आव्यूह ज्यामितीय विधि: Difference between revisions

From Vigyanwiki
Line 55: Line 55:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 01/06/2023]]
[[Category:Created On 01/06/2023]]
[[Category:Vigyan Ready]]

Revision as of 17:01, 12 June 2023

संभाव्यता सिद्धांत में, आव्यूह ज्यामितीय विधि अर्ध-जन्म-मृत्यु प्रक्रियाओं के विश्लेषण के लिए एक विधि होती है, निरंतर-समय मार्कोव श्रृंखला जिसका संक्रमण दर आव्यूह एक दोहरावदार संरचना के साथ होता है।[1] इस पद्धति का विकास बड़े पैमाने पर मार्सेल एफ न्यूट्स और उनके छात्रों द्वारा 1975 के आसपास प्रारंभ किया गया था।[2]

विधि विवरण

इस विधि को निम्न प्रकार से त्रिकोणीय आव्यूह संरचना के साथ एक संक्रमण दर आव्यूह की आवश्यकता होती है

जहां प्रत्येक B00, B01, B10, A0, A1 और A2 आव्यूह है। स्थिर वितरण π लेखन π Q = 0 की गणना करने के लिए उप-वैक्टर π के लिए संतुलन समीकरणों पर विचार किया जाता हैi

गौर कीजिए कि संबंध

रखता है जहां R की दर आव्यूह है,[3] जिसकी गणना संख्यात्मक रूप से की जा सकती है। इसका प्रयोग करके हम लिखते है

जिसे π0 और π1 खोजने के लिए हल किया जा सकता है और इसलिए पुनरावृत्त रूप से सभी है πi

R की गणना

आव्यूह R की गणना चक्रीय कमी[4] या लघुगणकीय कमी का उपयोग करके की जा सकती है।[5][6]

आव्यूह विश्लेषणात्मक विधि

आव्यूह विश्लेषणात्मक विधि आव्यूह ज्यामितीय समाधान विधि का एक अधिक जटिल संस्करण होता है जिसका उपयोग M/G/1 आव्यूह के साथ मॉडल का विश्लेषण करने के लिए किया जाता है।[7] ऐसे मॉडल कठिन होते है क्योंकि π जैसा कोई संबंध नहीं है= πi = π1 Ri – 1 उपरोक्त का उपयोग किया जाता है।[8]

बाहरी संबंध

संदर्भ

  1. Harrison, Peter G.; Patel, Naresh M. (1992). संचार नेटवर्क और कंप्यूटर आर्किटेक्चर का प्रदर्शन मॉडलिंग. Addison-Wesley. pp. 317–322. ISBN 0-201-54419-9.
  2. Asmussen, S. R. (2003). "Random Walks". एप्लाइड संभावना और कतारें. Stochastic Modelling and Applied Probability. Vol. 51. pp. 220–243. doi:10.1007/0-387-21525-5_8. ISBN 978-0-387-00211-8.
  3. Ramaswami, V. (1990). "कतारबद्ध सिद्धांत में मैट्रिक्स प्रतिमानों के लिए एक द्वैत प्रमेय". Communications in Statistics. Stochastic Models. 6: 151–161. doi:10.1080/15326349908807141.
  4. Bini, D.; Meini, B. (1996). "पंक्तिबद्ध समस्याओं में उत्पन्न होने वाले अरैखिक मैट्रिक्स समीकरण के समाधान पर". SIAM Journal on Matrix Analysis and Applications. 17 (4): 906. doi:10.1137/S0895479895284804.
  5. Latouche, Guy; Ramaswami, V. (1993). "अर्ध-जन्म-मृत्यु प्रक्रियाओं के लिए एक लघुगणक न्यूनीकरण एल्गोरिथम". Journal of Applied Probability. Applied Probability Trust. 30 (3): 650–674. JSTOR 3214773.
  6. Pérez, J. F.; Van Houdt, B. (2011). "अर्ध-जन्म-मृत्यु प्रक्रियाएं प्रतिबंधित संक्रमण और इसके अनुप्रयोगों के साथ" (PDF). Performance Evaluation. 68 (2): 126. doi:10.1016/j.peva.2010.04.003. hdl:10067/859850151162165141.
  7. Alfa, A. S.; Ramaswami, V. (2011). "Matrix Analytic Method: Overview and History". संचालन अनुसंधान और प्रबंधन विज्ञान का विली एनसाइक्लोपीडिया. doi:10.1002/9780470400531.eorms0631. ISBN 9780470400531.
  8. Bolch, Gunter; Greiner, Stefan; de Meer, Hermann; Trivedi, Kishor Shridharbhai (2006). Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications (2 ed.). John Wiley & Sons, Inc. p. 259. ISBN 0471565253.