हीलियम मंदक: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 70: Line 70:


== आणविक आयन ==
== आणविक आयन ==
He2+ एक संबंधित आयन है जिसे आधा सहसंयोजक बांध द्वारा बांधा जाता है। इसे हेलियम विद्युतीय विस्फोट में बनाया जा सकता है। यह इलेक्ट्रॉन के साथ पुनर्मिलन करके इलेक्ट्रॉनिक रूप में उत्तेजित हेलियम डाइमर मोलेक्यूल (He2(a3Σ+u) उत्सर्जक) बनाता है। इन दोनों मोलेक्यूलों के बहुत कम आयामी दूरियों के साथ अधिक सामान्य आकार होता है। He2+ N2, Ar, Xe, O2 और CO2 के साथ प्रतिक्रिया करके कैशियों और नीत्रल हेलियम अणुओं का गठन करता है<ref>{{cite journal |last1=Jahani |first1=H.R. |last2=Gylys |first2=V.T. |last3=Collins |first3=C.B. |last4=Pouvesle |first4=J.M. |last5=Stevefelt |first5=J. |title=The importance of three-body processes to reaction kinetics at atmospheric pressures. III. Reactions of He/sub 2//sup +/ with selected atomic and molecular reactants |journal=IEEE Journal of Quantum Electronics |date=March 1988 |volume=24 |issue=3 |pages=568–572 |doi=10.1109/3.162}}</ref>हेलियम समर्पण डाइमर He22+ अत्यंत विसंगतिपूर्ण होता है और जब इसका विविच्छेदन होता है, तो बहुत ऊर्जा मुक्त होती है, लगभग 835 किलोजूल प्रति मोल के आसपास। इस आयन की गतिशील स्थिरता को लाइनस पॉलिंग ने पूर्वानुमानित किया था। 33.2 कैलोकैल प्रति मोल का एनर्जी बैरियर तत्काल अपघटन को रोकता है। यह आयन हाइड्रोजन मोलेक्यूल के समान-इलेक्ट्रॉनिक है। He22+ एक द्विगुण पॉजिटिव आवेश वाला सबसे छोटा संभव मोलेक्यूल है। इसे मास स्पेक्ट्रोस्कोपी का उपयोग करके पता लगाया जा सकता है।<ref name="guilhe2p">{{cite journal |last1=Guilhaus|first1=Michael|last2=Brenton|first2=A. Gareth|last3=Beynon|first3=John H.|last4=Rabrenović|first4=Mila|last5=von Ragué Schleyer|first5=Paul|title=He<sub>2</sub><sup>2+</sup>, the experimental detection of a remarkable molecule|journal=Journal of the Chemical Society, Chemical Communications|date=1985|issue=4|pages=210–211|doi=10.1039/C39850000210}}</ref><ref name=guil984>{{cite journal|last1=Guilhaus|first1=M.|last2=Brenton|first2=A. G.|last3=Beynon|first3=J. H.|last4=Rabrenovic|first4=M.|last5=Schleyer|first5=P. von Rague|title=First observation of He<sub>2</sub><sup>2+</sup>: charge stripping of He<sub>2</sub><sup>+</sup> using a double-focusing mass spectrometer|journal=Journal of Physics B: Atomic and Molecular Physics|date=14 September 1984|volume=17|issue=17|pages=L605–L610|doi=10.1088/0022-3700/17/17/010|bibcode=1984JPhB...17L.605G}}</ref>हेलियम नकारात्मक डाइमर He2− अस्थायी होता है और यह 1984 में बे, कोग्गिओला और पीटरसन द्वारा हीलियम डाईकैशन He2+ को सीजियम वाष्प से गुजारकर खोजा गया था। इसके बाद, एच. एच. मिशेल्स ने सिद्ध किया कि इसका अस्तित्व होता है और यह निष्क्रिय रूप से आस्थित है। उन्होंने निष्कर्ष निकाला कि He2− का 4Πg अवस्था He2 के a2Σ+u अवस्था के मुकाबले बांधा हुआ है। He−[4P∘] आयन के लिए गणनात्मक इलेक्ट्रॉन सम्बंधितता 0.077 eV है। वहीं, गणनात्मक इलेक्ट्रॉन सम्बंधितता  की गणना इलेक्ट्रॉन की ऊर्जा बदलाव के आधार पर की जाती है जब एक इलेक्ट्रॉन आयन के साथ जुड़ता है। He−[4P∘] आयन की गणनात्मक इलेक्ट्रॉन सम्बंधितता 0.233 eV है। He2− लंबे समय तक विकिरण के माध्यम से 5/2g तत्व के माध्यम से 10 μsec में विकिरण होता है।4Πg अवस्था में 1σ2g1σu2σg2πu विद्युतकीय विन्यास होती है, इसकी गणनात्मक इलेक्ट्रॉन सम्बंधितता E 0.18±0.03 eV है, और इसका जीवनकाल 135±15 μsec है; केवल v=0 ध्वनित स्थिति इस लंबे जीवित स्थिति के लिए उत्तरदायी है।<sup>।<ref>{{Cite journal|last=Andersen|first=T.|date=1995|title=भंडारण रिंग में निर्धारित नकारात्मक आयनों का जीवनकाल|journal=Physica Scripta|language=en|volume=1995|issue=T59|pages=230–235|doi=10.1088/0031-8949/1995/T59/031|issn=1402-4896|bibcode=1995PhST...59..230A|s2cid=250868275 }}</ref>तरंगीय हीलियम एनियन भी तरल हीलियम में पाया जाता है जिसे 22 ईवी से अधिक ऊर्जा स्तर वाले इलेक्ट्रॉन्स द्वारा उत्तेजित किया गया है। यह पहले तरल He में प्रवेश द्वारा होता है, जिसमें 1.2 ईवी लिया जाता है, उसके बाद एक He एटम इलेक्ट्रॉन को 3P स्तर तक उत्तेजित किया जाता है, जो 19.8 ईवी लेता है। फिर इलेक्ट्रॉन एक और हीलियम एटम के साथ मिलकर उत्तेजित हीलियम एटम के साथ मिल सकता है और He2− बनाने के लिए। He2− हीलियम एटमों को द्वारा खींचता है, इसलिए इसके चारों ओर एक खाली स्थान होता है। यह तरल हीलियम की सतह की ओर प्रवास करने की प्रवृत्ति रखता है।
He2+ एक संबंधित आयन है जिसे आधा सहसंयोजक बांध द्वारा बांधा जाता है। इसे हेलियम विद्युतीय विस्फोट में बनाया जा सकता है। यह इलेक्ट्रॉन के साथ पुनर्मिलन करके इलेक्ट्रॉनिक रूप में उत्तेजित हेलियम डाइमर मोलेक्यूल (He2(a3Σ+u) उत्सर्जक) बनाता है। इन दोनों मोलेक्यूलों के बहुत कम आयामी दूरियों के साथ अधिक सामान्य आकार होता है। He2+ N2, Ar, Xe, O2 और CO2 के साथ प्रतिक्रिया करके कैशियों और नीत्रल हेलियम अणुओं का गठन करता है<ref>{{cite journal |last1=Jahani |first1=H.R. |last2=Gylys |first2=V.T. |last3=Collins |first3=C.B. |last4=Pouvesle |first4=J.M. |last5=Stevefelt |first5=J. |title=The importance of three-body processes to reaction kinetics at atmospheric pressures. III. Reactions of He/sub 2//sup +/ with selected atomic and molecular reactants |journal=IEEE Journal of Quantum Electronics |date=March 1988 |volume=24 |issue=3 |pages=568–572 |doi=10.1109/3.162}}</ref>हेलियम समर्पण डाइमर He22+ अत्यंत विसंगतिपूर्ण होता है और जब इसका विविच्छेदन होता है, तो बहुत ऊर्जा मुक्त होती है, लगभग 835 किलोजूल प्रति मोल के आसपास। इस आयन की गतिशील स्थिरता को लाइनस पॉलिंग ने पूर्वानुमानित किया था। 33.2 कैलोकैल प्रति मोल का एनर्जी बैरियर तत्काल अपघटन को रोकता है। यह आयन हाइड्रोजन मोलेक्यूल के समान-इलेक्ट्रॉनिक है। He22+ एक द्विगुण पॉजिटिव आवेश वाला सबसे छोटा संभव मोलेक्यूल है। इसे मास स्पेक्ट्रोस्कोपी का उपयोग करके पता लगाया जा सकता है।<ref name="guilhe2p">{{cite journal |last1=Guilhaus|first1=Michael|last2=Brenton|first2=A. Gareth|last3=Beynon|first3=John H.|last4=Rabrenović|first4=Mila|last5=von Ragué Schleyer|first5=Paul|title=He<sub>2</sub><sup>2+</sup>, the experimental detection of a remarkable molecule|journal=Journal of the Chemical Society, Chemical Communications|date=1985|issue=4|pages=210–211|doi=10.1039/C39850000210}}</ref><ref name=guil984>{{cite journal|last1=Guilhaus|first1=M.|last2=Brenton|first2=A. G.|last3=Beynon|first3=J. H.|last4=Rabrenovic|first4=M.|last5=Schleyer|first5=P. von Rague|title=First observation of He<sub>2</sub><sup>2+</sup>: charge stripping of He<sub>2</sub><sup>+</sup> using a double-focusing mass spectrometer|journal=Journal of Physics B: Atomic and Molecular Physics|date=14 September 1984|volume=17|issue=17|pages=L605–L610|doi=10.1088/0022-3700/17/17/010|bibcode=1984JPhB...17L.605G}}</ref>हेलियम नकारात्मक डाइमर He2− अस्थायी होता है और यह 1984 में बे, कोग्गिओला और पीटरसन द्वारा हीलियम डाईकैशन He2+ को सीजियम वाष्प से गुजारकर खोजा गया था। इसके बाद, एच. एच. मिशेल्स ने सिद्ध किया कि इसका अस्तित्व होता है और यह निष्क्रिय रूप से आस्थित है। उन्होंने निष्कर्ष निकाला कि He2− का 4Πg अवस्था He2 के a2Σ+u अवस्था के मुकाबले बांधा हुआ है। He−[4P∘] आयन के लिए गणनात्मक इलेक्ट्रॉन सम्बंधितता 0.077 eV है। वहीं, गणनात्मक इलेक्ट्रॉन सम्बंधितता  की गणना इलेक्ट्रॉन की ऊर्जा बदलाव के आधार पर की जाती है जब एक इलेक्ट्रॉन आयन के साथ जुड़ता है। He−[4P∘] आयन की गणनात्मक इलेक्ट्रॉन सम्बंधितता 0.233 eV है। He2− लंबे समय तक विकिरण के माध्यम से 5/2g तत्व के माध्यम से 10 μsec में विकिरण होता है।4Πg अवस्था में 1σ2g1σu2σg2πu विद्युतकीय विन्यास होती है, इसकी गणनात्मक इलेक्ट्रॉन सम्बंधितता E 0.18±0.03 eV है, और इसका जीवनकाल 135±15 μsec है; केवल v=0 ध्वनित स्थिति इस लंबे जीवित स्थिति के लिए उत्तरदायी है।<sup>।<ref>{{Cite journal|last=Andersen|first=T.|date=1995|title=भंडारण रिंग में निर्धारित नकारात्मक आयनों का जीवनकाल|journal=Physica Scripta|language=en|volume=1995|issue=T59|pages=230–235|doi=10.1088/0031-8949/1995/T59/031|issn=1402-4896|bibcode=1995PhST...59..230A|s2cid=250868275 }}</ref>तरंगीय हीलियम एनियन भी तरल हीलियम में पाया जाता है जिसे 22 ईवी से अधिक ऊर्जा स्तर वाले इलेक्ट्रॉन्स द्वारा उत्तेजित किया गया है। यह पहले तरल He में प्रवेश द्वारा होता है, जिसमें 1.2 ईवी लिया जाता है, उसके बाद एक He एटम इलेक्ट्रॉन को 3P स्तर तक उत्तेजित किया जाता है, जो 19.8 ईवी लेता है। फिर इलेक्ट्रॉन एक और हीलियम एटम के साथ मिलकर उत्तेजित हीलियम एटम के साथ मिल सकता है और He2− बनाने के लिए He2− हीलियम एटमों को द्वारा खींचता है, इसलिए इसके चारों ओर एक खाली स्थान होता है। यह तरल हीलियम की सतह की ओर प्रवास करने की प्रवृत्ति रखता है।
== एक्साइमर्स ==
== एक्साइमर्स ==
एक सामान्य हीलियम परमाणु में, 1s कक्षक में दो इलेक्ट्रॉन पाए जाते हैं। हालाँकि, यदि पर्याप्त ऊर्जा जोड़ी जाती है, तो एक इलेक्ट्रॉन को उच्च ऊर्जा स्तर तक बढ़ाया जा सकता है। यह उच्च ऊर्जा वाला इलेक्ट्रॉन वैलेंस इलेक्ट्रॉन बन सकता है, और जो इलेक्ट्रॉन 1s कक्षीय में रहता है वह कोर इलेक्ट्रॉन है। दो उत्साहित हीलियम परमाणु एक सहसंयोजक बंधन के साथ प्रतिक्रिया कर सकते हैं, जो डाइहेलियम नामक अणु बनाते हैं जो एक माइक्रोसेकंड के आदेश के दूसरे या इतने ही समय तक रहता है।<ref name="Raunhardt009">{{cite thesis|last1=Raunhardt|first1=Matthias|title=मेटास्टेबल अवस्थाओं में परमाणुओं और अणुओं की उत्पत्ति और स्पेक्ट्रोस्कोपी|date=2009|page=84|url=http://e-collection.library.ethz.ch/eserv/eth:41903/eth-41903-02.pdf}}</ref>2 में उत्तेजित हीलियम परमाणु<sup>3</sup>एस अवस्था एक घंटे तक रह सकती है, और क्षार धातु परमाणुओं की तरह प्रतिक्रिया कर सकती है।<ref name=Vrin002>{{cite journal |last1=Vrinceanu|first1=D.|last2=Sadeghpour|first2=H.|title=He(1 ^{1}S)–He(2 ^{3}S) collision and radiative transition at low temperatures|journal=Physical Review A|date=June 2002|volume=65|issue=6|pages=062712|doi=10.1103/PhysRevA.65.062712|bibcode=2002PhRvA..65f2712V}}</ref>
एक साधारण हीलियम परमाणु में, दो इलेक्ट्रॉन 1s कक्ष में पाए जाते हैं।.यद्यपि, यदि पर्याप्त ऊर्जा जोड़ी जाए, तो एक इलेक्ट्रॉन को उच्च ऊर्जा स्तर पर उठाया जा सकता है। यह उच्च ऊर्जा वाला इलेक्ट्रॉन मुख्य इलेक्ट्रॉन बन सकता है, और जो इलेक्ट्रॉन 1s कक्ष में रहता है, वह एक कोर इलेक्ट्रॉन होता है। दो उत्तेजित हीलियम परमाणु एक सहसार्य बांध के साथ प्रतिक्रिया कर सकते हैं और एक मोलेक्यूल बना सकते हैं जिसे डीहीलियम कहा जाता है, जो एक माइक्रोसेकंड या इससे थोड़ा समय तक बना रहती है। एक घबराहटी हीलियम परमाणु 23S स्थिति में एक घंटे तक टिक सकते हैं और अल्कली धातु परमाणु की तरह प्रतिक्रिया कर सकते हैं।<ref name=Vrin002>{{cite journal |last1=Vrinceanu|first1=D.|last2=Sadeghpour|first2=H.|title=He(1 ^{1}S)–He(2 ^{3}S) collision and radiative transition at low temperatures|journal=Physical Review A|date=June 2002|volume=65|issue=6|pages=062712|doi=10.1103/PhysRevA.65.062712|bibcode=2002PhRvA..65f2712V}}</ref>
1900 में पहला सुराग देखा गया कि डाइहेलियम उपस्थित    है जब डब्ल्यू। ह्यूज ने हीलियम डिस्चार्ज में एक बैंड स्पेक्ट्रम देखा। हालाँकि, स्पेक्ट्रम की प्रकृति के बारे में कोई जानकारी प्रकाशित नहीं की गई थी। स्वतंत्र रूप से जर्मनी से ई. गोल्डस्टीन और लंदन से डब्ल्यू.ई. कर्टिस ने 1913 में स्पेक्ट्रम का विवरण प्रकाशित किया।<ref name=curtis13>{{cite journal|last1=Curtis|first1=W. E.|title=हीलियम से संबद्ध एक नया बैंड स्पेक्ट्रम|journal=Proceedings of the Royal Society of London. Series A|date=19 August 1913|volume=89|issue=608|pages=146–149|doi=10.1098/rspa.1913.0073|jstor=93468|bibcode=1913RSPSA..89..146C|doi-access=free}}</ref><ref>{{cite journal|last1=Goldstein|first1=E.|title=Über ein noch nicht beschriebenes, anscheinend dem Helium angehörendes Spektrum|journal=Verhandlungen der Physikalischen Gessellschaft |date=1913|volume=15|issue=10|pages=402–412}}</ref> कर्टिस को प्रथम विश्व युद्ध में सैन्य सेवा के लिए बुलाया गया था, और स्पेक्ट्रम का अध्ययन [[अल्फ्रेड फाउलर]] द्वारा जारी रखा गया था। फाउलर ने माना कि डबल सिर वाले बैंड प्रिंसिपल सीरीज़ (स्पेक्ट्रोस्कोपी) के अनुरूप दो अनुक्रमों में गिर गए और लाइन स्पेक्ट्रा में फैल गए।<ref name=Fowler15>{{cite journal|last1=Fowler|first1=Alfred|title=हीलियम से संबद्ध बैंड स्पेक्ट्रम में एक नई प्रकार की श्रृंखला|journal=Proceedings of the Royal Society of London. Series A|date=1 March 1915|volume=91|issue=627|pages=208–216|doi=10.1098/rspa.1915.0011|jstor=93423|bibcode=1915RSPSA..91..208F|doi-access=free}}</ref>
उत्सर्जन बैंड स्पेक्ट्रम कई बैंड दिखाता है जो लाल रंग की ओर घटते हैं, जिसका अर्थ है कि रेखाएं पतली हो जाती हैं और स्पेक्ट्रम लंबी तरंग दैर्ध्य की ओर कमजोर हो जाता है। 5732 Å पर हरे रंग के [[बैंड सिर]] वाला केवल एक बैंड बैंगनी रंग की ओर गिरता है। अन्य मजबूत बैंड हेड 6400 (लाल), 4649, 4626, 4546, 4157.8, 3777, 3677, 3665, 3356.5, और 3348.5 Å पर हैं। स्पेक्ट्रम में कुछ हेडलेस बैंड और अतिरिक्त लाइनें भी हैं।<ref name=curtis13/>5133 और 5108 पर हेड के साथ कमजोर बैंड पाए जाते हैं।<ref name=Fowler15/>


यदि संयोजी इलेक्ट्रॉन 2s 3s, या 3d कक्षीय में है, a <sup>1</sup>एस<sub>u</sub> राज्य के परिणाम; अगर यह 2p 3p या 4p में है, a <sup>1</sup>एस<sub>g</sub> राज्य के परिणाम।<ref name=Guber72/>जमीनी अवस्था X है<sup>1</sup>एस<sub>g</sub><sup>+</sup>.<ref name=Kriste89>{{cite journal|last1=Kristensen|first1=Martin|last2=Keiding|first2=Søren R.|last3=van der Zande|first3=Wim J.|title=Lifetime determination of the long-lived B <sup>1</sup>Π<sub>g</sub> state in He<sub>2</sub><sup>*</sup> by photofragment spectroscopy|journal=Chemical Physics Letters|date=December 1989|volume=164|issue=6|pages=600–604|doi=10.1016/0009-2614(89)85266-2|bibcode=1989CPL...164..600K}}</ref>
डीहीलियम की मौजूदगी के पहले संकेत 1900 में वी. ह्यूस ने हीलियम के उत्सर्जन में एक बैंड स्पेक्ट्रम का अवलोकन करते हुए देखे थे। यद्यपि, स्पेक्ट्रम की प्रकृति के बारे में कोई जानकारी प्रकाशित नहीं की गई थी। जर्मनी के . गोल्डस्टीन और लंदन के डब्ल्यू. . कर्टिस ने 1913 में स्पेक्ट्रम के विवरण प्रकाशित किए। कर्टिस को प्रथम विश्वयुद्ध में सैन्य सेवा के लिए बुलाया गया था, और स्पेक्ट्रम का अध्ययन अल्फ्रेड फाउलर ने जारी रखा। फाउलर ने मान्यता प्राप्त किया कि दो-सिर वाले बैंड दो श्रृंखलाओं में बंटते हैं, जो रेखीय स्पेक्ट्रम में मुख्य और विस्तारित श्रृंखलाओं के समान हैं।<ref name="Fowler15">{{cite journal|last1=Fowler|first1=Alfred|title=हीलियम से संबद्ध बैंड स्पेक्ट्रम में एक नई प्रकार की श्रृंखला|journal=Proceedings of the Royal Society of London. Series A|date=1 March 1915|volume=91|issue=627|pages=208–216|doi=10.1098/rspa.1915.0011|jstor=93423|bibcode=1915RSPSA..91..208F|doi-access=free}}</ref>उत्सर्जन बैंड स्पेक्ट्रम में कई बैंड होते हैं जो लाली की ओर गिरते हैं, यानी कि रेखाएं पतली होती हैं और स्पेक्ट्रम लंबी तारंगदैर्यों की ओर कमजोर होता है। केवल एक बैंड ही हरित रंग के एक बैंड हेड (5732 एंग्स्ट्रॉम) की ओर गिरता है। अन्य मजबूत बैंड हेड 6400, 4649, 4626, 4546, 4157.8, 3777, 3677, 3665, 3356.5 और 3348.5 एंग्स्ट्रॉम पर पाए जाते हैं। स्पेक्ट्रम में कुछ बैंड हेड रहित होते हैं और अतिरिक्त रेखाएं भी होती हैं। महीने बैंड हेड 5133 और 5108 एंग्स्ट्रॉम पर पाए जाते हैं।
He की तीन निम्नतम त्रिक अवस्थाएँ<sub>2</sub> पदनाम हैं ए<sup>3</sup>एस<sub>u</sub>, बी<sup>3</सुप>पी<sub>g</sub> और सी<sup>3</sup>एस<sub>g</sub>.<ref name=Hazell95>{{cite journal|last1=Hazell|first1=I.|last2=Norregaard|first2=A.|last3=Bjerre|first3=N.|title=Highly Excited Rotational and Vibrational Levels of the Lowest Triplet States of He<sub>2</sub>: Level Positions and Fine Structure|journal=Journal of Molecular Spectroscopy|date=July 1995 |volume=172|issue=1|pages=135–152|doi=10.1006/jmsp.1995.1162|bibcode=1995JMoSp.172..135H}}</ref> द ए<sup>3</sup>एस<sub>u</sub> बिना कंपन वाले राज्य (v = 0) में 18 s का लंबा मेटास्टेबल जीवनकाल होता है, जो अन्य राज्यों या अक्रिय गैस उत्खननकर्ताओं के जीवनकाल की तुलना में बहुत अधिक होता है।<ref name=Raunhardt009/>स्पष्टीकरण यह है कि ए<sup>3</sup>एस<sub>u</sub> राज्य में कोई इलेक्ट्रॉन कक्षीय कोणीय संवेग नहीं है, क्योंकि सभी इलेक्ट्रॉन हीलियम अवस्था के लिए S कक्षकों में हैं।<ref name=Raunhardt009/>


He की निचली स्थित एकक अवस्थाएँ<sub>2</sub> क्षेत्र<sup>1</sup>एस<sub>u</sub>, बी<sup>1</सुप>पी<sub>g</sub> और सी<sup>1</sup>एस<sub>g</sub>.<ref name=Focsa98>{{cite journal |last1=Focsa|first1=C.|last2=Bernath|first2=P.F.|last3=Colin|first3=R.|title=The Low-Lying States of He<sub>2</sub>|journal=Journal of Molecular Spectroscopy|date=September 1998|volume=191|issue=1|pages=209–214|doi=10.1006/jmsp.1998.7637|pmid=9724597|bibcode=1998JMoSp.191..209F}}</ref> एक्साइमर अणु वैन डेर वाल्स बंधुआ हीलियम डिमर की तुलना में बहुत छोटे और अधिक कसकर बंधे होते हैं। के लिए<sup>1</sup>एस<sub>u</sub> 103.9 pm के परमाणुओं के पृथक्करण के साथ, बाध्यकारी ऊर्जा लगभग 2.5 eV है। सी<sup>1</sup>एस<sub>g</sub> स्थिति में बाध्यकारी ऊर्जा 0.643 eV है और परमाणुओं के मध्य      अलगाव 109.1 pm है।<ref name=Guber72>{{cite journal|last1=Guberman|first1=S.L.|last2=Goddard|first2=W.A.|title=On the origin of energy barriers in the excited states of He<sub>2</sub>|journal=Chemical Physics Letters|date=15 June 1972 |volume=14|issue=4|pages=460–465|doi=10.1016/0009-2614(72)80240-9|bibcode=1972CPL....14..460G}}</ref> इन दोनों अवस्थाओं में अधिकतम लगभग 300 pm के साथ दूरियों की एक प्रतिकारक सीमा होती है, जहाँ अगर उत्तेजित परमाणु पास आते हैं, तो उन्हें एक ऊर्जा अवरोध को पार करना पड़ता है।<ref name=Guber72/>एकल अवस्था ए<sup>1</sup>एस<sup>+</sup><sub>u</sub> केवल नैनोसेकंड लंबे जीवनकाल के साथ बहुत अस्थिर है।<ref>{{cite arXiv|last1=Carter|first1=F.W.|last2=Hertel|first2=S.A.|last3=Rooks|first3=M.J.|last4=McClintock|first4=P.V.E.|last5=McKinsey|first5=D.N.|last6=Prober|first6=D.E.|title=Calorimetric observation of single He∗ 2 excimers in a 100 mK He bath|eprint=1605.00694v1|date=4 May 2016|class=cond-mat.other}}</ref>
यदि मानक वालेंस इलेक्ट्रॉन 2s, 3s या 3d कक्ष में होता है, तो एक 1Σu अवस्था प्राप्त होती है; यदि यह 2p, 3p या 4p में होता है, तो एक 1Σg अवस्था प्राप्त होती है। मूल अवस्था X1Σg+ होती है।<ref name="Kriste89">{{cite journal|last1=Kristensen|first1=Martin|last2=Keiding|first2=Søren R.|last3=van der Zande|first3=Wim J.|title=Lifetime determination of the long-lived B <sup>1</sup>Π<sub>g</sub> state in He<sub>2</sub><sup>*</sup> by photofragment spectroscopy|journal=Chemical Physics Letters|date=December 1989|volume=164|issue=6|pages=600–604|doi=10.1016/0009-2614(89)85266-2|bibcode=1989CPL...164..600K}}</ref>He2 की तीन सबसे निम्न त्रिपलेट अवस्थाएं निर्देशनों के साथ होती हैं: a3Σu, b3Πg और c3Σg। वाइब्रेशन के बिना (v=0) वाली a3Σu अवस्था का लंबा मेटास्थायी जीवनकाल 18 सेकंड होता है, जो अन्य अवस्थाओं या अचंभित गैस एक्साइमर्स के जीवनकाल से काफी लंबा होता है। यह स्पष्टीकरण है कि a3Σu अवस्था में कोई इलेक्ट्रॉन कक्षीय कणीय कुण्डलीय पथचालना नहीं होती है, क्योंकि हीलियम अवस्था के लिए सभी इलेक्ट्रॉन S कक्षों में होते हैं।<sup><ref name="Raunhardt009">{{cite thesis|last1=Raunhardt|first1=Matthias|title=मेटास्टेबल अवस्थाओं में परमाणुओं और अणुओं की उत्पत्ति और स्पेक्ट्रोस्कोपी|date=2009|page=84|url=http://e-collection.library.ethz.ch/eserv/eth:41903/eth-41903-02.pdf}}</ref>
हे का स्पेक्ट्रम<sub>2</sub> अलग-अलग इलेक्ट्रॉनिक संक्रमणों के साथ संयुक्त विभिन्न रोटेशन दरों और कंपन राज्यों के मध्य      संक्रमण के कारण बड़ी संख्या में लाइनों के कारण एक्सीमर में बैंड होते हैं। लाइनों को पी, क्यू और आर शाखाओं में बांटा जा सकता है। लेकिन सम संख्या वाले घूर्णी स्तरों में क्यू शाखा रेखाएँ नहीं होती हैं, दोनों नाभिक स्पिन 0 होने के कारण। अणु के कई इलेक्ट्रॉनिक राज्यों का अध्ययन किया गया है, जिसमें 25 तक खोल की संख्या वाले [[रिडबर्ग राज्य]] शामिल हैं।<ref name=Panock80>{{cite journal|last1=Panock|first1=R.|last2=Freeman|first2=R.R.|last3=Storz|first3=R.H.|last4=Miller|first4=Terry A.|title=Observation of laser driven transitions to high rydberg states of He<sub>2</sub>|journal=Chemical Physics Letters|date=September 1980|volume=74|issue=2|pages=203–206|doi=10.1016/0009-2614(80)85142-6|bibcode=1980CPL....74..203P}}</ref>
 
हीलियम डिस्चार्ज लैंप हीलियम अणुओं से [[वैक्यूम पराबैंगनी]] विकिरण उत्पन्न करते हैं। जब उच्च ऊर्जा प्रोटॉन हीलियम गैस से टकराते हैं तो यह He के उत्तेजित अत्यधिक कंपन वाले अणुओं के क्षय द्वारा लगभग 600 Å पर यूवी उत्सर्जन भी पैदा करता है।<sub>2</sub> एक में<sup>1</sup>एस<sub>u</sub> जमीनी स्थिति के लिए राज्य।<ref name=Hill/>उत्साहित हीलियम अणुओं से यूवी विकिरण का उपयोग स्पंदित निर्वहन आयनीकरण डिटेक्टर (पीडीएचआईडी) में किया जाता है जो मिश्रित गैसों की सामग्री को प्रति अरब भागों के नीचे के स्तर पर पता लगाने में सक्षम है।<ref name=Cai13>{{cite journal|last1=Cai|first1=Huamin|last2=Stearns|first2=Stanley D.|title=Pulsed discharge helium ionization detector with multiple combined bias/collecting electrodes for gas chromatography|journal=Journal of Chromatography A|date=April 2013 |volume=1284|pages=163–173|doi=10.1016/j.chroma.2013.01.100|pmid=23484651}}</ref>
He2 की निम्न सिंगलेट अवस्थाएं A1Σu, B1Πg और C1Σg होती हैं। एक्साइमर मोलेक्यूल वैन देर वाल्स बॉन्डेड हीलियम डाइमर से काफी छोटे और अधिक कस्तूरीय बंधित होते हैं। A1Σu अवस्था के लिए बाइंडिंग ऊर्जा लगभग 2.5 ईवी होती है, जिसके संपर्क में आत्मक अलगाव 103.9 पीएम होता है।<sup><ref name="Guber72">{{cite journal|last1=Guberman|first1=S.L.|last2=Goddard|first2=W.A.|title=On the origin of energy barriers in the excited states of He<sub>2</sub>|journal=Chemical Physics Letters|date=15 June 1972 |volume=14|issue=4|pages=460–465|doi=10.1016/0009-2614(72)80240-9|bibcode=1972CPL....14..460G}}</ref> इन दोनों अवस्थाओं में अधिकतम लगभग 300 pm के साथ दूरियों की एक प्रतिकारक सीमा होती है, जहाँ अगर उत्तेजित परमाणु पास आते हैं, तो उन्हें एक ऊर्जा अवरोध को पार करना पड़ता है।<ref name="Guber72" />एकल अवस्था ए<sup>1</sup>एस<sup>+</sup><sub>u</sub> केवल नैनोसेकंड लंबे जीवनकाल के साथ बहुत अस्थिर है।<ref>{{cite arXiv|last1=Carter|first1=F.W.|last2=Hertel|first2=S.A.|last3=Rooks|first3=M.J.|last4=McClintock|first4=P.V.E.|last5=McKinsey|first5=D.N.|last6=Prober|first6=D.E.|title=Calorimetric observation of single He∗ 2 excimers in a 100 mK He bath|eprint=1605.00694v1|date=4 May 2016|class=cond-mat.other}}</ref>
हॉपफ़ील्ड कॉन्टिनम 600 और 1000Å के मध्य      तरंग दैर्ध्य में पराबैंगनी प्रकाश का एक बैंड है जो हीलियम अणुओं के फोटोडिसोसिएशन द्वारा बनता है।<ref name=Hill>{{cite journal |last1=Hill|first1=Peter|title=हीलियम अणुओं की पराबैंगनी निरंतरता|journal=Physical Review A|date=November 1989|volume=40|issue=9|pages=5006–5016|doi=10.1103/PhysRevA.40.5006|pmid=9902760|bibcode=1989PhRvA..40.5006H}}</ref>
हे का स्पेक्ट्रम<sub>2</sub> अलग-अलग इलेक्ट्रॉनिक संक्रमणों के साथ संयुक्त विभिन्न रोटेशन दरों और कंपन राज्यों के मध्य      संक्रमण के कारण बड़ी संख्या में लाइनों के कारण एक्सीमर में बैंड होते हैं। लाइनों को पी, क्यू और आर शाखाओं में बांटा जा सकता है। लेकिन सम संख्या वाले घूर्णी स्तरों में क्यू शाखा रेखाएँ नहीं होती हैं, दोनों नाभिक स्पिन 0 होने के कारण। अणु के कई इलेक्ट्रॉनिक राज्यों का अध्ययन किया गया है, जिसमें 25 तक खोल की संख्या वाले [[रिडबर्ग राज्य]] शामिल हैं।<ref name="Panock80">{{cite journal|last1=Panock|first1=R.|last2=Freeman|first2=R.R.|last3=Storz|first3=R.H.|last4=Miller|first4=Terry A.|title=Observation of laser driven transitions to high rydberg states of He<sub>2</sub>|journal=Chemical Physics Letters|date=September 1980|volume=74|issue=2|pages=203–206|doi=10.1016/0009-2614(80)85142-6|bibcode=1980CPL....74..203P}}</ref>
हीलियम अणुओं के निर्माण के लिए एक तंत्र सबसे पहले एक हीलियम परमाणु 2 इलेक्ट्रॉनों में एक इलेक्ट्रॉन के साथ उत्तेजित हो जाता है।<sup>1</sup>एस कक्षीय। यह उत्तेजित परमाणु तीन शरीर संघों में दो अन्य गैर-उत्तेजित हीलियम परमाणुओं से मिलता है और ए बनाने के लिए प्रतिक्रिया करता है<sup>1</sup>एस<sub>u</sub> अधिकतम कंपन और एक हीलियम परमाणु के साथ राज्य अणु।<ref name=Hill/>
हीलियम डिस्चार्ज लैंप हीलियम अणुओं से [[वैक्यूम पराबैंगनी]] विकिरण उत्पन्न करते हैं। जब उच्च ऊर्जा प्रोटॉन हीलियम गैस से टकराते हैं तो यह He के उत्तेजित अत्यधिक कंपन वाले अणुओं के क्षय द्वारा लगभग 600 Å पर यूवी उत्सर्जन भी पैदा करता है।<sub>2</sub> एक में<sup>1</sup>एस<sub>u</sub> जमीनी स्थिति के लिए राज्य।<ref name="Hill" />उत्साहित हीलियम अणुओं से यूवी विकिरण का उपयोग स्पंदित निर्वहन आयनीकरण डिटेक्टर (पीडीएचआईडी) में किया जाता है जो मिश्रित गैसों की सामग्री को प्रति अरब भागों के नीचे के स्तर पर पता लगाने में सक्षम है।<ref name="Cai13">{{cite journal|last1=Cai|first1=Huamin|last2=Stearns|first2=Stanley D.|title=Pulsed discharge helium ionization detector with multiple combined bias/collecting electrodes for gas chromatography|journal=Journal of Chromatography A|date=April 2013 |volume=1284|pages=163–173|doi=10.1016/j.chroma.2013.01.100|pmid=23484651}}</ref>
हॉपफ़ील्ड कॉन्टिनम 600 और 1000Å के मध्य      तरंग दैर्ध्य में पराबैंगनी प्रकाश का एक बैंड है जो हीलियम अणुओं के फोटोडिसोसिएशन द्वारा बनता है।<ref name="Hill">{{cite journal |last1=Hill|first1=Peter|title=हीलियम अणुओं की पराबैंगनी निरंतरता|journal=Physical Review A|date=November 1989|volume=40|issue=9|pages=5006–5016|doi=10.1103/PhysRevA.40.5006|pmid=9902760|bibcode=1989PhRvA..40.5006H}}</ref>
हीलियम अणुओं के निर्माण के लिए एक तंत्र सबसे पहले एक हीलियम परमाणु 2 इलेक्ट्रॉनों में एक इलेक्ट्रॉन के साथ उत्तेजित हो जाता है।<sup>1</sup>एस कक्षीय। यह उत्तेजित परमाणु तीन शरीर संघों में दो अन्य गैर-उत्तेजित हीलियम परमाणुओं से मिलता है और ए बनाने के लिए प्रतिक्रिया करता है<sup>1</sup>एस<sub>u</sub> अधिकतम कंपन और एक हीलियम परमाणु के साथ राज्य अणु।<ref name="Hill" />


पंचक अवस्था में हीलियम के अणु <sup>5</sup>एस<sup>+</sup><sub>g</sub> हे (2) में दो स्पिन ध्रुवीकृत हीलियम परमाणुओं की प्रतिक्रिया से बन सकता है<sup>3</sup>एस<sub>1</sub>) बताता है। इस अणु का उच्च ऊर्जा स्तर 20 eV है। अनुमत उच्चतम कंपन स्तर v=14 है।<ref>{{cite journal |last1=Beams|first1=Timothy J.|last2=Peach|first2=Gillian|last3=Whittingham|first3=Ian B.|title=Spin-dipole-induced lifetime of the least-bound <sup>5</sup>Σ<sup>+</sup><sub>g</sub> state of He(2<sup>3</sup>S<sub>1</sub>)+He(2<sup>3</sup>S<sub>1</sub>)|journal=Physical Review A|date=18 July 2006|volume=74|issue=1|pages=014702|doi=10.1103/PhysRevA.74.014702|bibcode=2006PhRvA..74a4702B|arxiv=physics/0604189|s2cid=117149989}}</ref>
पंचक अवस्था में हीलियम के अणु <sup>5</sup>एस<sup>+</sup><sub>g</sub> हे (2) में दो स्पिन ध्रुवीकृत हीलियम परमाणुओं की प्रतिक्रिया से बन सकता है<sup>3</sup>एस<sub>1</sub>) बताता है। इस अणु का उच्च ऊर्जा स्तर 20 eV है। अनुमत उच्चतम कंपन स्तर v=14 है।<ref>{{cite journal |last1=Beams|first1=Timothy J.|last2=Peach|first2=Gillian|last3=Whittingham|first3=Ian B.|title=Spin-dipole-induced lifetime of the least-bound <sup>5</sup>Σ<sup>+</sup><sub>g</sub> state of He(2<sup>3</sup>S<sub>1</sub>)+He(2<sup>3</sup>S<sub>1</sub>)|journal=Physical Review A|date=18 July 2006|volume=74|issue=1|pages=014702|doi=10.1103/PhysRevA.74.014702|bibcode=2006PhRvA..74a4702B|arxiv=physics/0604189|s2cid=117149989}}</ref>

Revision as of 10:22, 9 June 2023

helium dimer
Helium-dimer-2D-model.png
Names
Other names
dihelium
Identifiers
3D model (JSmol)
ChEBI
48
  • [1]: InChI=1S/He2/c1-2
    Key: GHVQTHCLRQIINU-UHFFFAOYSA-N
  • [He][He]
Properties
He2
Molar mass 8.0052 g/mol
Appearance colorless gas
Thermochemistry
1.1×10−5 kcal/mol
Related compounds
Related van der Waals molecules
LiHe NeHe2 He3
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N (what is checkY☒N ?)

हेलियम डाइमर एक वैन देर वाल्स यौगिक है जिसका सूत्र He2 होता है। यह दो हेलियम अणुओं से मिलकर बना होता है।[2]यह रासायनिक तत्व सबसे बड़ा द्विपरमाणु मोलेक्यूल है, जो दो अणुओं के संयुक्त होने के कारण बनता है इस डाइमर को एकत्रित रखने वाला बांध इतना कमजोर होता है कि यदि मोलेक्यूल घुमती है या बहुत अधिक हिलती है, तो यह टूट जाएगा। यह केवल बहुत कम शीतयांत्रिक तापमान पर उपस्थित हो सकता है।

दो उत्तेजित हेलियम अणुओं को एक दूसरे के साथ भी बांधा जा सकता है, जिसे एक्साइमर के रूप में जाना जाता है।यह विज्ञानिक खोज 1912 में पहली बार देखे गए तारणों के साथ हेलियम के स्पेक्ट्रम से किया गया। He2 के रूप में लिखा जाने वाला इसका अर्थ है कि एक उत्तेजित अवस्था को दर्शाने वाला होता है, यह पहला ज्ञात रायडबर्ग मोलेक्यूल है। कई द्विहेलियम आयन भी उपस्थित हैं, जिनका वैध्रुत्व एकाधिक एक, धनाधिक एक और धनाधिक दो होता है। दो हेलियम अणुओं को फुलरीन की खिड़की में बांधे बिना एक साथ संकीर्ण किया जा सकता है।

अणु

आणविक कक्षीय सिद्धांत के आधार पर, He2 उपस्थित नहीं होना चाहिए, और परमाणुओं के मध्य एक रासायनिक बंधन नहीं बन सकता। यद्यपि, वैन डेर वाल्स बल हीलियम परमाणुओं के मध्य उपस्थित है, जैसा कि तरल हीलियम के अस्तित्व से दिखाया गया है, और परमाणुओं के मध्य की दूरी की एक निश्चित सीमा पर आकर्षण प्रतिकर्षण से अधिक होता है। तो वैन डेर वाल्स बल से बंधे दो हीलियम परमाणुओं से बना एक अणु उपस्थित हो सकता है।[3] इस अणु के अस्तित्व को 1930 के प्रारंभ में प्रस्तावित किया गया था।[4]

He2 अपनी मूल अवस्था में एकत्रित दो अणुओं का सबसे बड़ा ज्ञात रासायनिक यौगिक है, जिसकी अत्यंत लंबी बांध लंबाई के कारण होती है।[3]He2 मोलेक्यूल के बीच अणुओं के बीच एक बड़ी अंतरदूरी दूरी होती है, जो लगभग 5200 पिकोमीटर (= 52 आंगस्ट्रॉम) होती है। यह रो-वाइब्रानिक उत्तेजना के बिना द्विपरमाणु मोलेक्यूल के लिए सबसे बड़ी अंतरदूरी है।बांधनी ऊर्जा केवल लगभग 1.3 मिलीकेल्विन (mK), 10−7 इलेक्ट्रॉन वोल्ट (eV) या 1.1×10−5 कैलोरी/मोल के बराबर होती है। यह बांध कोहजी मोलेक्यूल में हाइड्रोजन मोलेक्यूल के सापेक्ष में 5000 गुना कमजोर होता है।

डाइमर में हेलियम के दोनों अणुओं को एकल फोटन द्वारा आयनित किया जा सकता है, जिसकी ऊर्जा 63.86 इलेक्ट्रॉन वोल्ट होती है। इस द्विगुण आयनन के लिए प्रस्तावित तंत्र है कि फोटन एक अणु से एक इलेक्ट्रॉन निकालता है, और फिर वह इलेक्ट्रॉन दूसरे हेलियम अणु को मारता है और उसे भी आयनित करता है।[5] फिर डाइमर दो हेलियम कैटाइयन आयनों के रूप में विस्फोटित होता है, क्योंकि ये दोनों आयन एक ही गति के साथ परस्पर आपस मे विपरीत दिशा में टकराते हैं,।[5]

1928 में जॉन क्लार्क स्लेटर द्वारा पहली बार वैन डेर वाल्स बलों से बंधे एक डायहेलियम अणु का प्रस्ताव दिया गया था।[6]


गठन

हेलियम डाइमर उस समय छोटी मात्रा में बनता है जब हेलियम गैस एक नोजल के माध्यम से फैलता है और ठंडा होता है। केवल आइसोटोप 4He ही इस प्रकार के मोलेक्यूल का गठन कर सकता है; 4He3He और 3He3He उपस्थित नहीं होते हैं, क्योंकि उनके पास एक स्थिर बाउंड स्थिति नहीं होती है। गैस धारण के माध्यम से बनने वाले डाइमर की मात्रा लगभग एक प्रतिशत की होती है।[5]


आणविक आयन

He2+ एक संबंधित आयन है जिसे आधा सहसंयोजक बांध द्वारा बांधा जाता है। इसे हेलियम विद्युतीय विस्फोट में बनाया जा सकता है। यह इलेक्ट्रॉन के साथ पुनर्मिलन करके इलेक्ट्रॉनिक रूप में उत्तेजित हेलियम डाइमर मोलेक्यूल (He2(a3Σ+u) उत्सर्जक) बनाता है। इन दोनों मोलेक्यूलों के बहुत कम आयामी दूरियों के साथ अधिक सामान्य आकार होता है। He2+ N2, Ar, Xe, O2 और CO2 के साथ प्रतिक्रिया करके कैशियों और नीत्रल हेलियम अणुओं का गठन करता है[7]हेलियम समर्पण डाइमर He22+ अत्यंत विसंगतिपूर्ण होता है और जब इसका विविच्छेदन होता है, तो बहुत ऊर्जा मुक्त होती है, लगभग 835 किलोजूल प्रति मोल के आसपास। इस आयन की गतिशील स्थिरता को लाइनस पॉलिंग ने पूर्वानुमानित किया था। 33.2 कैलोकैल प्रति मोल का एनर्जी बैरियर तत्काल अपघटन को रोकता है। यह आयन हाइड्रोजन मोलेक्यूल के समान-इलेक्ट्रॉनिक है। He22+ एक द्विगुण पॉजिटिव आवेश वाला सबसे छोटा संभव मोलेक्यूल है। इसे मास स्पेक्ट्रोस्कोपी का उपयोग करके पता लगाया जा सकता है।[8][9]हेलियम नकारात्मक डाइमर He2− अस्थायी होता है और यह 1984 में बे, कोग्गिओला और पीटरसन द्वारा हीलियम डाईकैशन He2+ को सीजियम वाष्प से गुजारकर खोजा गया था। इसके बाद, एच. एच. मिशेल्स ने सिद्ध किया कि इसका अस्तित्व होता है और यह निष्क्रिय रूप से आस्थित है। उन्होंने निष्कर्ष निकाला कि He2− का 4Πg अवस्था He2 के a2Σ+u अवस्था के मुकाबले बांधा हुआ है। He−[4P∘] आयन के लिए गणनात्मक इलेक्ट्रॉन सम्बंधितता 0.077 eV है। वहीं, गणनात्मक इलेक्ट्रॉन सम्बंधितता की गणना इलेक्ट्रॉन की ऊर्जा बदलाव के आधार पर की जाती है जब एक इलेक्ट्रॉन आयन के साथ जुड़ता है। He−[4P∘] आयन की गणनात्मक इलेक्ट्रॉन सम्बंधितता 0.233 eV है। He2− लंबे समय तक विकिरण के माध्यम से 5/2g तत्व के माध्यम से 10 μsec में विकिरण होता है।4Πg अवस्था में 1σ2g1σu2σg2πu विद्युतकीय विन्यास होती है, इसकी गणनात्मक इलेक्ट्रॉन सम्बंधितता E 0.18±0.03 eV है, और इसका जीवनकाल 135±15 μsec है; केवल v=0 ध्वनित स्थिति इस लंबे जीवित स्थिति के लिए उत्तरदायी है।[10]तरंगीय हीलियम एनियन भी तरल हीलियम में पाया जाता है जिसे 22 ईवी से अधिक ऊर्जा स्तर वाले इलेक्ट्रॉन्स द्वारा उत्तेजित किया गया है। यह पहले तरल He में प्रवेश द्वारा होता है, जिसमें 1.2 ईवी लिया जाता है, उसके बाद एक He एटम इलेक्ट्रॉन को 3P स्तर तक उत्तेजित किया जाता है, जो 19.8 ईवी लेता है। फिर इलेक्ट्रॉन एक और हीलियम एटम के साथ मिलकर उत्तेजित हीलियम एटम के साथ मिल सकता है और He2− बनाने के लिए He2− हीलियम एटमों को द्वारा खींचता है, इसलिए इसके चारों ओर एक खाली स्थान होता है। यह तरल हीलियम की सतह की ओर प्रवास करने की प्रवृत्ति रखता है।

एक्साइमर्स

एक साधारण हीलियम परमाणु में, दो इलेक्ट्रॉन 1s कक्ष में पाए जाते हैं।.यद्यपि, यदि पर्याप्त ऊर्जा जोड़ी जाए, तो एक इलेक्ट्रॉन को उच्च ऊर्जा स्तर पर उठाया जा सकता है। यह उच्च ऊर्जा वाला इलेक्ट्रॉन मुख्य इलेक्ट्रॉन बन सकता है, और जो इलेक्ट्रॉन 1s कक्ष में रहता है, वह एक कोर इलेक्ट्रॉन होता है। दो उत्तेजित हीलियम परमाणु एक सहसार्य बांध के साथ प्रतिक्रिया कर सकते हैं और एक मोलेक्यूल बना सकते हैं जिसे डीहीलियम कहा जाता है, जो एक माइक्रोसेकंड या इससे थोड़ा समय तक बना रहती है। एक घबराहटी हीलियम परमाणु 23S स्थिति में एक घंटे तक टिक सकते हैं और अल्कली धातु परमाणु की तरह प्रतिक्रिया कर सकते हैं।[11]

डीहीलियम की मौजूदगी के पहले संकेत 1900 में वी. ह्यूस ने हीलियम के उत्सर्जन में एक बैंड स्पेक्ट्रम का अवलोकन करते हुए देखे थे। यद्यपि, स्पेक्ट्रम की प्रकृति के बारे में कोई जानकारी प्रकाशित नहीं की गई थी। जर्मनी के ई. गोल्डस्टीन और लंदन के डब्ल्यू. ई. कर्टिस ने 1913 में स्पेक्ट्रम के विवरण प्रकाशित किए। कर्टिस को प्रथम विश्वयुद्ध में सैन्य सेवा के लिए बुलाया गया था, और स्पेक्ट्रम का अध्ययन अल्फ्रेड फाउलर ने जारी रखा। फाउलर ने मान्यता प्राप्त किया कि दो-सिर वाले बैंड दो श्रृंखलाओं में बंटते हैं, जो रेखीय स्पेक्ट्रम में मुख्य और विस्तारित श्रृंखलाओं के समान हैं।[12]उत्सर्जन बैंड स्पेक्ट्रम में कई बैंड होते हैं जो लाली की ओर गिरते हैं, यानी कि रेखाएं पतली होती हैं और स्पेक्ट्रम लंबी तारंगदैर्यों की ओर कमजोर होता है। केवल एक बैंड ही हरित रंग के एक बैंड हेड (5732 एंग्स्ट्रॉम) की ओर गिरता है। अन्य मजबूत बैंड हेड 6400, 4649, 4626, 4546, 4157.8, 3777, 3677, 3665, 3356.5 और 3348.5 एंग्स्ट्रॉम पर पाए जाते हैं। स्पेक्ट्रम में कुछ बैंड हेड रहित होते हैं और अतिरिक्त रेखाएं भी होती हैं। महीने बैंड हेड 5133 और 5108 एंग्स्ट्रॉम पर पाए जाते हैं।

यदि मानक वालेंस इलेक्ट्रॉन 2s, 3s या 3d कक्ष में होता है, तो एक 1Σu अवस्था प्राप्त होती है; यदि यह 2p, 3p या 4p में होता है, तो एक 1Σg अवस्था प्राप्त होती है। मूल अवस्था X1Σg+ होती है।[13]He2 की तीन सबसे निम्न त्रिपलेट अवस्थाएं निर्देशनों के साथ होती हैं: a3Σu, b3Πg और c3Σg। वाइब्रेशन के बिना (v=0) वाली a3Σu अवस्था का लंबा मेटास्थायी जीवनकाल 18 सेकंड होता है, जो अन्य अवस्थाओं या अचंभित गैस एक्साइमर्स के जीवनकाल से काफी लंबा होता है। यह स्पष्टीकरण है कि a3Σu अवस्था में कोई इलेक्ट्रॉन कक्षीय कणीय कुण्डलीय पथचालना नहीं होती है, क्योंकि हीलियम अवस्था के लिए सभी इलेक्ट्रॉन S कक्षों में होते हैं।[14]

He2 की निम्न सिंगलेट अवस्थाएं A1Σu, B1Πg और C1Σg होती हैं। एक्साइमर मोलेक्यूल वैन देर वाल्स बॉन्डेड हीलियम डाइमर से काफी छोटे और अधिक कस्तूरीय बंधित होते हैं। A1Σu अवस्था के लिए बाइंडिंग ऊर्जा लगभग 2.5 ईवी होती है, जिसके संपर्क में आत्मक अलगाव 103.9 पीएम होता है।[15] इन दोनों अवस्थाओं में अधिकतम लगभग 300 pm के साथ दूरियों की एक प्रतिकारक सीमा होती है, जहाँ अगर उत्तेजित परमाणु पास आते हैं, तो उन्हें एक ऊर्जा अवरोध को पार करना पड़ता है।[15]एकल अवस्था ए1एस+u केवल नैनोसेकंड लंबे जीवनकाल के साथ बहुत अस्थिर है।[16] हे का स्पेक्ट्रम2 अलग-अलग इलेक्ट्रॉनिक संक्रमणों के साथ संयुक्त विभिन्न रोटेशन दरों और कंपन राज्यों के मध्य संक्रमण के कारण बड़ी संख्या में लाइनों के कारण एक्सीमर में बैंड होते हैं। लाइनों को पी, क्यू और आर शाखाओं में बांटा जा सकता है। लेकिन सम संख्या वाले घूर्णी स्तरों में क्यू शाखा रेखाएँ नहीं होती हैं, दोनों नाभिक स्पिन 0 होने के कारण। अणु के कई इलेक्ट्रॉनिक राज्यों का अध्ययन किया गया है, जिसमें 25 तक खोल की संख्या वाले रिडबर्ग राज्य शामिल हैं।[17] हीलियम डिस्चार्ज लैंप हीलियम अणुओं से वैक्यूम पराबैंगनी विकिरण उत्पन्न करते हैं। जब उच्च ऊर्जा प्रोटॉन हीलियम गैस से टकराते हैं तो यह He के उत्तेजित अत्यधिक कंपन वाले अणुओं के क्षय द्वारा लगभग 600 Å पर यूवी उत्सर्जन भी पैदा करता है।2 एक में1एसu जमीनी स्थिति के लिए राज्य।[18]उत्साहित हीलियम अणुओं से यूवी विकिरण का उपयोग स्पंदित निर्वहन आयनीकरण डिटेक्टर (पीडीएचआईडी) में किया जाता है जो मिश्रित गैसों की सामग्री को प्रति अरब भागों के नीचे के स्तर पर पता लगाने में सक्षम है।[19] हॉपफ़ील्ड कॉन्टिनम 600 और 1000Å के मध्य तरंग दैर्ध्य में पराबैंगनी प्रकाश का एक बैंड है जो हीलियम अणुओं के फोटोडिसोसिएशन द्वारा बनता है।[18] हीलियम अणुओं के निर्माण के लिए एक तंत्र सबसे पहले एक हीलियम परमाणु 2 इलेक्ट्रॉनों में एक इलेक्ट्रॉन के साथ उत्तेजित हो जाता है।1एस कक्षीय। यह उत्तेजित परमाणु तीन शरीर संघों में दो अन्य गैर-उत्तेजित हीलियम परमाणुओं से मिलता है और ए बनाने के लिए प्रतिक्रिया करता है1एसu अधिकतम कंपन और एक हीलियम परमाणु के साथ राज्य अणु।[18]

पंचक अवस्था में हीलियम के अणु 5एस+g हे (2) में दो स्पिन ध्रुवीकृत हीलियम परमाणुओं की प्रतिक्रिया से बन सकता है3एस1) बताता है। इस अणु का उच्च ऊर्जा स्तर 20 eV है। अनुमत उच्चतम कंपन स्तर v=14 है।[20] तरल हीलियम में एक्साइमर एक विलायक बुलबुला बनाता है। में एक 3d एक हे बताता है*
2
अणु वायुमंडलीय दबाव पर त्रिज्या में 12.7 Å बुलबुले से घिरा हुआ है। जब दबाव 24 वायुमंडल तक बढ़ा दिया जाता है तो बुलबुले की त्रिज्या 10.8 Å तक सिकुड़ जाती है। यह बदलते बुलबुले का आकार प्रतिदीप्ति बैंड में बदलाव का कारण बनता है।[21]

state K electronic angular momentum Λ electronic spin S Hund's coupling case type energy dissociation energy eV length pm vibration levels
A1Σu 1,3,5,7 singlet 2.5 103.9
B1Πg singlet
C1Σg 0,2,4,6 singlet
a3Σu 1,3,5,7 triplet
b3Πg triplet
c3Σg 0,2,4,6 0 1 b triplet
5Σ+g quintet


चुंबकीय संघनन

बहुत मजबूत चुंबकीय क्षेत्र में, (लगभग 750,000 टेस्ला) और पर्याप्त कम तापमान में, हीलियम परमाणु आकर्षित होते हैं, और रैखिक श्रृंखला भी बना सकते हैं। यह सफेद बौनों और न्यूट्रॉन सितारों में हो सकता है।[22] चुंबकीय क्षेत्र बढ़ने पर बंधन की लंबाई और पृथक्करण ऊर्जा दोनों में वृद्धि होती है।[23]


प्रयोग करें

हीलियम डिस्चार्ज लैंप में डाइहेलियम एक्साइमर एक महत्वपूर्ण घटक है।

डायहेलियम आयन का दूसरा उपयोग कम तापमान वाले प्लाज्मा का उपयोग करते हुए परिवेशी आयनीकरण तकनीकों में होता है। इसमें हीलियम परमाणु उत्तेजित होते हैं, और फिर डाइहेलियम आयन उत्पन्न करने के लिए गठबंधन करते हैं। वह2+ N के साथ प्रतिक्रिया करना जारी रखता है2 एन बनाने के लिए हवा में2+. मास स्पेक्ट्रोस्कोपी में उपयोग किए जाने वाले सकारात्मक आयन बनाने के लिए ये आयन एक नमूना सतह के साथ प्रतिक्रिया करते हैं। हीलियम डिमर युक्त प्लाज़्मा का तापमान 30 डिग्री सेल्सियस जितना कम हो सकता है, और इससे नमूनों को गर्मी से होने वाली क्षति कम हो जाती है।[24]

क्लस्टर

वह2 अन्य परमाणुओं के साथ वैन डेर वाल्स यौगिक बनाने के लिए दिखाया गया है जैसे बड़े क्लस्टर बनाते हैं 24एमजीहे2 और 40</सुप>कहे2.[25] हीलियम ट्रिमर | हीलियम-4 ट्रिमर (4वह3), तीन हीलियम परमाणुओं के एक समूह के बारे में भविष्यवाणी की गई है कि वह उत्तेजित अवस्था में होगा जो कि एफिमोव अवस्था है।[26][27] यह 2015 में प्रयोगात्मक रूप से पुष्टि की गई है।[28]


पिंजरा

C70 फुलरीन|C सहित बड़े फुलरीन के अंदर दो हीलियम परमाणु फिट हो सकते हैं70और C84 फुलरीन | सी84. इन्हें हीलियम-3 परमाणु चुंबकीय अनुनाद | के परमाणु चुंबकीय अनुनाद द्वारा पता लगाया जा सकता है 3उसके पास एक छोटी शिफ्ट है, और मास स्पेक्ट्रोमेट्री द्वारा। सी84 संलग्न हीलियम के साथ 20% He हो सकता है2@सी84, जबकि सी78 10% है और सी76 8% है। बड़ी गुहाओं में अधिक परमाणु धारण करने की संभावना अधिक होती है।[29] यहां तक ​​कि जब दो हीलियम परमाणुओं को एक छोटे से पिंजरे में एक-दूसरे के निकट रखा जाता है, तब भी उनके मध्य कोई रासायनिक बंधन नहीं होता है।[30][31] C में दो He परमाणुओं की उपस्थिति60 फुलरीन केज का केवल फुलरीन की प्रतिक्रियाशीलता पर एक छोटा सा प्रभाव होने की भविष्यवाणी की गई है।[32] प्रभाव यह है कि एंडोहेड्रल हीलियम परमाणुओं से इलेक्ट्रॉनों को वापस ले लिया जाता है, जिससे उन्हें हे का उत्पादन करने के लिए थोड़ा सकारात्मक आंशिक आवेश मिलता है।2δ+, जिनमें अपरिवर्तित हीलियम परमाणुओं की तुलना में अधिक मजबूत बंधन होता है।[33] हालाँकि, लॉडिन परिभाषा के अनुसार एक बंधन उपस्थित है।[34]

सी के अंदर दो हीलियम परमाणु60 पिंजरे को 1.979 Å से अलग किया जाता है और हीलियम परमाणु से कार्बन पिंजरे की दूरी 2.507 Å होती है। चार्ज ट्रांसफर प्रत्येक हीलियम परमाणु को 0.011 इलेक्ट्रॉन चार्ज यूनिट देता है। He-He जोड़ी के लिए कम से कम 10 कंपन स्तर होने चाहिए।[34]


संदर्भ

  1. "Substance Name: Dihelium". Toxnet.
  2. Schöllkopf, W; Toennies, JP (25 November 1994). "छोटे वैन डेर वाल्स समूहों का गैर-विनाशकारी सामूहिक चयन". Science. 266 (5189): 1345–8. Bibcode:1994Sci...266.1345S. doi:10.1126/science.266.5189.1345. PMID 17772840. S2CID 23043700.
  3. 3.0 3.1 Kolganova, Elena; Motovilov, Alexander; Sandhas, Werner (November 2004). "Scattering length of the helium-atom–helium-dimer collision". Physical Review A. 70 (5): 052711. arXiv:physics/0408019. Bibcode:2004PhRvA..70e2711K. doi:10.1103/PhysRevA.70.052711. S2CID 118311511.
  4. Glockler, Geo. (1937). "जटिल गठन". Transactions of the Faraday Society. 33: 224. doi:10.1039/TF9373300224. (subscription required)
  5. 5.0 5.1 5.2 Havermeier, T.; Jahnke, T.; Kreidi, K.; Wallauer, R.; Voss, S.; Schöffler, M.; Schössler, S.; Foucar, L.; Neumann, N.; Titze, J.; Sann, H.; Kühnel, M.; Voigtsberger, J.; Malakzadeh, A.; Sisourat, N.; Schöllkopf, W.; Schmidt-Böcking, H.; Grisenti, R. E.; Dörner, R. (April 2010). "हीलियम डिमर का सिंगल फोटॉन डबल आयोनाइजेशन". Physical Review Letters. 104 (15): 153401. arXiv:1006.2667. Bibcode:2010PhRvL.104o3401H. doi:10.1103/PhysRevLett.104.153401. PMID 20481987. S2CID 13319551.
  6. Slater, J. (September 1928). "हीलियम की सामान्य स्थिति". Physical Review. 32 (3): 349–360. Bibcode:1928PhRv...32..349S. doi:10.1103/PhysRev.32.349.
  7. Jahani, H.R.; Gylys, V.T.; Collins, C.B.; Pouvesle, J.M.; Stevefelt, J. (March 1988). "The importance of three-body processes to reaction kinetics at atmospheric pressures. III. Reactions of He/sub 2//sup +/ with selected atomic and molecular reactants". IEEE Journal of Quantum Electronics. 24 (3): 568–572. doi:10.1109/3.162.
  8. Guilhaus, Michael; Brenton, A. Gareth; Beynon, John H.; Rabrenović, Mila; von Ragué Schleyer, Paul (1985). "He22+, the experimental detection of a remarkable molecule". Journal of the Chemical Society, Chemical Communications (4): 210–211. doi:10.1039/C39850000210.
  9. Guilhaus, M.; Brenton, A. G.; Beynon, J. H.; Rabrenovic, M.; Schleyer, P. von Rague (14 September 1984). "First observation of He22+: charge stripping of He2+ using a double-focusing mass spectrometer". Journal of Physics B: Atomic and Molecular Physics. 17 (17): L605–L610. Bibcode:1984JPhB...17L.605G. doi:10.1088/0022-3700/17/17/010.
  10. Andersen, T. (1995). "भंडारण रिंग में निर्धारित नकारात्मक आयनों का जीवनकाल". Physica Scripta (in English). 1995 (T59): 230–235. Bibcode:1995PhST...59..230A. doi:10.1088/0031-8949/1995/T59/031. ISSN 1402-4896. S2CID 250868275.
  11. Vrinceanu, D.; Sadeghpour, H. (June 2002). "He(1 ^{1}S)–He(2 ^{3}S) collision and radiative transition at low temperatures". Physical Review A. 65 (6): 062712. Bibcode:2002PhRvA..65f2712V. doi:10.1103/PhysRevA.65.062712.
  12. Fowler, Alfred (1 March 1915). "हीलियम से संबद्ध बैंड स्पेक्ट्रम में एक नई प्रकार की श्रृंखला". Proceedings of the Royal Society of London. Series A. 91 (627): 208–216. Bibcode:1915RSPSA..91..208F. doi:10.1098/rspa.1915.0011. JSTOR 93423.
  13. Kristensen, Martin; Keiding, Søren R.; van der Zande, Wim J. (December 1989). "Lifetime determination of the long-lived B 1Πg state in He2* by photofragment spectroscopy". Chemical Physics Letters. 164 (6): 600–604. Bibcode:1989CPL...164..600K. doi:10.1016/0009-2614(89)85266-2.
  14. Raunhardt, Matthias (2009). मेटास्टेबल अवस्थाओं में परमाणुओं और अणुओं की उत्पत्ति और स्पेक्ट्रोस्कोपी (PDF) (Thesis). p. 84.
  15. 15.0 15.1 Guberman, S.L.; Goddard, W.A. (15 June 1972). "On the origin of energy barriers in the excited states of He2". Chemical Physics Letters. 14 (4): 460–465. Bibcode:1972CPL....14..460G. doi:10.1016/0009-2614(72)80240-9.
  16. Carter, F.W.; Hertel, S.A.; Rooks, M.J.; McClintock, P.V.E.; McKinsey, D.N.; Prober, D.E. (4 May 2016). "Calorimetric observation of single He∗ 2 excimers in a 100 mK He bath". arXiv:1605.00694v1 [cond-mat.other].
  17. Panock, R.; Freeman, R.R.; Storz, R.H.; Miller, Terry A. (September 1980). "Observation of laser driven transitions to high rydberg states of He2". Chemical Physics Letters. 74 (2): 203–206. Bibcode:1980CPL....74..203P. doi:10.1016/0009-2614(80)85142-6.
  18. 18.0 18.1 18.2 Hill, Peter (November 1989). "हीलियम अणुओं की पराबैंगनी निरंतरता". Physical Review A. 40 (9): 5006–5016. Bibcode:1989PhRvA..40.5006H. doi:10.1103/PhysRevA.40.5006. PMID 9902760.
  19. Cai, Huamin; Stearns, Stanley D. (April 2013). "Pulsed discharge helium ionization detector with multiple combined bias/collecting electrodes for gas chromatography". Journal of Chromatography A. 1284: 163–173. doi:10.1016/j.chroma.2013.01.100. PMID 23484651.
  20. Beams, Timothy J.; Peach, Gillian; Whittingham, Ian B. (18 July 2006). "Spin-dipole-induced lifetime of the least-bound 5Σ+g state of He(23S1)+He(23S1)". Physical Review A. 74 (1): 014702. arXiv:physics/0604189. Bibcode:2006PhRvA..74a4702B. doi:10.1103/PhysRevA.74.014702. S2CID 117149989.
  21. Bonifaci, Nelly; Li, Zhiling; Eloranta, Jussi; Fiedler, Steven L. (4 November 2016). "घने हीलियम के साथ हीलियम रिडबर्ग राज्य अणुओं की सहभागिता". The Journal of Physical Chemistry A. 120 (45): 9019–9027. Bibcode:2016JPCA..120.9019B. doi:10.1021/acs.jpca.6b08412. PMID 27783517.
  22. Lai, Dong (29 August 2001). "मजबूत चुंबकीय क्षेत्र में पदार्थ". Reviews of Modern Physics. 73 (3): 629–662. arXiv:astro-ph/0009333. Bibcode:2001RvMP...73..629L. doi:10.1103/RevModPhys.73.629. S2CID 119492595.
  23. Lange, K. K.; Tellgren, E. I.; Hoffmann, M. R.; Helgaker, T. (19 July 2012). "मजबूत चुंबकीय क्षेत्रों में डायटॉमिक्स के लिए एक पैरामैग्नेटिक बॉन्डिंग मैकेनिज्म". Science. 337 (6092): 327–331. Bibcode:2012Sci...337..327L. doi:10.1126/science.1219703. PMID 22822146. S2CID 5431912.
  24. Seró, R.; Núñez, Ó.; Moyano, E. (2016). परिवेश आयनीकरण-उच्च-रिज़ॉल्यूशन मास स्पेक्ट्रोमेट्री. Comprehensive Analytical Chemistry. Vol. 71. pp. 51–88. doi:10.1016/bs.coac.2016.01.003. ISBN 9780444635723. ISSN 0166-526X.
  25. Liu, Min-min; Han, Hui-li; Li, Cheng-bin; Gu, Si-hong (October 2013). "Binding energies and geometry of the 24Mg–He2 and 40Ca–He2 triatomic systems". Physical Review A. 88 (4): 042503. Bibcode:2013PhRvA..88d2503L. doi:10.1103/PhysRevA.88.042503.
  26. Kolganova, Elena A. (26 November 2010). "फैडीव दृष्टिकोण के ढांचे में हीलियम ट्रिमर" (PDF). Physics of Particles and Nuclei. 41 (7): 1108–1110. Bibcode:2010PPN....41.1108K. doi:10.1134/S1063779610070282. Retrieved 28 February 2015.
  27. Kolganova, E. A.; Motovilov, A. K.; Sandhas, W. (4 May 2011). "The 4He Trimer as an Efimov System". Few-Body Systems. 51 (2–4): 249–257. arXiv:1104.1989. Bibcode:2011FBS....51..249K. doi:10.1007/s00601-011-0233-x. S2CID 119266992.
  28. Kunitski, Maksim; Zeller, Stefan; Voigtsberger, Jörg; Kalinin, Anton; Schmidt, Lothar Ph. H.; Schöffler, Markus; Czasch, Achim; Schöllkopf, Wieland; Grisenti, Robert E.; Jahnke, Till; Blume, Dörte; Dörner, Reinhard (May 2015). "हीलियम ट्रिमर के एफिमोव राज्य का अवलोकन". Science. 348 (6234): 551–555. arXiv:1512.02036. Bibcode:2015Sci...348..551K. doi:10.1126/science.aaa5601. PMID 25931554. S2CID 206635093.
  29. Wang, Guan-Wu; Saunders, Martin; Khong, Anthony; Cross, R. James (April 2000). "A New Method for Separating the Isomeric C84 Fullerenes". Journal of the American Chemical Society. 122 (13): 3216–3217. doi:10.1021/ja994270x.
  30. Cerpa, Erick; Krapp, Andreas; Flores-Moreno, Roberto; Donald, Kelling J.; Merino, Gabriel (9 February 2009). "Influence of Endohedral Confinement on the Electronic Interaction between He atoms: A He2@C20H20 Case Study". Chemistry: A European Journal. 15 (8): 1985–1990. doi:10.1002/chem.200801399. PMID 19021178.
  31. Krapp, Andreas; Frenking, Gernot (5 October 2007). "Is This a Chemical Bond? A Theoretical Study of Ng2@C60 (Ng=He, Ne, Ar, Kr, Xe)". Chemistry: A European Journal. 13 (29): 8256–8270. doi:10.1002/chem.200700467. PMID 17639524.
  32. Osuna, Sílvia; Swart, Marcel; Solà, Miquel (7 December 2009). "Reactivity and Regioselectivity of Noble Gas Endohedral Fullerenes Ng@C60 and Ng2@C60(Ng=He-Xe)" (PDF). Chemistry: A European Journal. 15 (47): 13111–13123. doi:10.1002/chem.200901224. PMID 19859923.
  33. Kryachko, Eugene S.; Nikolaienko, Tymofii Yu. (15 July 2015). "He2@C60: Thoughts of the concept of a molecule and of the concept of a bond in quantum chemistry". International Journal of Quantum Chemistry. 115 (14): 859–867. doi:10.1002/qua.24916.
  34. 34.0 34.1 Dolgonos, G. A.; Kryachko, E. S.; Nikolaienko, T. Yu (18 June 2018). "До питання Не–Не зв'язку у ендоедральному фулерені Не2@C60 (On the Problem of He–He Bond in the Endohedral Fullerene He2@C60)". Ukrainian Journal of Physics (in English). 63 (4): 288. doi:10.15407/ujpe63.4.288. ISSN 2071-0194.open access


बाहरी संबंध