अनिश्चित द्विघात समीकरण: Difference between revisions

From Vigyanwiki
(Content Modified)
(ब्रह्मगुप्त का उपसिद्धान्त)
Line 41: Line 41:
पहले के शब्द, x के मान के लिए '<nowiki/>''प्रथम मूल' (आद्य-मूल)'' और y के मान के लिए '<nowiki/>''दूसरा मूल''<nowiki/>' या '''अंतिम मूल''<nowiki/>' (''अन्य-मूल''), अस्पष्टता से मुक्त हैं। इन शब्दों का प्रयोग ब्रह्मगुप्त (628) के बीजगणित में किया गया है।
पहले के शब्द, x के मान के लिए '<nowiki/>''प्रथम मूल' (आद्य-मूल)'' और y के मान के लिए '<nowiki/>''दूसरा मूल''<nowiki/>' या '''अंतिम मूल''<nowiki/>' (''अन्य-मूल''), अस्पष्टता से मुक्त हैं। इन शब्दों का प्रयोग ब्रह्मगुप्त (628) के बीजगणित में किया गया है।


ब्रह्मगुप्त ''अन्तर्वेशक''  को ''क्षेप, प्रक्षेप''  या ''प्रक्षेपक''  कहते हैं। श्रीपति कभी-कभी पर्यायवाची शब्द ''क्षिपति''  का प्रयोग करते हैं। जब ''अन्तर्वेशक/प्रक्षेपक''  ऋणात्मक होता है, तो ''अन्तर्वेशक/प्रक्षेपक''  को 'घटक' (''शोधक'') के रूप में जाना जाता है। जब ''अन्तर्वेशक/प्रक्षेपक''  धनात्मक होता है, तो ''अन्तर्वेशक/प्रक्षेपक''  को ''<nowiki/>'योगात्मक''<nowiki/>' के रूप में जाना जाता है।
ब्रह्मगुप्त ''अन्तर्वेशक''  को ''क्षेप, प्रक्षेप''  या ''प्रक्षेपक''  कहते हैं। श्रीपति कभी-कभी पर्यायवाची शब्द ''क्षिपति''  का प्रयोग करते हैं। जब ''अन्तर्वेशक/प्रक्षेपक''  ऋणात्मक होता है, तो ''अन्तर्वेशक/प्रक्षेपक''  को '<nowiki/>'''घटक' (''शोधक'')''' के रूप में जाना जाता है। '''जब ''अन्तर्वेशक/प्रक्षेपक''  धनात्मक होता है, तो ''अन्तर्वेशक/प्रक्षेपक'''''  को ''<nowiki/>'योगात्मक''<nowiki/>' के रूप में जाना जाता है।
 
== ब्रह्मगुप्त का उपसिद्धान्त ==
अगर <math>x=\alpha ,\quad y =\beta</math>  समीकरण का हल हो
 
<math>Nx^2 + k = y^2 </math>
 
और  <math>x=\alpha' ,\quad y =\beta'</math> समीकरण का हल हो
 
<math>Nx^2 +  k' = y^2 </math>
 
<math>x=\alpha\beta' \pm \alpha'\beta ,\quad y= \beta\beta' \pm N\alpha\alpha'
</math> समीकरण का एक हल है
 
<math>Nx^2 + kk'= y^2 </math>
 
यानी अगर
 
<math>N\alpha^2 + k = \beta^2 </math>
 
<math>N\alpha'^2 + k' = \beta'^2 </math>  तब
 
<math>N(\alpha\beta' \pm \alpha'\beta)^2 + kk' = (\beta\beta' \pm N\alpha\alpha')^2 </math>
 
विशेष रूप से,
 
<math>\alpha=\alpha' , \quad \beta=\beta' \quad and\quad  k=k'  </math>  लेने पर
 
ब्रह्मगुप्त एक समाधान से
 
<math>x=\alpha ,\quad y =\beta</math>
 
<math>Nx^2 + k = y^2 </math> का समीकरण पाते हैं,
 
एक समाधान
 
<math>x=2\alpha\beta ,\quad y =\beta^2+Na^2</math>
 
<math>Nx^2 + k^2= y^2 </math>  समीकरण का
 
तब
 
<math>N(2\alpha\beta)^2 + k^2= (\beta^2+N\alpha^2)^2</math>
 
  ,

Revision as of 20:21, 8 May 2022

अनिश्चित द्विघात समीकरण को हिंदू वर्ग द्वारा कहा जाता है।

प्रकृति या कृति - प्रकृति, जिसका अर्थ है "वर्ग प्रकृति"। कमलाकार (1658) कहते हैं: "पहले वर्ग-प्रकृति के स्वरूप को सुनें इसमें वर्ग (एक निश्चित संख्या का) गुणक से गुणा किया जाता है और फिर एक प्रक्षेपक द्वारा बढ़ाया या घटाया जाता है जो एक वर्गमूल उत्पन्न करने में सक्षम हो जाता है।"

यह माना गया कि इस वर्ग का सबसे मूल सिद्धान्त समीकरण है जहां N एक गैर-वर्ग पूर्णांक है।

नाम की उत्पत्ति

कृष्ण (1580) कहते हैं: "जिस वर्ग (वर्ग) में प्रकृति (प्रकृति) है, उसे वर्ग-प्रकृति कहा जाता है; यावत के वर्ग के लिए, आदि, इस गणित की (शाखा) की प्रकृति (मूल) है। या, क्योंकि यह (शाखा) गणित उस संख्या से उत्पन्न हुआ है जो यावत आदि के वर्ग की प्रकृति है, इसलिए इसे वर्ग-प्रकृति कहा जाता है। इस स्थिति में वह संख्या जो यावत आदि के वर्ग का गुणक है, उसे प्रकृति शब्द से दर्शाया जाता है। (दूसरे शब्दों में) यह अज्ञात के वर्ग का गुणांक है। अन्य हिंदू बीजगणितविदों ने प्रकृति शब्द का प्रयोग केवल N को निरूपित करने के लिए किया है। ब्रह्मगुप्त (628) N को निरूपित करने के लिए गुणक (गुणक) शब्द का उपयोग करता है।

पारिभाषिक  शब्द

पृथिदाकस्वामी (860) निम्नलिखित शब्दों की व्याख्या करते है।

कमतर मूल (कनिष्ठ-पद) या पहला मूल (आद्य-मूल): वह संख्या जिसके वर्ग को एक वैकल्पिक गुणक से गुणा किया जाता है और फिर किसी अन्य वैकल्पिक संख्या से बढ़ाया या घटाया जाता है, एक वर्गमूल उत्पन्न करने में सक्षम हो जाता है।

बृहत्तर मूल (ज्येष्ठ-पद) या दूसरा मूल (अन्य-मूल): वह मूल जो उपरोक्त क्रियाओं के बाद परिणामित होती है,

उपरोक्त समीकरण में y बृहत्तर मूल (ज्येष्ठ-पद) है।

संवर्धक (उदवर्तक): यदि इन दोनों मूलों को गुणा करने वाली कोई संख्या हो।

संक्षेपक (अपवर्तक): यदि मूलों को विभाजित करने वाली कोई संख्या हो।

भास्कर द्वितीय (1150) लिखते हैं

ह्रस्वा-मूल: वैकल्पिक रूप से चुनी गई संख्या को कमतर मूल (ह्रस्वा-मूल) के रूप में लिया जाता है।

अन्तर्वेशक (क्षेपक): वह संख्या धनात्मक या ऋणात्मक जिसे उसके वर्ग में जोड़ा या घटाया जाता है गुणा किया जाता है, उसे प्रकृति (गुणक) से गुणा करने पर वर्गमूल प्राप्त होता है।

उपरोक्त समीकरण में c अन्तर्वेशक (क्षेपक) है।

ज्येष्ठ-मूल: उपरोक्त से उत्पन्न मूल।

'कमतर मूल ' और 'बृहत्तर मूल' ' शब्द सटीक नहीं लगते हैं। x = m, y = n समीकरण का हल हो , m, n से कम होगा, यदि N और c दोनों धनात्मक हैं।

लेकिन यदि N और c विपरीत राशियों के हों, तो कभी-कभी विपरीत भी हो सकता है।

बाद के मामले में जब m> n, m को कमतर मूल और n को बृहत्तर मूल कहना संदिग्धार्थक/अस्पष्ट हो सकता है।

पहले के शब्द, x के मान के लिए 'प्रथम मूल' (आद्य-मूल) और y के मान के लिए 'दूसरा मूल' या 'अंतिम मूल' (अन्य-मूल), अस्पष्टता से मुक्त हैं। इन शब्दों का प्रयोग ब्रह्मगुप्त (628) के बीजगणित में किया गया है।

ब्रह्मगुप्त अन्तर्वेशक को क्षेप, प्रक्षेप या प्रक्षेपक कहते हैं। श्रीपति कभी-कभी पर्यायवाची शब्द क्षिपति का प्रयोग करते हैं। जब अन्तर्वेशक/प्रक्षेपक ऋणात्मक होता है, तो अन्तर्वेशक/प्रक्षेपक को 'घटक' (शोधक) के रूप में जाना जाता है। जब अन्तर्वेशक/प्रक्षेपक धनात्मक होता है, तो अन्तर्वेशक/प्रक्षेपक को 'योगात्मक' के रूप में जाना जाता है।

ब्रह्मगुप्त का उपसिद्धान्त

अगर समीकरण का हल हो

और समीकरण का हल हो

समीकरण का एक हल है

यानी अगर

तब

विशेष रूप से,

लेने पर

ब्रह्मगुप्त एक समाधान से

का समीकरण पाते हैं,

एक समाधान

समीकरण का

तब

  ,