एफ परीक्षण: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
{{DISPLAYTITLE:''F''-test}} | {{DISPLAYTITLE:''F''-test}} | ||
एक एफ परीक्षण (f-test) किसी भी सांख्यिकीय परीक्षण को कहते हैं जिसमें परीक्षण सांख्यिकी का एक एफ | एक एफ परीक्षण (f-test) किसी भी सांख्यिकीय परीक्षण को कहते हैं जिसमें परीक्षण सांख्यिकी का एक एफ बंटन होता है। आँकड़ा समुच्चय में उपयुक्त किए गए सांख्यिकीय प्रतिदर्श की तुलना करते समय इसका सबसे अधिक उपयोग किया जाता है, ताकि उस प्रतिदर्श की पहचान की जा सके जो उस आबादी के लिए सबसे उपयुक्त है जिससे आँकड़े का नमूना लिया गया था। यथातथ्य 'एफ'-परीक्षण मुख्य रूप से तब उत्पन्न होते हैं जब प्रतिदर्श को [[कम से कम वर्गों]] का उपयोग करके आँकड़ा में उपयुक्त किया गया हो। यह नाम [[रोनाल्ड फिशर]] के सम्मान में जॉर्ज डब्ल्यू स्नेडेकोर द्वारा गढ़ा गया था। फिशर ने शुरू में 1920 के दशक में सांख्यिकीय को विचरण अनुपात के रूप में विकसित किया था।<ref>{{cite book |last=Lomax |first=Richard G. |year=2007 |title=Statistical Concepts: A Second Course |url=https://archive.org/details/introductiontost0000loma_j6h1 |url-access=registration |page=[https://archive.org/details/introductiontost0000loma_j6h1/page/10 10] |isbn=978-0-8058-5850-1 }}</ref> | ||
== सामान्य उदाहरण == | == सामान्य उदाहरण == | ||
एफ-परीक्षणों के उपयोग के सामान्य उदाहरणों में निम्नलिखित मामलों का अध्ययन शामिल है: | एफ-परीक्षणों के उपयोग के सामान्य उदाहरणों में निम्नलिखित मामलों का अध्ययन शामिल है: | ||
* यह परिकल्पना कि [[सामान्य वितरण]] आबादी के दिए गए | * यह परिकल्पना कि [[सामान्य वितरण]] आबादी के दिए गए समुच्चय का अंकगणितीय माध्य, सभी समान [[मानक विचलन]] वाले हैं। यह शायद सबसे प्रसिद्ध एफ-परीक्षण है, और भिन्नता (एनोवा) के विश्लेषण में एक महत्वपूर्ण भूमिका निभाता है। | ||
* परिकल्पना है कि एक प्रस्तावित प्रतिगमन | * परिकल्पना है कि एक प्रस्तावित प्रतिगमन प्रतिदर्श आँकड़े को अच्छी तरह से उपयुक्त करता है। वर्गों का अभाव-योग देखें। | ||
* परिकल्पना है कि एक [[प्रतिगमन विश्लेषण]] में एक आँकड़ा समुच्चय दो प्रस्तावित रैखिक | * परिकल्पना है कि एक [[प्रतिगमन विश्लेषण]] में एक आँकड़ा समुच्चय दो प्रस्तावित रैखिक प्रतिदर्श के सरलतम का अनुसरण करता है जो सांख्यिकीय प्रतिदर्श # एक दूसरे के भीतर नेस्टेड प्रतिदर्श हैं। | ||
इसके अलावा, कुछ सांख्यिकीय प्रक्रियाएं, जैसे रैखिक | इसके अलावा, कुछ सांख्यिकीय प्रक्रियाएं, जैसे रैखिक प्रतिदर्श में कई तुलनाओं के समायोजन के लिए शेफ़ की विधि, एफ-परीक्षणों का भी उपयोग करती हैं। | ||
=== दो भिन्नताओं की समानता का एफ-परीक्षण === | === दो भिन्नताओं की समानता का एफ-परीक्षण === | ||
{{Main| | {{Main|प्रसरणों की समानता का एफ-परीक्षण}} | ||
एएफ-परीक्षण गैर-सामान्यता के प्रति संवेदनशील है।<ref>{{cite journal | last=Box | first=G. E. P. |author-link= George E. P. Box| journal=Biometrika | year=1953 | title=गैर-सामान्यता और भिन्नताओं पर परीक्षण| pages=318–335 | volume=40 | jstor=2333350 | issue=3/4 | doi=10.1093/biomet/40.3-4.318}}</ref><ref>{{cite journal | last=Markowski | first=Carol A |author2=Markowski, Edward P. | year = 1990 | title=भिन्नता के प्रारंभिक परीक्षण की प्रभावशीलता के लिए शर्तें| journal=[[The American Statistician]] | pages=322–326 | volume=44 | jstor=2684360 | doi=10.2307/2684360 | issue=4}}</ref> विचरण के विश्लेषण (एनोवा) में, वैकल्पिक परीक्षणों में लेवेने का परीक्षण, बार्टलेट का परीक्षण और ब्राउन-फोर्सिथ परीक्षण शामिल हैं। हालांकि, जब इनमें से कोई भी परीक्षण समरूपता (अर्थात् विचरण की एकरूपता) की अंतर्निहित धारणा का परीक्षण करने के लिए किया जाता है, तो माध्य प्रभावों के परीक्षण के लिए प्रारंभिक चरण के रूप में, प्रयोग-वार प्रकार I त्रुटि दर में वृद्धि होती है।<ref>{{cite journal |last=Sawilowsky |first=S. |year=2002 |title=Fermat, Schubert, Einstein, and Behrens–Fisher: The Probable Difference Between Two Means When σ<sub>1</sub><sup>2</sup> ≠ σ<sub>2</sub><sup>2</sup> |journal=Journal of Modern Applied Statistical Methods |volume=1 |issue=2 |pages=461–472 |doi=10.22237/jmasm/1036109940 |url=http://digitalcommons.wayne.edu/jmasm/vol1/iss2/55 |access-date=2015-03-30 |archive-url=https://web.archive.org/web/20150403095901/http://digitalcommons.wayne.edu/jmasm/vol1/iss2/55/ |archive-date=2015-04-03 |url-status=live |doi-access=free }}</ref> | |||
== सूत्र और गणना == | == सूत्र और गणना == | ||
वर्गों के योगों के विभाजन के संदर्भ में आँकड़ा के संग्रह में विचरण के अपघटन पर विचार करके अधिकांश एफ-परीक्षण उत्पन्न होते हैं। एफ-परीक्षण में परीक्षण आँकड़ा परिवर्तनशीलता के विभिन्न स्रोतों को दर्शाने वाले वर्गों के दो मापित योगों का अनुपात है। वर्गों के इन योगों का निर्माण इसलिए किया जाता है ताकि अशक्त परिकल्पना के सत्य न होने पर आँकड़ा अधिक हो जाए। एफ | वर्गों के योगों के विभाजन के संदर्भ में आँकड़ा के संग्रह में विचरण के अपघटन पर विचार करके अधिकांश एफ-परीक्षण उत्पन्न होते हैं। एफ-परीक्षण में परीक्षण आँकड़ा परिवर्तनशीलता के विभिन्न स्रोतों को दर्शाने वाले वर्गों के दो मापित योगों का अनुपात है। वर्गों के इन योगों का निर्माण इसलिए किया जाता है ताकि अशक्त परिकल्पना के सत्य न होने पर आँकड़ा अधिक हो जाए। एफ बंटन का पालन करने के लिए आंकड़े के लिए शून्य परिकल्पना के तहत एफ बंटन, वर्गों का योग सांख्यिकीय रूप से स्वतंत्र होना चाहिए, और प्रत्येक को स्केल्ड ची-स्क्वेर्ड वितरण |χ²-वितरण का पालन करना चाहिए। बाद की स्थिति की गारंटी है यदि आँकड़ा मान स्वतंत्र हैं और एक सामान्य भिन्नता के साथ सामान्य वितरण है। | ||
=== बहु-तुलना [[एनोवा]] समस्याएं === | === बहु-तुलना [[एनोवा]] समस्याएं === | ||
Line 43: | Line 42: | ||
\sum_{i=1}^{K}\sum_{j=1}^{n_{i}} \left( Y_{ij}-\bar{Y}_{i\cdot} \right)^2/(N-K), | \sum_{i=1}^{K}\sum_{j=1}^{n_{i}} \left( Y_{ij}-\bar{Y}_{i\cdot} \right)^2/(N-K), | ||
</math> | </math> | ||
कहाँ <math>Y_{ij}</math> जे है<sup>वां</sup> i में अवलोकन<sup>वां</sup> बाहर <math>K</math> समूह और <math>N</math> समग्र नमूना आकार है। यह एफ-सांख्यिकीय स्वतंत्रता की डिग्री के साथ एफ | कहाँ <math>Y_{ij}</math> जे है<sup>वां</sup> i में अवलोकन<sup>वां</sup> बाहर <math>K</math> समूह और <math>N</math> समग्र नमूना आकार है। यह एफ-सांख्यिकीय स्वतंत्रता की डिग्री के साथ एफ बंटन|एफ बंटन का अनुसरण करता है <math>d_1=K-1</math> और <math>d_2=N-K</math> शून्य परिकल्पना के तहत। आँकड़ा बड़ा होगा यदि बीच-समूह परिवर्तनशीलता समूह-समूह परिवर्तनशीलता के सापेक्ष बड़ा है, जो कि होने की संभावना नहीं है यदि समूहों के अपेक्षित मूल्य सभी का मूल्य समान है। | ||
ध्यान दें कि जब एक तरफ़ा ANOVA F-परीक्षण के लिए केवल दो समूह हों, <math>F = t^{2}</math>जहाँ t विद्यार्थी का t-परीक्षण है|छात्र का <math>t</math> आँकड़ा। | ध्यान दें कि जब एक तरफ़ा ANOVA F-परीक्षण के लिए केवल दो समूह हों, <math>F = t^{2}</math>जहाँ t विद्यार्थी का t-परीक्षण है|छात्र का <math>t</math> आँकड़ा। | ||
Line 50: | Line 49: | ||
{{further|Stepwise regression}} | {{further|Stepwise regression}} | ||
दो | दो प्रतिदर्शों, 1 और 2 पर विचार करें, जहां प्रतिदर्श 1 प्रतिदर्श 2 के भीतर 'नेस्टेड' है। प्रतिदर्श 1 प्रतिबंधित प्रतिदर्श है, और प्रतिदर्श 2 अप्रतिबंधित है। यानी प्रतिदर्श 1 में पी है<sub>1</sub> पैरामीटर, और प्रतिदर्श 2 में पी है<sub>2</sub> पैरामीटर, जहां पी<sub>1</sub><p<sub>2</sub>, और प्रतिदर्श 1 में मापदंडों के किसी भी विकल्प के लिए, समान प्रतिगमन वक्र को प्रतिदर्श 2 के मापदंडों के कुछ विकल्प द्वारा प्राप्त किया जा सकता है। | ||
इस संबंध में एक सामान्य संदर्भ यह है कि यह तय करना है कि क्या कोई | इस संबंध में एक सामान्य संदर्भ यह है कि यह तय करना है कि क्या कोई प्रतिदर्श एक सहज प्रतिदर्श की तुलना में आँकड़ा को बेहतर ढंग से उपयुक्त करता है, जिसमें केवल व्याख्यात्मक शब्द इंटरसेप्ट शब्द है, ताकि निर्भर चर के लिए सभी अनुमानित मान उस चर के बराबर समुच्चय किए जाएं। नमूना माध्य। भोला प्रतिदर्श प्रतिबंधित प्रतिदर्श है, क्योंकि सभी संभावित व्याख्यात्मक चर के गुणांक बराबर शून्य तक सीमित हैं। | ||
एक अन्य सामान्य संदर्भ यह तय कर रहा है कि क्या आँकड़ा में कोई संरचनात्मक विराम है: यहां प्रतिबंधित | एक अन्य सामान्य संदर्भ यह तय कर रहा है कि क्या आँकड़ा में कोई संरचनात्मक विराम है: यहां प्रतिबंधित प्रतिदर्श एक प्रतिगमन में सभी आँकड़ा का उपयोग करता है, जबकि अप्रतिबंधित प्रतिदर्श आँकड़ा के दो अलग-अलग उपसमूहों के लिए अलग-अलग प्रतिगमन का उपयोग करता है। एफ परीक्षण के इस प्रयोग को [[चाउ परीक्षण]] के नाम से जाना जाता है। | ||
अधिक पैरामीटर वाला | अधिक पैरामीटर वाला प्रतिदर्श हमेशा कम से कम आँकड़ा के साथ-साथ कम पैरामीटर वाले प्रतिदर्श को उपयुक्त करने में सक्षम होगा। इस प्रकार आम तौर पर प्रतिदर्श 2 प्रतिदर्श 1 की तुलना में आँकड़ा के लिए एक बेहतर (यानी कम त्रुटि) उपयुक्त करेगा। लेकिन अक्सर यह निर्धारित करना चाहता है कि प्रतिदर्श 2 आँकड़ा के लिए काफी बेहतर उपयुक्त देता है या नहीं। इस समस्या का एक तरीका एफ परीक्षण का उपयोग करना है। | ||
यदि दोनों | यदि दोनों प्रतिदर्शों के मापदंडों का अनुमान लगाने के लिए एन आँकड़ा बिंदु हैं, तो एफ आंकड़े की गणना कर सकते हैं, द्वारा दिया गया | ||
:<math>F=\frac{\left(\frac{\text{RSS}_1 - \text{RSS}_2 }{p_2 - p_1}\right)}{\left(\frac{\text{RSS}_2}{n - p_2}\right)} ,</math> | :<math>F=\frac{\left(\frac{\text{RSS}_1 - \text{RSS}_2 }{p_2 - p_1}\right)}{\left(\frac{\text{RSS}_2}{n - p_2}\right)} ,</math> | ||
जहां आर.एस.एस<sub>''i''</sub> | जहां आर.एस.एस<sub>''i''</sub> प्रतिदर्श i के [[वर्गों का अवशिष्ट योग]] है। यदि प्रतिगमन प्रतिदर्श की गणना भार के साथ की गई है, तो RSS को बदलें<sub>''i''</sub> χ के साथ<sup>2</sup>, अवशिष्टों के वर्ग का भारित योग। अशक्त परिकल्पना के तहत कि प्रतिदर्श 2 प्रतिदर्श 1 की तुलना में काफी बेहतर उपयुक्त प्रदान नहीं करता है, F का F वितरण होगा, जिसमें (p<sub>2</sub>-पी<sub>1</sub>, एन−पी<sub>2</sub>) [[स्वतंत्रता की डिग्री (सांख्यिकी)]]। शून्य परिकल्पना को खारिज कर दिया जाता है यदि आँकड़ा से गणना की गई एफ एफ बंटन के महत्वपूर्ण मूल्य से अधिक है। कुछ वांछित झूठी-अस्वीकृति संभावना के लिए एफ बंटन (उदाहरण के लिए 0.05)। चूँकि F संभावना अनुपात आँकड़ों का एक मोनोटोन फलन है, F-परीक्षण एक [[संभावना अनुपात परीक्षण]] है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 13:24, 11 June 2023
एक एफ परीक्षण (f-test) किसी भी सांख्यिकीय परीक्षण को कहते हैं जिसमें परीक्षण सांख्यिकी का एक एफ बंटन होता है। आँकड़ा समुच्चय में उपयुक्त किए गए सांख्यिकीय प्रतिदर्श की तुलना करते समय इसका सबसे अधिक उपयोग किया जाता है, ताकि उस प्रतिदर्श की पहचान की जा सके जो उस आबादी के लिए सबसे उपयुक्त है जिससे आँकड़े का नमूना लिया गया था। यथातथ्य 'एफ'-परीक्षण मुख्य रूप से तब उत्पन्न होते हैं जब प्रतिदर्श को कम से कम वर्गों का उपयोग करके आँकड़ा में उपयुक्त किया गया हो। यह नाम रोनाल्ड फिशर के सम्मान में जॉर्ज डब्ल्यू स्नेडेकोर द्वारा गढ़ा गया था। फिशर ने शुरू में 1920 के दशक में सांख्यिकीय को विचरण अनुपात के रूप में विकसित किया था।[1]
सामान्य उदाहरण
एफ-परीक्षणों के उपयोग के सामान्य उदाहरणों में निम्नलिखित मामलों का अध्ययन शामिल है:
- यह परिकल्पना कि सामान्य वितरण आबादी के दिए गए समुच्चय का अंकगणितीय माध्य, सभी समान मानक विचलन वाले हैं। यह शायद सबसे प्रसिद्ध एफ-परीक्षण है, और भिन्नता (एनोवा) के विश्लेषण में एक महत्वपूर्ण भूमिका निभाता है।
- परिकल्पना है कि एक प्रस्तावित प्रतिगमन प्रतिदर्श आँकड़े को अच्छी तरह से उपयुक्त करता है। वर्गों का अभाव-योग देखें।
- परिकल्पना है कि एक प्रतिगमन विश्लेषण में एक आँकड़ा समुच्चय दो प्रस्तावित रैखिक प्रतिदर्श के सरलतम का अनुसरण करता है जो सांख्यिकीय प्रतिदर्श # एक दूसरे के भीतर नेस्टेड प्रतिदर्श हैं।
इसके अलावा, कुछ सांख्यिकीय प्रक्रियाएं, जैसे रैखिक प्रतिदर्श में कई तुलनाओं के समायोजन के लिए शेफ़ की विधि, एफ-परीक्षणों का भी उपयोग करती हैं।
दो भिन्नताओं की समानता का एफ-परीक्षण
एएफ-परीक्षण गैर-सामान्यता के प्रति संवेदनशील है।[2][3] विचरण के विश्लेषण (एनोवा) में, वैकल्पिक परीक्षणों में लेवेने का परीक्षण, बार्टलेट का परीक्षण और ब्राउन-फोर्सिथ परीक्षण शामिल हैं। हालांकि, जब इनमें से कोई भी परीक्षण समरूपता (अर्थात् विचरण की एकरूपता) की अंतर्निहित धारणा का परीक्षण करने के लिए किया जाता है, तो माध्य प्रभावों के परीक्षण के लिए प्रारंभिक चरण के रूप में, प्रयोग-वार प्रकार I त्रुटि दर में वृद्धि होती है।[4]
सूत्र और गणना
वर्गों के योगों के विभाजन के संदर्भ में आँकड़ा के संग्रह में विचरण के अपघटन पर विचार करके अधिकांश एफ-परीक्षण उत्पन्न होते हैं। एफ-परीक्षण में परीक्षण आँकड़ा परिवर्तनशीलता के विभिन्न स्रोतों को दर्शाने वाले वर्गों के दो मापित योगों का अनुपात है। वर्गों के इन योगों का निर्माण इसलिए किया जाता है ताकि अशक्त परिकल्पना के सत्य न होने पर आँकड़ा अधिक हो जाए। एफ बंटन का पालन करने के लिए आंकड़े के लिए शून्य परिकल्पना के तहत एफ बंटन, वर्गों का योग सांख्यिकीय रूप से स्वतंत्र होना चाहिए, और प्रत्येक को स्केल्ड ची-स्क्वेर्ड वितरण |χ²-वितरण का पालन करना चाहिए। बाद की स्थिति की गारंटी है यदि आँकड़ा मान स्वतंत्र हैं और एक सामान्य भिन्नता के साथ सामान्य वितरण है।
बहु-तुलना एनोवा समस्याएं
विचरण (एनोवा) के एकतरफा विश्लेषण में एफ परीक्षण का उपयोग यह आकलन करने के लिए किया जाता है कि क्या कई पूर्व-निर्धारित समूहों के भीतर मात्रात्मक चर के अपेक्षित मान एक दूसरे से भिन्न हैं। उदाहरण के लिए, मान लीजिए कि एक चिकित्सा परीक्षण चार उपचारों की तुलना करता है। एनोवा एफ परीक्षण का उपयोग यह आकलन करने के लिए किया जा सकता है कि क्या कोई भी उपचार औसत श्रेष्ठ या निम्न स्तर पर है, दूसरों की तुलना में अशक्त परिकल्पना है कि सभी चार उपचार समान औसत प्रतिक्रिया देते हैं। यह एक सर्वग्राही परीक्षण का एक उदाहरण है, जिसका अर्थ है कि कई संभावित अंतरों में से किसी का पता लगाने के लिए एकल परीक्षण किया जाता है। वैकल्पिक रूप से, हम उपचारों के बीच जोड़ीवार परीक्षण कर सकते हैं (उदाहरण के लिए, चार उपचारों के साथ चिकित्सीय परीक्षण उदाहरण में हम उपचारों के जोड़े के बीच छह परीक्षण कर सकते हैं)। एनोवा एफ-परीक्षण का लाभ यह है कि हमें पूर्व-निर्दिष्ट करने की आवश्यकता नहीं है कि किन उपचारों की तुलना की जानी है, और हमें कई तुलना करने के लिए समायोजित करने की आवश्यकता नहीं है। एनोवा एफ-परीक्षण का नुकसान यह है कि यदि हम अशक्त परिकल्पना को अस्वीकार करते हैं, तो हम नहीं जानते कि कौन से उपचार दूसरों से महत्वपूर्ण रूप से भिन्न कहे जा सकते हैं, और न ही, यदि एफ-परीक्षण स्तर α पर किया जाता है, तो क्या हम बता सकते हैं सबसे बड़े माध्य अंतर वाली उपचार जोड़ी स्तर α पर महत्वपूर्ण रूप से भिन्न होती है।
एक तरफ़ा 'ANOVA' F-परीक्षण परीक्षण आँकड़ा का सूत्र है
या
समझाया गया विचरण, या बीच-समूह परिवर्तनशीलता है
कहाँ i-वें समूह में औसत को दर्शाता है, i-वें समूह में प्रेक्षणों की संख्या है, आँकड़ा के समग्र माध्य को दर्शाता है, और समूहों की संख्या को दर्शाता है।
अस्पष्टीकृत प्रसरण , या भीतर-समूह परिवर्तनशीलता है
कहाँ जे हैवां i में अवलोकनवां बाहर समूह और समग्र नमूना आकार है। यह एफ-सांख्यिकीय स्वतंत्रता की डिग्री के साथ एफ बंटन|एफ बंटन का अनुसरण करता है और शून्य परिकल्पना के तहत। आँकड़ा बड़ा होगा यदि बीच-समूह परिवर्तनशीलता समूह-समूह परिवर्तनशीलता के सापेक्ष बड़ा है, जो कि होने की संभावना नहीं है यदि समूहों के अपेक्षित मूल्य सभी का मूल्य समान है।
ध्यान दें कि जब एक तरफ़ा ANOVA F-परीक्षण के लिए केवल दो समूह हों, जहाँ t विद्यार्थी का t-परीक्षण है|छात्र का आँकड़ा।
प्रतिगमन समस्याएं
दो प्रतिदर्शों, 1 और 2 पर विचार करें, जहां प्रतिदर्श 1 प्रतिदर्श 2 के भीतर 'नेस्टेड' है। प्रतिदर्श 1 प्रतिबंधित प्रतिदर्श है, और प्रतिदर्श 2 अप्रतिबंधित है। यानी प्रतिदर्श 1 में पी है1 पैरामीटर, और प्रतिदर्श 2 में पी है2 पैरामीटर, जहां पी1<p2, और प्रतिदर्श 1 में मापदंडों के किसी भी विकल्प के लिए, समान प्रतिगमन वक्र को प्रतिदर्श 2 के मापदंडों के कुछ विकल्प द्वारा प्राप्त किया जा सकता है।
इस संबंध में एक सामान्य संदर्भ यह है कि यह तय करना है कि क्या कोई प्रतिदर्श एक सहज प्रतिदर्श की तुलना में आँकड़ा को बेहतर ढंग से उपयुक्त करता है, जिसमें केवल व्याख्यात्मक शब्द इंटरसेप्ट शब्द है, ताकि निर्भर चर के लिए सभी अनुमानित मान उस चर के बराबर समुच्चय किए जाएं। नमूना माध्य। भोला प्रतिदर्श प्रतिबंधित प्रतिदर्श है, क्योंकि सभी संभावित व्याख्यात्मक चर के गुणांक बराबर शून्य तक सीमित हैं।
एक अन्य सामान्य संदर्भ यह तय कर रहा है कि क्या आँकड़ा में कोई संरचनात्मक विराम है: यहां प्रतिबंधित प्रतिदर्श एक प्रतिगमन में सभी आँकड़ा का उपयोग करता है, जबकि अप्रतिबंधित प्रतिदर्श आँकड़ा के दो अलग-अलग उपसमूहों के लिए अलग-अलग प्रतिगमन का उपयोग करता है। एफ परीक्षण के इस प्रयोग को चाउ परीक्षण के नाम से जाना जाता है।
अधिक पैरामीटर वाला प्रतिदर्श हमेशा कम से कम आँकड़ा के साथ-साथ कम पैरामीटर वाले प्रतिदर्श को उपयुक्त करने में सक्षम होगा। इस प्रकार आम तौर पर प्रतिदर्श 2 प्रतिदर्श 1 की तुलना में आँकड़ा के लिए एक बेहतर (यानी कम त्रुटि) उपयुक्त करेगा। लेकिन अक्सर यह निर्धारित करना चाहता है कि प्रतिदर्श 2 आँकड़ा के लिए काफी बेहतर उपयुक्त देता है या नहीं। इस समस्या का एक तरीका एफ परीक्षण का उपयोग करना है।
यदि दोनों प्रतिदर्शों के मापदंडों का अनुमान लगाने के लिए एन आँकड़ा बिंदु हैं, तो एफ आंकड़े की गणना कर सकते हैं, द्वारा दिया गया
जहां आर.एस.एसi प्रतिदर्श i के वर्गों का अवशिष्ट योग है। यदि प्रतिगमन प्रतिदर्श की गणना भार के साथ की गई है, तो RSS को बदलेंi χ के साथ2, अवशिष्टों के वर्ग का भारित योग। अशक्त परिकल्पना के तहत कि प्रतिदर्श 2 प्रतिदर्श 1 की तुलना में काफी बेहतर उपयुक्त प्रदान नहीं करता है, F का F वितरण होगा, जिसमें (p2-पी1, एन−पी2) स्वतंत्रता की डिग्री (सांख्यिकी)। शून्य परिकल्पना को खारिज कर दिया जाता है यदि आँकड़ा से गणना की गई एफ एफ बंटन के महत्वपूर्ण मूल्य से अधिक है। कुछ वांछित झूठी-अस्वीकृति संभावना के लिए एफ बंटन (उदाहरण के लिए 0.05)। चूँकि F संभावना अनुपात आँकड़ों का एक मोनोटोन फलन है, F-परीक्षण एक संभावना अनुपात परीक्षण है।
यह भी देखें
संदर्भ
- ↑ Lomax, Richard G. (2007). Statistical Concepts: A Second Course. p. 10. ISBN 978-0-8058-5850-1.
- ↑ Box, G. E. P. (1953). "गैर-सामान्यता और भिन्नताओं पर परीक्षण". Biometrika. 40 (3/4): 318–335. doi:10.1093/biomet/40.3-4.318. JSTOR 2333350.
- ↑ Markowski, Carol A; Markowski, Edward P. (1990). "भिन्नता के प्रारंभिक परीक्षण की प्रभावशीलता के लिए शर्तें". The American Statistician. 44 (4): 322–326. doi:10.2307/2684360. JSTOR 2684360.
- ↑ Sawilowsky, S. (2002). "Fermat, Schubert, Einstein, and Behrens–Fisher: The Probable Difference Between Two Means When σ12 ≠ σ22". Journal of Modern Applied Statistical Methods. 1 (2): 461–472. doi:10.22237/jmasm/1036109940. Archived from the original on 2015-04-03. Retrieved 2015-03-30.
अग्रिम पठन
- Fox, Karl A. (1980). Intermediate Economic Statistics (Second ed.). New York: John Wiley & Sons. pp. 290–310. ISBN 0-88275-521-8.
- Johnston, John (1972). Econometric Methods (Second ed.). New York: McGraw-Hill. pp. 35–38.
- Kmenta, Jan (1986). Elements of Econometrics (Second ed.). New York: Macmillan. pp. 147–148. ISBN 0-02-365070-2.
- Maddala, G. S.; Lahiri, Kajal (2009). Introduction to Econometrics (Fourth ed.). Chichester: Wiley. pp. 155–160. ISBN 978-0-470-01512-4.