रदान करता है।
सिलिकॉन-जर्मेनियम ऑन इंसुलेटर (SGOI) वर्तमान में कंप्यूटर चिप्स में कार्यरत सिलिकॉन ऑन इंसुलेटर (SOI) तकनीक के अनुरूप एक तकनीक है। SGOI MOS ट्रांजिस्टर गेट के नीचे क्रिस्टल जाली को दबाकर माइक्रोचिप्स के अंदर ट्रांजिस्टर की गति बढ़ाता है, जिसके परिणामस्वरूप बेहतर इलेक्ट्रॉन गतिशीलता और उच्च चलन धाराएं होती हैं। SiGe MOSFET, SiGe के कम बंधअंतराल मान के कारण कम जंक्शन रिसाव भी प्रदान कर सकता है। यद्यपि SGOI MOSFETs के साथ एक प्रमुख मुद्दा है।
थर्मोइलेक्ट्रिक अनुप्रयोग
वायेजर 1 और 2 अंतरिक्ष यान में एक सिलिकॉन-जर्मेनियम थर्मोइलेक्ट्रिक यन्त्र MHW-RTG3 का उपयोग किया गया था।[12]सिलिकॉन-जर्मेनियम थर्मोइलेक्ट्रिक उपकरणों का उपयोग अन्य MHW-RTGs और GPHS-RTGs में कैसिनी, गैलीलियो, यूलिसिस पर भी किया गया था।[13]
प्रकाश उत्सर्जन
एक हेक्सागोनल SiGe मिश्र धातु की संरचना को नियंत्रित करके, आइंडहोवन प्रौद्योगिकी विश्वविद्यालय के शोधकर्ताओं ने एक ऐसी सामग्री विकसित की है जो प्रकाश उत्सर्जित कर सकती है।[14] अपने इलेक्ट्रॉनिक गुणों के संयोजन में, यह विद्युत प्रवाह के अतिरिक्त प्रकाश का उपयोग करके डेटा स्थानांतरण को सक्षम करने के लिए एकल चिप में एकीकृत लेजर के उत्पादन की संभावना को प्रदर्शित करता है, ऊर्जा की खपत को कम करते हुए डेटा स्थानांतरण को गति देता है और शीतलन प्रणाली की आवश्यकता होती है।नीदरलैंड में आइंडहोवन यूनिवर्सिटी ऑफ टेक्नोलॉजी में प्रमुख लेखक एल्हम फडली, एलेन डिजस्ट्रा और एरिक बकर्स और जर्मनी में फ्रेडरिक-शिलर-यूनिवर्सिटेट जेना में जेन्स रेने सक्र्ट के साथ अंतर्राष्ट्रीय टीम को पत्रिका भौतिकी की दुनिया द्वारा 2020 ब्रेकथ्रू ऑफ द ईयर अवार्ड से सम्मानित किया गया। [15]
यह भी देखें
- लो-κ डाइलेक्ट्रिक
- इन्सुलेटर पर सिलिकॉन
- सिलिकॉन-टिन
- अंतरिक्ष अन्वेषण में सिलिकॉन-जर्मेनियम थर्मोइलेक्ट्रिक्स का अनुप्रयोग
संदर्भ
- ↑ Ouellette, Jennifer (June/July 2002). "Silicon–Germanium Gives Semiconductors the Edge". Archived 2008-05-17 at the Wayback Machine, The Industrial Physicist.
- ↑ Meyerson, Bernard S. (March 1994). "हाई-स्पीड सिलिकॉन-जर्मेनियम इलेक्ट्रॉनिक्स". Scientific American. 270 (3): 62–67. Bibcode:1994SciAm.270c..62M. doi:10.1038/scientificamerican0394-62.
- ↑ "Bistable Conditions for Low Temperature Silicon Epitaxy," Bernard S. Meyerson, Franz Himpsel and Kevin J. Uram, Appl. Phys. Lett. 57, 1034 (1990).
- ↑ B. S. Meyerson, "UHV/CVD growth of Si and Si:Ge alloys: chemistry, physics, and device applications," in Proceedings of the IEEE, vol. 80, no. 10, pp. 1592-1608, Oct. 1992, doi: 10.1109/5.168668.
- ↑ "SiGe HBTs Reach the Microwave and Millimeter-Wave Frontier," C. Kermarrec, T. Tewksbury, G. Dave, R. Baines, B. Meyerson, D. Harame and M. Gilbert, Proceedings of the 1994 Bipolar/BiCMOS Circuits & Technology Meeting, Minneapolis, Minn., Oct. 10-11, 1994, Sponsored by IEEE, (1994).
- ↑ Woelk, Egbert; Shenai-Khatkhate, Deodatta V.; DiCarlo, Ronald L.; Amamchyan, Artashes; Power, Michael B.; Lamare, Bruno; Beaudoin, Grégoire; Sagnes, Isabelle (January 2006). "उच्च शुद्धता वाली जर्मेनियम फिल्मों के लिए नॉवेल ऑर्गोजर्मेनियम OMVPE प्रीकर्सर डिजाइन करना". Journal of Crystal Growth. 287 (2): 684–687. Bibcode:2006JCrGr.287..684W. doi:10.1016/j.jcrysgro.2005.10.094.
- ↑ Shenai, Deo V.; DiCarlo, Ronald L.; Power, Michael B.; Amamchyan, Artashes; Goyette, Randall J.; Woelk, Egbert (January 2007). "MOVPE द्वारा आराम से ग्रेडेड SiGe परतों और तनावग्रस्त सिलिकॉन के लिए सुरक्षित वैकल्पिक तरल जर्मेनियम अग्रदूत". Journal of Crystal Growth. 298: 172–175. Bibcode:2007JCrGr.298..172S. doi:10.1016/j.jcrysgro.2006.10.194.
- ↑ AMD And IBM Unveil New, Higher Performance, More Power Efficient 65nm Process Technologies At Gathering Of Industry’s Top R&D Firms, retrieved at March 16, 2007.
- ↑ Markoff, John (9 July 2015). "आईबीएम ने बहुत अधिक क्षमता वाली चिप के कार्यशील संस्करण का खुलासा किया". The New York Times.
- ↑ "A 200 mm SiGe HBT BiCMOS Technology for Mixed Signal Applications," K. Schonenberg, M. Gilbert, G.D. Berg, S. Wu, M. Soyuer, K. A. Tallman, K. J. Stein, R. A. Groves, S. Subbanna, D.B. Colavito, D.A. Sunderland and B.S. Meyerson," Proceedings of the 1995 Bipolar/BiCMOS Circuits and Technology Meeting, p. 89-92, 1995.
- ↑ Cressler, J. D.; Niu, G. (2003). सिलिकॉन-जर्मेनियम हेटेरोजंक्शन द्विध्रुवी ट्रांजिस्टर. Artech House. p. 13.
- ↑ "थर्मोइलेक्ट्रिक्स इतिहास समयरेखा". Alphabet Energy. Archived from the original on 2019-08-17.
- ↑ G. L. Bennett, J. J. Lombardo, R. J. Hemler, G. Silverman, C. W. Whitmore, W. R. Amos, E. W. Johnson, A. Schock, R. W. Zocher, T. K. Keenan, J. C. Hagan, R. W. Englehart (26–29 June 2006). Mission of Daring: The General-Purpose Heat Source Radioisotope Thermoelectric Generator (PDF). 4th International Energy Conversion Engineering Conference and Exhibit (IECEC). San Diego, California.
{{cite conference}}
: CS1 maint: uses authors parameter (link) - ↑ Fadaly, Elham M. T.; Dijkstra, Alain; Suckert, Jens Renè; Ziss, Dorian; van Tilburg, Marvin A. J.; Mao, Chenyang; Ren, Yizhen; van Lange, Victor T.; Korzun, Ksenia; Kölling, Sebastian; Verheijen, Marcel A.; Busse, David; Rödl, Claudia; Furthmüller, Jürgen; Bechstedt, Friedhelm; Stangl, Julian; Finley, Jonathan J.; Botti, Silvana; Haverkort, Jos E. M.; Bakkers, Erik P. A. M. (April 2020). "हेक्सागोनल Ge और SiGe मिश्र धातुओं से प्रत्यक्ष-बैंडगैप उत्सर्जन". Nature. 580 (7802): 205–209. arXiv:1911.00726. Bibcode:2020Natur.580..205F. doi:10.1038/s41586-020-2150-y. PMID 32269353. S2CID 207870211.
- ↑ Hamish Johnston (10 Dec 2020). "Physics World announces its Breakthrough of the Year finalists for 2020". Physics World.
अग्रिम पठन
- Raminderpal Singh; Modest M. Oprysko; David Harame (2004). Silicon Germanium: Technology, Modeling, and Design. IEEE Press / John Wiley & Sons. ISBN 978-0-471-66091-0.
- John D. Cressler (2007). Circuits and Applications Using Silicon Heterostructure Devices. CRC Press. ISBN 978-1-4200-6695-1.
बाहरी संबंध
- Ge Precursors for Strained Si and Compound Semiconductors; Semiconductor International, April 1, 2006.