घातीय क्षय: Difference between revisions

From Vigyanwiki
No edit summary
Line 1: Line 1:
{{short description|Decrease in value at a rate proportional to the current value}}
{{short description|Decrease in value at a rate proportional to the current value}}
[[Image:Plot-exponential-decay.svg|thumb|upright=1.5|घातीय क्षय से गुजरने वाली मात्रा। बड़े क्षय स्थिरांक मात्रा को और अधिक तेजी से गायब कर देते हैं। यह प्लॉट क्षय स्थिरांक के लिए क्षय दिखाता है ({{mvar|λ}}) 25, 5, 1, 1/5, और 1/25 के लिए {{mvar|x}} 0 से 5 तक।]]एक [[मात्रा]] घातीय क्षय के अधीन है यदि यह अपने वर्तमान मूल्य के [[आनुपातिकता (गणित)]] की दर से घटती है। प्रतीकात्मक रूप से, इस प्रक्रिया को निम्नलिखित अवकल समीकरण द्वारा व्यक्त किया जा सकता है, जहाँ {{mvar|N}} मात्रा है और {{mvar|λ}} ([[लैम्ब्डा]]) एक सकारात्मक दर है जिसे घातीय क्षय स्थिरांक, विघटन स्थिरांक कहा जाता है,<ref>{{harvtxt|Serway|1989|p=384}}</ref> दर लगातार,<ref>{{harvtxt|Simmons|1972|p=15}}</ref> या परिवर्तन स्थिरांक:<ref>{{harvtxt|McGraw-Hill|2007}}</ref>
[[Image:Plot-exponential-decay.svg|thumb|upright=1.5|घातीय क्षय से गुजरने वाली राशि। बड़े क्षय स्थिरांक राशि को और अधिक तेजी से नष्ट कर देते हैं। यह क्षेत्र 0 से 5 तक x के लिए 25, 5, 1, 1/5, और 1/25 के क्षय स्थिरांक (λ) के लिए क्षय दिखाता है।]]एक राशि '''घातीय क्षय''' के अधीन है यदि यह अपने वर्तमान मान के आनुपातिक दर से घटती है। प्रतीकात्मक रूप से, इस प्रक्रिया को निम्नलिखित अंतर समीकरण द्वारा व्यक्त किया जा सकता है, जहां N राशि है और λ (लैम्ब्डा) एक धनात्मक दर है जिसे घातीय क्षय स्थिरांक, विघटन स्थिरांक,<ref>{{harvtxt|Serway|1989|p=384}}</ref> दर स्थिरांक,<ref>{{harvtxt|Simmons|1972|p=15}}</ref> या परिवर्तन स्थिरांक कहा जाता है:<ref>{{harvtxt|McGraw-Hill|2007}}</ref>
:<math>\frac{dN}{dt} = -\lambda N.</math>
:<math>\frac{dN}{dt} = -\lambda N.</math>
इस समीकरण का हल (नीचे दिए गए अंतर समीकरण का समाधान देखें) है:
इस समीकरण का हल (नीचे अवकलज देखें) है:


:<math>N(t) = N_0 e^{-\lambda t}, </math>
:<math>N(t) = N_0 e^{-\lambda t}, </math>
कहाँ पे {{math|''N''(''t'')}} समय पर मात्रा है {{mvar|t}}, {{math|1=''N''<sub>0</sub> = ''N''(0)}} प्रारंभिक मात्रा है, अर्थात समय पर मात्रा {{math|1=''t'' = 0}}.
जहाँ N(t) समय t पर राशि है, N0 = N(0) प्रारंभिक राशि है, अर्थात समय t = 0 पर राशि।


== क्षय की दर मापना ==
== क्षय की दर मापना ==


=== औसत जीवनकाल ===
=== औसत जीवनकाल ===
यदि क्षयकारी मात्रा, एन (टी), एक निश्चित [[सेट (गणित)]] में असतत तत्वों की संख्या है, तो उस समय की औसत लंबाई की गणना करना संभव है जब कोई तत्व सेट में रहता है। इसे 'औसत जीवनकाल' (या केवल 'जीवनकाल') कहा जाता है, जहां 'घातीय समय स्थिरांक', <math>\tau</math>, क्षय दर स्थिरांक से संबंधित है, λ, निम्नलिखित तरीके से:
यदि क्षयकारी राशि, ''N''(''t''), एक निश्चित [[सेट (गणित)|समुच्चय (गणित)]] में असतत तत्वों की संख्या है, तो उस समय की औसत लंबाई की गणना करना संभव है जब कोई तत्व समुच्चय में रहता है। इसे 'औसत जीवनकाल' (या केवल 'जीवनकाल') कहा जाता है, जहां 'घातीय समय स्थिरांक' <math>\tau</math>, क्षय दर स्थिरांक λ से निम्नलिखित तरीके से संबंधित है:
:<math>\tau = \frac{1}{\lambda}.</math>
:<math>\tau = \frac{1}{\lambda}.</math>
औसत जीवनकाल को स्केलिंग समय के रूप में देखा जा सकता है, क्योंकि घातीय क्षय समीकरण को औसत जीवनकाल के रूप में लिखा जा सकता है, <math>\tau</math>, क्षय स्थिरांक के बजाय, λ:
औसत जीवनकाल को अनुमापन समय के रूप में देखा जा सकता है, क्योंकि घातीय क्षय समीकरण को क्षय स्थिरांक λ के अतिरिक्त माध्य जीवनकाल <math>\tau</math> के रूप में लिखा जा सकता है:
:<math>N(t) = N_0 e^{-t/\tau}, </math>
:<math>N(t) = N_0 e^{-t/\tau}, </math>
और कि <math>\tau</math> वह समय है जिस पर विधानसभा की जनसंख्या कम हो जाती है e (गणितीय स्थिरांक)|1/e ≈ 0.367879441 इसके प्रारंभिक मूल्य का गुना।
और कि <math>\tau</math> वह समय है जिस पर संयोजन की संख्या 1/e ≈ 0.367879441 इसके प्रारंभिक मान से कम हो जाती है।


उदाहरण के लिए, यदि विधानसभा की प्रारंभिक जनसंख्या, N(0), 1000 है, तो समय पर जनसंख्या <math>\tau</math>, <math>N(\tau)</math>, 368 है।
उदाहरण के लिए, यदि संयोजन की प्रारंभिक संख्या N(0), 1000 है, तो समय पर संख्या <math>\tau</math>, <math>N(\tau)</math> 368 है।


एक बहुत ही समान समीकरण नीचे देखा जाएगा, जो तब उत्पन्न होता है जब घातीय का आधार के बजाय 2 चुना जाता है। उस स्थिति में स्केलिंग का समय आधा जीवन है।
एक बहुत ही समान समीकरण नीचे देखा जाएगा, जो तब उत्पन्न होता है जब घातीय का आधार e के अतिरिक्त 2 चयन किया जाता है। उस स्थिति में अनुमापन का समय आधा जीवन है।


=== आधा जीवन ===
=== आधा जीवन ===
{{main|Half-life}}
{{main|Half-life}}
कई लोगों के लिए घातीय क्षय की एक अधिक सहज विशेषता क्षयकारी मात्रा के प्रारंभिक मूल्य के आधे तक गिरने के लिए आवश्यक समय है। (यदि N(t) असतत है, तो यह माध्य जीवन-काल के बजाय औसत जीवन-काल है।) इस समय को अर्ध-जीवन कहा जाता है, और इसे अक्सर प्रतीक t द्वारा निरूपित किया जाता है।<sub>1/2</sub>. अर्ध-आयु को क्षय स्थिरांक या माध्य जीवनकाल के रूप में लिखा जा सकता है:
कई लोगों के लिए घातीय क्षय की एक अधिक सहज विशेषता क्षयकारी राशि के प्रारंभिक मान के आधे तक कम होने के लिए आवश्यक समय है। (]यदि N(t) असतत है, तो यह औसत जीवन-काल के अतिरिक्त औसत जीवन-काल है। इस समय को अर्ध-जीवन कहा जाता है, और प्रायः प्रतीक ''t''<sub>1/2</sub> द्वारा निरूपित किया जाता है। अर्ध-जीवन को क्षय स्थिरांक या माध्य जीवनकाल के रूप में लिखा जा सकता है:


:<math>t_{1/2} = \frac{\ln (2)}{\lambda} = \tau \ln (2).</math>
:<math>t_{1/2} = \frac{\ln (2)}{\lambda} = \tau \ln (2).</math>
जब के लिए यह व्यंजक डाला जाता है <math>\tau</math> उपरोक्त घातीय समीकरण में, और 2|ln 2 के प्राकृतिक लघुगणक को आधार में समाहित कर लिया जाता है, यह समीकरण बन जाता है:
जब यह व्यंजक <math>\tau</math> के लिए उपरोक्त घातीय समीकरण में प्रविष्ट किया जाता है, और ln(2) को आधार में अवशोषित कर लिया जाता है, तो यह समीकरण बन जाता है:


:<math>N(t) = N_0 2^{-t/t_{1/2}}. </math>
:<math>N(t) = N_0 2^{-t/t_{1/2}}. </math>
इस प्रकार, शेष सामग्री की मात्रा 2 है<sup>−1</sup> = 1/2 आधे जीवन की (संपूर्ण या भिन्नात्मक) संख्या जो बीत चुकी है। इस प्रकार, 3 अर्ध-आयु के बाद 1/2 होगा<sup>3</sup> = 1/8 मूल सामग्री बची है।
इस प्रकार, बची हुई वस्तु की राशि 2<sup>−1</sup> = 1/2 है जो आधे-अधूरे जीवन की संख्या (संपूर्ण या भिन्नात्मक) तक बढ़ जाती है। इस प्रकार, 3 अर्ध-जीवन के बाद मूल वस्तु का 1/2<sup>3</sup> = 1/8 शेष रह जाएगा।


इसलिए, औसत जीवनकाल <math>\tau</math> आधे जीवन को 2 के प्राकृतिक लॉग से विभाजित करने के बराबर है, या:
इसलिए, औसत जीवनकाल <math>\tau</math> आधे जीवन को 2 के प्राकृतिक लॉग से विभाजित करने के बराबर है, या:


: <math>\tau = \frac{t_{1/2}}{\ln (2)} \approx 1.44 \cdot t_{1/2}.</math>
: <math>\tau = \frac{t_{1/2}}{\ln (2)} \approx 1.44 \cdot t_{1/2}.</math>
उदाहरण के लिए, [[पोलोनियम -210]] की अर्द्ध-आयु 138 दिन और औसत जीवनकाल 200 दिन है।
उदाहरण के लिए, पोलोनियम-210 की अर्द्ध-जीवन 138 दिन और औसत जीवनकाल 200 दिनों का होता है।


== अवकल समीकरण का हल ==
== अवकल समीकरण का हल ==


घातीय क्षय का वर्णन करने वाला समीकरण है
समीकरण जो घातीय क्षय का वर्णन करता है
:<math>\frac{dN}{dt} = -\lambda N</math>
:<math>\frac{dN}{dt} = -\lambda N</math>
या, पुनर्व्यवस्थित करके (वैरिएबल्स के पृथक्करण नामक तकनीक को लागू करके),
या, पुनर्व्यवस्थित करके (चरों के पृथक्करण नामक तकनीक को प्रयुक्त करके),
:<math>\frac{dN}{N} = -\lambda dt.</math>
:<math>\frac{dN}{N} = -\lambda dt.</math>
एकीकृत, हमारे पास है
समाकलन, हमारे पास है
:<math>\ln N = -\lambda t + C \,</math>
:<math>\ln N = -\lambda t + C \,</math>
जहाँ C समाकलन का स्थिरांक है, और इसलिए
जहाँ C समाकलन का स्थिरांक है, और इसलिए
:<math>N(t) = e^C e^{-\lambda t} = N_0 e^{-\lambda t} \,</math>
:<math>N(t) = e^C e^{-\lambda t} = N_0 e^{-\lambda t} \,</math>
जहां अंतिम प्रतिस्थापन, एन<sub>0</sub> = और<sup>C</sup>, t = 0 पर समीकरण का N के रूप में मूल्यांकन करके प्राप्त किया जाता है<sub>0</sub> t = 0 पर मात्रा के रूप में परिभाषित किया गया है।
जहां अंतिम प्रतिस्थापन, ''N''<sub>0</sub> = ''e<sup>C</sup>'', t = 0 पर समीकरण का मूल्यांकन करके प्राप्त किया जाता है, क्योंकि ''N''<sub>0</sub> को t = 0 पर राशि के रूप में परिभाषित किया गया है।


यह समीकरण का वह रूप है जो घातीय क्षय का वर्णन करने के लिए सबसे अधिक उपयोग किया जाता है। कोई भी क्षय स्थिर, औसत जीवनकाल या अर्ध-जीवन क्षय को चिह्नित करने के लिए पर्याप्त है। क्षय स्थिरांक के लिए संकेतन λ एक आइगेनमान के लिए सामान्य संकेतन का अवशेष है। इस मामले में, λ संबंधित [[eigenfunction]] के रूप में एन (टी) के साथ [[अंतर ऑपरेटर]] के योगात्मक व्युत्क्रम का [[eigenvalue]] है। क्षय स्थिरांक की इकाइयाँ s हैं<sup>-1</sup>{{Citation needed|date=November 2016}}.
यह समीकरण का वह रूप है जो घातीय क्षय का वर्णन करने के लिए सबसे अधिक उपयोग किया जाता है। कोई भी क्षय स्थिर, औसत जीवनकाल या अर्ध-जीवन क्षय को चिह्नित करने के लिए पर्याप्त है। क्षय स्थिरांक के लिए संकेतन λ एक आइगेनमान के लिए सामान्य संकेतन का अवशेष है। इस स्थितियों में, λ संबंधित [[eigenfunction|आइगेन]]फलन के रूप में ''N''(''t'') के साथ [[अंतर ऑपरेटर|अवकल संकारक]] के योगात्मक व्युत्क्रम का आइगेनमान है। क्षय स्थिरांक की इकाइयाँ s<sup>−1</sup> हैं।{{Citation needed|date=November 2016}}


=== औसत जीवनकाल की व्युत्पत्ति ===
=== औसत जीवनकाल का अवकल ===
तत्वों की एक असेंबली दी गई है, जिसकी संख्या अंततः शून्य हो जाती है, औसत जीवनकाल, <math>\tau</math>, (जिसे केवल जीवन भर भी कहा जाता है) किसी वस्तु को असेंबली से हटाए जाने से पहले की मात्रा का [[अपेक्षित मूल्य]] है। विशेष रूप से, यदि असेंबली के किसी तत्व का 'व्यक्तिगत जीवनकाल' कुछ संदर्भ समय और असेंबली से उस तत्व को हटाने के बीच का समय है, तो औसत जीवनकाल व्यक्तिगत जीवन काल का अंकगणितीय माध्य है।
तत्वों की एक संयोजन को देखते हुए, जिसकी संख्या अंततः शून्य हो जाती है, औसत जीवनकाल, <math>\tau</math>, (जिसे केवल जीवन-काल भी कहा जाता है) किसी वस्तु को संयोजन से हटाए जाने से पहले की राशि का [[अपेक्षित मूल्य|अपेक्षित मान]] है। विशेष रूप से, यदि संयोजन के किसी तत्व का 'व्यक्तिगत जीवनकाल' कुछ संदर्भ समय और संयोजन से उस तत्व को हटाने के बीच का समय है, तो औसत जीवनकाल व्यक्तिगत जीवन काल का अंकगणितीय माध्य है।


जनसंख्या सूत्र से शुरू
संख्या सूत्र से प्रारंभ करते हुए


:<math>N = N_0 e^{-\lambda t}, \,</math>
:<math>N = N_0 e^{-\lambda t}, \,</math>
पहले सी को प्रायिकता घनत्व समारोह में बदलने के लिए सामान्यीकरण कारक होने दें:
पहले c को प्रायिकता घनत्व फलन में परिवर्तित करने के लिए सामान्यीकृत कारक बनें:


:<math>1 = \int_0^\infty c \cdot N_0 e^{-\lambda t}\, dt = c \cdot \frac{N_0}{\lambda}</math>
:<math>1 = \int_0^\infty c \cdot N_0 e^{-\lambda t}\, dt = c \cdot \frac{N_0}{\lambda}</math>
Line 61: Line 61:


:<math>c = \frac{\lambda}{N_0}.</math>
:<math>c = \frac{\lambda}{N_0}.</math>
घातीय क्षय घातीय वितरण का एक अदिश गुणन है (अर्थात प्रत्येक वस्तु का व्यक्तिगत जीवनकाल घातीय रूप से वितरित किया जाता है), जिसका एक घातीय वितरण # गुण | प्रसिद्ध अपेक्षित मान है। हम [[भागों द्वारा एकीकरण]] का उपयोग करके यहां इसकी गणना कर सकते हैं।
घातीय क्षय घातीय वितरण का एक अदिश बहु है अर्थात प्रत्येक वस्तु का व्यक्तिगत जीवनकाल घातीय रूप से वितरित किया जाता है, जिसका एक प्रसिद्ध अपेक्षित मान है। हम भागों द्वारा समाकलन का उपयोग करके यहां इसकी गणना कर सकते हैं।


:<math>\tau = \langle t \rangle = \int_0^\infty t \cdot c \cdot N_0 e^{-\lambda t}\, dt = \int_0^\infty \lambda t e^{-\lambda t}\, dt = \frac{1}{\lambda}.</math>
:<math>\tau = \langle t \rangle = \int_0^\infty t \cdot c \cdot N_0 e^{-\lambda t}\, dt = \int_0^\infty \lambda t e^{-\lambda t}\, dt = \frac{1}{\lambda}.</math>




=== दो या दो से अधिक प्रक्रियाओं द्वारा क्षय ===<!-- This section is linked from [[Half-life]] -->
=== दो या दो से अधिक प्रक्रियाओं द्वारा क्षय ===
{{see also|Branching fraction}}
{{see also|शाखन खंड}}
एक मात्रा एक साथ दो या दो से अधिक विभिन्न प्रक्रियाओं के माध्यम से क्षय हो सकती है। सामान्य तौर पर, इन प्रक्रियाओं (अक्सर क्षय मोड, क्षय चैनल, क्षय मार्ग आदि कहा जाता है) के घटित होने की अलग-अलग संभावनाएँ होती हैं, और इस प्रकार समानांतर में अलग-अलग अर्ध-जीवन के साथ अलग-अलग दरों पर होती हैं। मात्रा N की कुल क्षय दर क्षय मार्गों के योग द्वारा दी गई है; इस प्रकार, दो प्रक्रियाओं के मामले में:
एक राशि एक साथ दो या दो से अधिक विभिन्न प्रक्रियाओं के माध्यम से क्षय हो सकती है। सामान्य तौर पर, इन प्रक्रियाओं (प्रायः "क्षय मोड", "क्षय प्रणाली", "क्षय पथ" आदि कहा जाता है) होने की अलग-अलग संभावनाएं होती हैं, और इस प्रकार समानांतर में अलग-अलग अर्ध-जीवन के साथ अलग-अलग दरों पर होती हैं। राशि N की कुल क्षय दर क्षय मार्गों के योग द्वारा दी गई है; इस प्रकार, दो प्रक्रियाओं के स्थितियों में:


:<math>-\frac{dN(t)}{dt} = N\lambda _1 + N\lambda _2 = (\lambda _1 + \lambda _2)N.</math>
:<math>-\frac{dN(t)}{dt} = N\lambda _1 + N\lambda _2 = (\lambda _1 + \lambda _2)N.</math>
इस समीकरण का हल पिछले भाग में दिया गया है, जहाँ का योग है <math>\lambda _1 + \lambda _2\,</math> एक नए कुल क्षय स्थिरांक के रूप में माना जाता है <math>\lambda _c</math>.
इइस समीकरण का हल पिछले भाग में दिया गया है, जहाँ <math>\lambda _1 + \lambda _2\,</math> के योग को एक नए कुल क्षय स्थिरांक <math>\lambda _c</math> के रूप में माना जाता है।


:<math>N(t) = N_0 e^{-(\lambda _1 + \lambda _2) t} = N_0 e^{-(\lambda _c) t}.</math>
:<math>N(t) = N_0 e^{-(\lambda _1 + \lambda _2) t} = N_0 e^{-(\lambda _c) t}.</math>
व्यक्तिगत प्रक्रियाओं से जुड़ा आंशिक औसत जीवन परिभाषा के अनुसार संबंधित आंशिक क्षय स्थिरांक का गुणक व्युत्क्रम है: <math>\tau = 1/\lambda</math>. ए संयुक्त <math>\tau_c</math> के रूप में दिया जा सकता है <math>\lambda</math>एस:
व्यक्तिगत प्रक्रियाओं से जुड़ा आंशिक माध्य जीवन परिभाषा के अनुसार संबंधित आंशिक क्षय स्थिरांक <math>\tau = 1/\lambda</math> का गुणात्मक व्युत्क्रम है। एक संयुक्त <math>\tau_c</math>, <math>\lambda</math> के संदर्भ में दिया जा सकता है:


:<math>\frac{1}{\tau_c} = \lambda_c = \lambda_1 + \lambda_2 = \frac{1}{\tau_1} + \frac{1}{\tau_2}</math>
:<math>\frac{1}{\tau_c} = \lambda_c = \lambda_1 + \lambda_2 = \frac{1}{\tau_1} + \frac{1}{\tau_2}</math>
:<math>\tau_c = \frac{\tau_1 \tau_2}{\tau_1 + \tau_2}. </math>
:<math>\tau_c = \frac{\tau_1 \tau_2}{\tau_1 + \tau_2}. </math>
चूंकि आधा जीवन औसत जीवन से भिन्न होता है <math>\tau</math> एक स्थिर कारक द्वारा, समान समीकरण दो संगत अर्ध-जीवन के संदर्भ में होता है:
चूँकि अर्ध-जीवन औसत जीवन <math>\tau</math> से एक स्थिर कारक से भिन्न होता है, वही समीकरण दो संबंधित अर्ध-जीवन के संदर्भ में होता है:


:<math>T_{1/2} = \frac{t_1 t_2}{t_1 + t_2} </math>
:<math>T_{1/2} = \frac{t_1 t_2}{t_1 + t_2} </math>
कहाँ पे <math>T _{1/2}</math> प्रक्रिया के लिए संयुक्त या कुल आधा जीवन है, <math>t_1</math> तथा <math>t_2</math> संबंधित प्रक्रियाओं के तथाकथित आंशिक आधे जीवन हैं। पद आंशिक अर्ध-जीवन और आंशिक माध्य जीवन एक क्षय स्थिरांक से प्राप्त मात्राओं को दर्शाते हैं जैसे कि दिया गया क्षय मोड मात्रा के लिए एकमात्र क्षय मोड था। आंशिक आधा जीवन शब्द भ्रामक है, क्योंकि इसे एक समय अंतराल के रूप में नहीं मापा जा सकता है जिसके लिए एक निश्चित मात्रा [[एक आधा]] है।
जहां <math>T _{1/2}</math> क्रिया के लिए संयुक्त या कुल अर्ध-जीवन है, और <math>t_1</math> तथा <math>t_2</math> संबंधित प्रक्रियाओं के तथाकथित आंशिक अर्ध-जीवन हैं। शब्द "आंशिक आधा जीवन" और "आंशिक औसत जीवन" एक क्षय स्थिरांक से प्राप्त मात्राओं को दर्शाता है जैसे कि दिया गया क्षय मोड मात्रा के लिए एकमात्र क्षय मोड था। शब्द "आंशिक आधा जीवन" भ्रामक है, क्योंकि इसे एक समय अंतराल के रूप में नहीं मापा जा सकता है जिसके लिए एक निश्चित मात्रा आधा हो जाती है।


अलग-अलग क्षय स्थिरांक के संदर्भ में, कुल आधा जीवन <math>T _{1/2}</math> होना दिखाया जा सकता है
अलग-अलग क्षय स्थिरांकों के संदर्भ में, कुल अर्ध-जीवन <math>T _{1/2}</math> दिखाया जा सकता है


:<math>T_{1/2} = \frac{\ln 2}{\lambda _c} = \frac{\ln 2}{\lambda _1 + \lambda _2}.</math>
:<math>T_{1/2} = \frac{\ln 2}{\lambda _c} = \frac{\ln 2}{\lambda _1 + \lambda _2}.</math>
Line 93: Line 93:
=== क्षय श्रृंखला / युग्मित क्षय ===
=== क्षय श्रृंखला / युग्मित क्षय ===


[[परमाणु विज्ञान]] और [[फार्माकोकाइनेटिक्स]] में, ब्याज का एजेंट क्षय श्रृंखला में स्थित हो सकता है, जहां संचय एक स्रोत एजेंट के घातीय क्षय द्वारा नियंत्रित होता है, जबकि ब्याज का एजेंट स्वयं घातीय प्रक्रिया के माध्यम से घटता है।
[[परमाणु विज्ञान]] और [[फार्माकोकाइनेटिक्स|भेषज बलगतिकी]] में, भाग का कारक क्षय श्रृंखला में स्थित हो सकता है, जहां संचय एक स्रोत कारक के घातीय क्षय द्वारा नियंत्रित होता है, जबकि भाग का कारक स्वयं घातीय प्रक्रिया के माध्यम से घटता है।


इन प्रणालियों को [[बेटमैन समीकरण]] का उपयोग करके हल किया जाता है।
इन प्रणालियों को [[बेटमैन समीकरण]] का उपयोग करके हल किया जाता है।


फार्माकोलॉजी सेटिंग में, कुछ अंतर्ग्रहण पदार्थों को एक प्रक्रिया द्वारा शरीर में अवशोषित किया जा सकता है, जो उचित रूप से घातीय क्षय के रूप में तैयार किया जाता है, या जानबूझकर [[संशोधित-रिलीज़ खुराक]] हो सकता है ताकि इस तरह की रिलीज़ प्रोफ़ाइल हो।
भेषजगुण विज्ञान संस्थापन में, कुछ अंतर्ग्रहण पदार्थों को एक प्रक्रिया द्वारा निकाय में अवशोषित किया जा सकता है जो उपयुक्त रूप से घातीय क्षय के रूप में प्रतिरूपित किया जाता है, या इस तरह के प्रदर्शन प्रोफाइल के लिए अभिप्रायः पूर्वक तैयार किया जा सकता है।


== अनुप्रयोग और उदाहरण ==
== अनुप्रयोग और उदाहरण ==


घातीय क्षय विभिन्न प्रकार की स्थितियों में होता है। इनमें से अधिकांश [[प्राकृतिक विज्ञान]] के क्षेत्र में आते हैं।
घातीय क्षय विभिन्न प्रकार की स्थितियों में होता है। इनमें से अधिकांश प्राकृतिक विज्ञान के क्षेत्र में आते हैं।


कई क्षय प्रक्रियाएं जिन्हें अक्सर घातांक के रूप में माना जाता है, वास्तव में केवल घातीय होती हैं जब तक नमूना बड़ा होता है और बड़ी संख्या का नियम लागू होता है। छोटे नमूनों के लिए, एक अधिक सामान्य विश्लेषण आवश्यक है, एक प्वासों प्रक्रिया के लिए लेखांकन।
कई क्षय प्रक्रियाएं जिन्हें अक्सर घातांक के रूप में माना जाता है, वास्तव में केवल घातीय होती हैं जब तक नमूना बड़ा होता है और बड़ी संख्या का नियम प्रयुक्त होता है। छोटे नमूनों के लिए, प्वासों प्रक्रिया के लिए एक अधिक सामान्य विश्लेषण आवश्यक है।


=== प्राकृतिक विज्ञान ===<!-- This section is linked from [[Methicillin-resistant Staphylococcus aureus]] -->
=== प्राकृतिक विज्ञान ===
* [[रासायनिक प्रतिक्रिया]]एँ: कुछ प्रकार की रासायनिक प्रतिक्रियाओं की प्रतिक्रिया दर एक या दूसरे [[अभिकारक]] की सांद्रता पर निर्भर करती है। ऐसी प्रतिक्रियाएँ जिनकी दर केवल एक अभिकारक की सांद्रता पर निर्भर करती है (जिसे दर समीकरण # प्रथम-क्रम प्रतिक्रियाएँ | प्रथम-क्रम प्रतिक्रियाएँ कहा जाता है) फलस्वरूप घातीय क्षय का पालन करती हैं। उदाहरण के लिए, कई [[एंजाइम]]-उत्प्रेरण प्रतिक्रियाएं इस तरह से व्यवहार करती हैं।
* '''रासायनिक अभिक्रियाएँ''': कुछ प्रकार की रासायनिक अभिक्रियाओं की दरें एक या दूसरे अभिकारक की सांद्रता पर निर्भर करती हैं। प्रतिक्रियाएँ जिनकी दर केवल एक अभिकारक की सांद्रता पर निर्भर करती है (प्रथम-क्रम प्रतिक्रियाओं के रूप में जानी जाती है) परिणामस्वरूप घातीय क्षय का अनुसरण करती है। उदाहरण के लिए, कई एंजाइम-उत्प्रेरित प्रतिक्रियाएँ इस तरह से व्यवहार करती हैं।
* [[इलेक्ट्रोस्टाटिक्स]]: कैपेसिटर (कैपेसिटेंस ''C'') में समाहित [[आवेश]] (या, समतुल्य, [[विद्युतीय संभाव्यता]]) तेजी से बदलता है, अगर कैपेसिटर एक निरंतर बाहरी इलेक्ट्रिक लोड (रेसिस्टेंस ''R'') का अनुभव करता है। प्रक्रिया के लिए घातीय समय-स्थिर τ ''आर'' ''सी'' है, और आधा जीवन इसलिए ''आर'' ''सी'' ln2 है। यह चार्जिंग और डिस्चार्जिंग दोनों पर लागू होता है, यानी एक कैपेसिटर एक ही कानून के अनुसार चार्ज या डिस्चार्ज होता है। एक प्रारंभ करनेवाला में वर्तमान में समान समीकरण लागू किए जा सकते हैं। (इसके अलावा, एक [[संधारित्र]] या प्रारंभ करनेवाला का विशेष मामला कई श्रृंखला और समानांतर सर्किट के माध्यम से बदल रहा है # समानांतर सर्किट प्रतिरोधक कई क्षय प्रक्रियाओं का एक दिलचस्प उदाहरण बनाता है, प्रत्येक प्रतिरोधक एक अलग प्रक्रिया का प्रतिनिधित्व करता है। वास्तव में, रोकनेवाला # श्रृंखला और के लिए अभिव्यक्ति समांतर दर्पणों में दो प्रतिरोधकों के समांतर सर्किट दो क्षय प्रक्रियाओं के साथ अर्ध-जीवन के समीकरण।)
* '''विद्युत् स्थैतिक''': एक संधारित्र (धारिता C) में निहित विद्युत आवेश (या समतुल्य, क्षमता) घातीय क्षय के साथ निर्वहन होता है जब संधारित्र प्रतिरोध R के निरंतर बाहरी भार का अनुभव करता है और इसी तरह घातीय क्षय की दर्पण छवि के साथ आवेशित करता है (जब संधारित्र को एक स्थिर विद्युत-दाब स्रोत से आवेशित किया जाता है, हालांकि एक निरंतर प्रतिरोध प्रक्रिया के लिए घातीय समय-स्थिरांक <math>
* [[भूभौतिकी]]: वायुमंडलीय दबाव लगभग 12% प्रति 1000 मीटर की दर से समुद्र तल से ऊंचाई बढ़ने के साथ लगभग घातीय रूप से घटता है।{{citation needed|date=November 2017}}
{\displaystyle \tau =R\,C}</math> है, इसलिए अर्ध-जीवन <math>{\displaystyle R\,C\,\ln(2)}</math> है। प्रेरित्र में वर्तमान के दोहरे के लिए समान समीकरण प्रयुक्त किए जा सकते हैं।
* [[गर्मी का हस्तांतरण]]: यदि एक [[तापमान]] पर कोई वस्तु दूसरे तापमान के माध्यम के संपर्क में आती है, तो वस्तु और माध्यम के बीच तापमान का अंतर घातीय क्षय (धीमी प्रक्रियाओं की सीमा में; वस्तु के अंदर अच्छी गर्मी चालन के बराबर) के बाद होता है, ताकि इसका तापमान इसकी मात्रा के माध्यम से अपेक्षाकृत समान रहता है)। न्यूटन के शीतलन के नियम को भी देखें।
* [[भूभौतिकी|'''भूभौतिकी''']]: वायुमंडलीय दबाव लगभग 12% प्रति 1000 मीटर की दर से समुद्र तल से ऊंचाई बढ़ने के साथ लगभग घातीय रूप से घटता है।{{citation needed|date=November 2017}}
* [[चमक]]: उत्तेजना के बाद, उत्सर्जन की तीव्रता - जो उत्तेजित परमाणुओं या अणुओं की संख्या के समानुपाती होती है - ल्यूमिनेसेंट सामग्री का तेजी से क्षय होता है। शामिल तंत्रों की संख्या के आधार पर, क्षय मोनो- या बहु-घातीय हो सकता है।
* [[गर्मी का हस्तांतरण|ऊष्मा का हस्तांतरण]]: यदि एक [[तापमान]] पर कोई वस्तु दूसरे तापमान के माध्यम के संपर्क में आती है, तो वस्तु और माध्यम के बीच तापमान का अंतर घातीय क्षय (मंद प्रक्रियाओं की सीमा में; वस्तु के अंदर अच्छी ऊष्मा चालन के बराबर) के बाद होता है, ताकि इसका तापमान इसकी राशि के माध्यम से अपेक्षाकृत समान रहता है। न्यूटन के शीतलन के नियम को भी देखें।
* [[औषध]] और [[ज़हरज्ञान]]: यह पाया गया है कि कई प्रशासित पदार्थों को घातीय क्षय पैटर्न के अनुसार वितरित और चयापचय किया जाता है ('क्लीयरेंस (दवा)' देखें)। किसी पदार्थ का [[जैविक आधा जीवन]] | जैविक आधा जीवन अल्फा आधा जीवन और बीटा आधा जीवन मापता है कि पदार्थ कितनी जल्दी वितरित और समाप्त हो जाता है।
* [[चमक|'''संदीप्ति''']]: उत्तेजना के बाद, उत्सर्जन की तीव्रता - जो उत्तेजित परमाणुओं या अणुओं की संख्या के समानुपाती होती है - संदीप्ति वस्तु का तेजी से क्षय होता है। सम्मिलित तंत्रों की संख्या के आधार पर, क्षय एकल- या बहु-घातीय हो सकता है।
* [[भौतिक प्रकाशिकी]]: एक शोषक माध्यम में प्रकाश या एक्स-रे या गामा किरणों जैसे [[विद्युत चुम्बकीय विकिरण]] की तीव्रता, अवशोषित माध्यम में दूरी के साथ एक घातीय कमी का अनुसरण करती है। इसे [[[[बीयर]]-Lambert]] कानून के रूप में जाना जाता है।
* '''औषध विज्ञान और विष विज्ञान''': यह पाया गया है कि कई प्रबंधित पदार्थ घातीय क्षय पैटर्न के अनुसार वितरित और उपापयचयी किए जाते हैं (समाशोधन देखें)। किसी पदार्थ का जैविक आधा जीवन "अल्फा आधा जीवन" और "बीटा आधा जीवन" मापता है कि पदार्थ कितनी शीघ्र वितरित और समाप्त हो जाता है।
* [[रेडियोधर्मिता]]: एक [[रेडियोन्यूक्लाइड]] के एक नमूने में जो एक अलग राज्य में [[रेडियोधर्मी क्षय]] से गुजरता है, मूल अवस्था में परमाणुओं की संख्या घातीय क्षय के बाद होती है जब तक कि परमाणुओं की शेष संख्या बड़ी होती है। क्षय उत्पाद को [[रेडियम-धर्मी]] न्यूक्लाइड कहा जाता है।
* [[भौतिक प्रकाशिकी|'''भौतिक प्रकाशिकी''']]: एक शोषक माध्यम में प्रकाश या एक्स-किरण या गामा किरणों जैसे विद्युत चुम्बकीय विकिरण की तीव्रता, अवशोषित माध्यम में दूरी के साथ एक घातीय कमी का अनुसरण करती है। इसे बियर-लैम्बर्ट नियम के रूप में जाना जाता है।
* [[थर्मोइलेक्ट्रिसिटी]]: तापमान बढ़ने पर एक नकारात्मक तापमान गुणांक [[thermistor]] के प्रतिरोध में गिरावट।
* '''रेडियोधर्मिता''': एक रेडियोन्यूक्लाइड के एक नमूने में जो एक अलग अवस्था में रेडियोधर्मी क्षय से गुजरता है, मूल अवस्था में परमाणुओं की संख्या घातीय क्षय के बाद होती है जब तक कि परमाणुओं की शेष संख्या बड़ी होती है। क्षय उत्पाद को रेडियोजेनिक न्यूक्लाइड कहा जाता है।
* [[कंपन]]: कुछ कंपन तेजी से क्षय हो सकते हैं; यह विशेषता अक्सर [[लयबद्ध दोलक]] में पाई जाती है, और सिंथेसाइज़र # साउंड बेसिक्स में ADSR लिफाफे बनाने में उपयोग की जाती है। एक अतिसंक्रमित प्रणाली बस एक घातीय क्षय के माध्यम से संतुलन में वापस आ जाएगी।
* [[थर्मोइलेक्ट्रिसिटी|'''तापविद्युत''']]: तापमान बढ़ने पर एक ऋणात्मक तापमान गुणांक थर्मिस्टर के प्रतिरोध में पतन होता है।
* बीयर फ्रॉथ: म्यूनिख के [[म्यूनिख के लुडविग मैक्सिमिलियन विश्वविद्यालय]] लेइक ने यह प्रदर्शित करने के लिए [[आईजी नोबेल पुरस्कार विजेताओं की सूची]] जीती कि बीयर फ्रॉथ घातीय क्षय के कानून का पालन करता है।<ref>{{Cite journal| last1 = Leike | first1 = A.| title = बियर झाग का प्रयोग करते हुए घातीय क्षय नियम का प्रदर्शन| journal = European Journal of Physics| volume = 23| pages = 21–26| year = 2002| issue = 1| doi = 10.1088/0143-0807/23/1/304|bibcode = 2002EJPh...23...21L | citeseerx = 10.1.1.693.5948| s2cid = 250873501}}</ref>
* [[कंपन|'''कंपन''']]: कुछ कंपन तेजी से क्षय हो सकते हैं; यह विशेषता प्रायः [[लयबद्ध दोलक]] में पाई जाती है, और संश्लेषक में एडीएसआर आवरण बनाने में उपयोग की जाती है। एक अतिसंक्रमित प्रणाली सिर्फ एक घातीय क्षय के माध्यम से संतुलन में वापस आ जाएगी।
* बीयर फ्रॉथ: म्यूनिख के [[म्यूनिख के लुडविग मैक्सिमिलियन विश्वविद्यालय]] लेइक ने यह प्रदर्शित करने के लिए आईजी नोबेल पुरस्कार जीता कि बीयर फ्रॉथ घातीय क्षय के नियम का अनुसरण करता है।<ref>{{Cite journal| last1 = Leike | first1 = A.| title = बियर झाग का प्रयोग करते हुए घातीय क्षय नियम का प्रदर्शन| journal = European Journal of Physics| volume = 23| pages = 21–26| year = 2002| issue = 1| doi = 10.1088/0143-0807/23/1/304|bibcode = 2002EJPh...23...21L | citeseerx = 10.1.1.693.5948| s2cid = 250873501}}</ref>




=== सामाजिक विज्ञान ===
=== सामाजिक विज्ञान ===
* [[वित्त]]: एक सेवानिवृत्ति निधि तेजी से क्षय हो जाएगी, असतत भुगतान राशि के अधीन, आमतौर पर मासिक, और एक निरंतर ब्याज दर के अधीन एक इनपुट। डिफरेंशियल इक्वेशन dA/dt = इनपुट - आउटपुट को फंड में बची हुई किसी भी राशि A तक पहुंचने के लिए समय निकालने के लिए लिखा और हल किया जा सकता है।
* [[वित्त]]: एक सेवानिवृत्ति निधि तेजी से क्षय हो जाएगी, असतत भुगतान राशि के अधीन, सामान्य रूप से मासिक, और एक निरंतर भाग दर के अधीन एक निवेश के अधीन होने के कारण तेजी से क्षय हो जाएगी।। अवकल समीकरण dA/dt = निर्दिष्ट - निर्गम को पूंजी में बची हुई किसी भी राशि A तक पहुंचने के लिए समय निकालने के लिए लिखा और हल किया जा सकता है।
* सरल [[glotchronology]] में, (विवाद योग्य) भाषाओं में निरंतर क्षय दर की धारणा एक भाषा की आयु का अनुमान लगाने की अनुमति देती है। ("दो" भाषाओं के बीच विभाजन के समय की गणना करने के लिए अतिरिक्त अनुमानों की आवश्यकता होती है, घातीय क्षय से स्वतंत्र)।
* सरल [[glotchronology|भाषाकालक्रमविज्ञान]] में, (विवाद योग्य) भाषाओं में निरंतर क्षय दर की धारणा एक भाषा की जीवन का अनुमान लगाने की स्वीकृति देती है। "दो" भाषाओं के बीच विभाजन के समय की गणना करने के लिए घातीय क्षय से स्वतंत्र अतिरिक्त अवधारणाओ की आवश्यकता होती है।


=== कंप्यूटर विज्ञान ===
=== कंप्यूटर विज्ञान ===
{{see also|Exponential backoff}}
{{see also|चरघातांकी बैकऑफ़}}
* [[इंटरनेट]] पर कोर रूटिंग, [[बीजीपी]], को उन रास्तों को याद रखने के लिए एक रूटिंग टेबल बनाए रखना पड़ता है जिससे एक [[पैकेट (सूचना प्रौद्योगिकी)]] विचलित हो सकता है। जब इनमें से एक पथ बार-बार अपनी स्थिति को ''उपलब्ध'' से ''उपलब्ध नहीं'' (और ''विपरीत'') में बदलता है, तो उस पथ को नियंत्रित करने वाले बीजीपी [[राउटर (कंप्यूटिंग)]] को बार-बार पथ रिकॉर्ड को जोड़ना और हटाना पड़ता है इसकी [[मर्गदर्शक सारणी]] (''फ्लैप्स'' पाथ) से, इस प्रकार [[सी पी यू]] और [[यादृच्छिक अभिगम स्मृति]] जैसे स्थानीय संसाधनों को खर्च करना और इससे भी अधिक, पीयर राउटर्स को बेकार जानकारी प्रसारित करना। इस अवांछित व्यवहार को रोकने के लिए, ''रूट फ्लैपिंग डैम्पिंग'' नाम का एक एल्गोरिद्म प्रत्येक रूट को एक भार प्रदान करता है जो हर बार जब रूट अपनी स्थिति बदलता है और समय के साथ तेजी से घटता है तो बड़ा हो जाता है। जब वजन एक निश्चित सीमा तक पहुंच जाता है, तो अधिक फड़फड़ाहट नहीं की जाती है, इस प्रकार [[मार्ग]] को दबा दिया जाता है।
* इंटरनेट पर कोर रूटिंग प्रोटोकॉल, बीजीपी को उन पथों को स्मरण रखने के लिए एक रूटिंग सारणी को बनाए रखना पड़ता है जिससे एक पैकेट विचलित हो सकता है। जब इनमें से एक पथ बार-बार अपनी स्थिति को उपलब्ध से उपलब्ध नहीं (और इसके विपरीत) में बदलता है, तो उस पथ को नियंत्रित करने वाले बीजीपी राउटर को बार-बार अपनी रूटिंग तालिका से पथ रिकॉर्ड को जोड़ना और हटाना पड़ता है रूट को फ़्लैप करता है, इस प्रकार स्थानीय संसाधनों को उपभोग करना जैसे सीपीयू और रैम के रूप में और इससे भी अधिक, विकृत सूचनाओं को पीयर राउटर्स में प्रसारित करना। इस अवांछित व्यवहार को रोकने के लिए, रूट फ़्लैपिंग डंपिंग नाम का एक एल्गोरिथ्म प्रत्येक पथ को एक भार प्रदान करता है जो प्रत्येक बार बड़ा हो जाता है जब रूट अपनी स्थिति बदलता है और समय के साथ तेजी से घटता है। जब भार न एक निश्चित सीमा तक पहुंच जाता है, तो अधिक फ्लैपिंग नहीं की जाती है, इस प्रकार रूट को प्रतिबंधित कर दिया जाता है।


{{wide image|doubling_time_vs_half_life.svg|640px|Graphs comparing doubling times and half lives of exponential growths (bold lines) and decay (faint lines), and their 70/''t'' and 72/''t'' approximations. In the [http://upload.wikimedia.org/wikipedia/commons/8/88/Doubling_time_vs_half_life.svg SVG version], hover over a graph to highlight it and its complement.}}
{{wide image|doubling_time_vs_half_life.svg|640px|घातीय वृद्धि (बोल्ड रेखाए) और क्षय (अस्पष्ट रेखाएं), और उनके 70/t और 72/t सन्निकटन के दोहरीकरण समय और आधे जीवन की तुलना करने वाले रेखांकन। एसवीजी संस्करण में, इसे और इसके पूरक को हाइलाइट करने के लिए ग्राफ़ पर होवर करें।}}





Revision as of 12:14, 9 June 2023

घातीय क्षय से गुजरने वाली राशि। बड़े क्षय स्थिरांक राशि को और अधिक तेजी से नष्ट कर देते हैं। यह क्षेत्र 0 से 5 तक x के लिए 25, 5, 1, 1/5, और 1/25 के क्षय स्थिरांक (λ) के लिए क्षय दिखाता है।

एक राशि घातीय क्षय के अधीन है यदि यह अपने वर्तमान मान के आनुपातिक दर से घटती है। प्रतीकात्मक रूप से, इस प्रक्रिया को निम्नलिखित अंतर समीकरण द्वारा व्यक्त किया जा सकता है, जहां N राशि है और λ (लैम्ब्डा) एक धनात्मक दर है जिसे घातीय क्षय स्थिरांक, विघटन स्थिरांक,[1] दर स्थिरांक,[2] या परिवर्तन स्थिरांक कहा जाता है:[3]

इस समीकरण का हल (नीचे अवकलज देखें) है:

जहाँ N(t) समय t पर राशि है, N0 = N(0) प्रारंभिक राशि है, अर्थात समय t = 0 पर राशि।

क्षय की दर मापना

औसत जीवनकाल

यदि क्षयकारी राशि, N(t), एक निश्चित समुच्चय (गणित) में असतत तत्वों की संख्या है, तो उस समय की औसत लंबाई की गणना करना संभव है जब कोई तत्व समुच्चय में रहता है। इसे 'औसत जीवनकाल' (या केवल 'जीवनकाल') कहा जाता है, जहां 'घातीय समय स्थिरांक' , क्षय दर स्थिरांक λ से निम्नलिखित तरीके से संबंधित है:

औसत जीवनकाल को अनुमापन समय के रूप में देखा जा सकता है, क्योंकि घातीय क्षय समीकरण को क्षय स्थिरांक λ के अतिरिक्त माध्य जीवनकाल के रूप में लिखा जा सकता है:

और कि वह समय है जिस पर संयोजन की संख्या 1/e ≈ 0.367879441 इसके प्रारंभिक मान से कम हो जाती है।

उदाहरण के लिए, यदि संयोजन की प्रारंभिक संख्या N(0), 1000 है, तो समय पर संख्या , 368 है।

एक बहुत ही समान समीकरण नीचे देखा जाएगा, जो तब उत्पन्न होता है जब घातीय का आधार e के अतिरिक्त 2 चयन किया जाता है। उस स्थिति में अनुमापन का समय आधा जीवन है।

आधा जीवन

कई लोगों के लिए घातीय क्षय की एक अधिक सहज विशेषता क्षयकारी राशि के प्रारंभिक मान के आधे तक कम होने के लिए आवश्यक समय है। (]यदि N(t) असतत है, तो यह औसत जीवन-काल के अतिरिक्त औसत जीवन-काल है। इस समय को अर्ध-जीवन कहा जाता है, और प्रायः प्रतीक t1/2 द्वारा निरूपित किया जाता है। अर्ध-जीवन को क्षय स्थिरांक या माध्य जीवनकाल के रूप में लिखा जा सकता है:

जब यह व्यंजक के लिए उपरोक्त घातीय समीकरण में प्रविष्ट किया जाता है, और ln(2) को आधार में अवशोषित कर लिया जाता है, तो यह समीकरण बन जाता है:

इस प्रकार, बची हुई वस्तु की राशि 2−1 = 1/2 है जो आधे-अधूरे जीवन की संख्या (संपूर्ण या भिन्नात्मक) तक बढ़ जाती है। इस प्रकार, 3 अर्ध-जीवन के बाद मूल वस्तु का 1/23 = 1/8 शेष रह जाएगा।

इसलिए, औसत जीवनकाल आधे जीवन को 2 के प्राकृतिक लॉग से विभाजित करने के बराबर है, या:

उदाहरण के लिए, पोलोनियम-210 की अर्द्ध-जीवन 138 दिन और औसत जीवनकाल 200 दिनों का होता है।

अवकल समीकरण का हल

समीकरण जो घातीय क्षय का वर्णन करता है

या, पुनर्व्यवस्थित करके (चरों के पृथक्करण नामक तकनीक को प्रयुक्त करके),

समाकलन, हमारे पास है

जहाँ C समाकलन का स्थिरांक है, और इसलिए

जहां अंतिम प्रतिस्थापन, N0 = eC, t = 0 पर समीकरण का मूल्यांकन करके प्राप्त किया जाता है, क्योंकि N0 को t = 0 पर राशि के रूप में परिभाषित किया गया है।

यह समीकरण का वह रूप है जो घातीय क्षय का वर्णन करने के लिए सबसे अधिक उपयोग किया जाता है। कोई भी क्षय स्थिर, औसत जीवनकाल या अर्ध-जीवन क्षय को चिह्नित करने के लिए पर्याप्त है। क्षय स्थिरांक के लिए संकेतन λ एक आइगेनमान के लिए सामान्य संकेतन का अवशेष है। इस स्थितियों में, λ संबंधित आइगेनफलन के रूप में N(t) के साथ अवकल संकारक के योगात्मक व्युत्क्रम का आइगेनमान है। क्षय स्थिरांक की इकाइयाँ s−1 हैं।[citation needed]

औसत जीवनकाल का अवकल

तत्वों की एक संयोजन को देखते हुए, जिसकी संख्या अंततः शून्य हो जाती है, औसत जीवनकाल, , (जिसे केवल जीवन-काल भी कहा जाता है) किसी वस्तु को संयोजन से हटाए जाने से पहले की राशि का अपेक्षित मान है। विशेष रूप से, यदि संयोजन के किसी तत्व का 'व्यक्तिगत जीवनकाल' कुछ संदर्भ समय और संयोजन से उस तत्व को हटाने के बीच का समय है, तो औसत जीवनकाल व्यक्तिगत जीवन काल का अंकगणितीय माध्य है।

संख्या सूत्र से प्रारंभ करते हुए

पहले c को प्रायिकता घनत्व फलन में परिवर्तित करने के लिए सामान्यीकृत कारक बनें:

या, पुनर्व्यवस्थित करने पर,

घातीय क्षय घातीय वितरण का एक अदिश बहु है अर्थात प्रत्येक वस्तु का व्यक्तिगत जीवनकाल घातीय रूप से वितरित किया जाता है, जिसका एक प्रसिद्ध अपेक्षित मान है। हम भागों द्वारा समाकलन का उपयोग करके यहां इसकी गणना कर सकते हैं।


दो या दो से अधिक प्रक्रियाओं द्वारा क्षय

एक राशि एक साथ दो या दो से अधिक विभिन्न प्रक्रियाओं के माध्यम से क्षय हो सकती है। सामान्य तौर पर, इन प्रक्रियाओं (प्रायः "क्षय मोड", "क्षय प्रणाली", "क्षय पथ" आदि कहा जाता है) होने की अलग-अलग संभावनाएं होती हैं, और इस प्रकार समानांतर में अलग-अलग अर्ध-जीवन के साथ अलग-अलग दरों पर होती हैं। राशि N की कुल क्षय दर क्षय मार्गों के योग द्वारा दी गई है; इस प्रकार, दो प्रक्रियाओं के स्थितियों में:

इइस समीकरण का हल पिछले भाग में दिया गया है, जहाँ के योग को एक नए कुल क्षय स्थिरांक के रूप में माना जाता है।

व्यक्तिगत प्रक्रियाओं से जुड़ा आंशिक माध्य जीवन परिभाषा के अनुसार संबंधित आंशिक क्षय स्थिरांक का गुणात्मक व्युत्क्रम है। एक संयुक्त , के संदर्भ में दिया जा सकता है:

चूँकि अर्ध-जीवन औसत जीवन से एक स्थिर कारक से भिन्न होता है, वही समीकरण दो संबंधित अर्ध-जीवन के संदर्भ में होता है:

जहां क्रिया के लिए संयुक्त या कुल अर्ध-जीवन है, और तथा संबंधित प्रक्रियाओं के तथाकथित आंशिक अर्ध-जीवन हैं। शब्द "आंशिक आधा जीवन" और "आंशिक औसत जीवन" एक क्षय स्थिरांक से प्राप्त मात्राओं को दर्शाता है जैसे कि दिया गया क्षय मोड मात्रा के लिए एकमात्र क्षय मोड था। शब्द "आंशिक आधा जीवन" भ्रामक है, क्योंकि इसे एक समय अंतराल के रूप में नहीं मापा जा सकता है जिसके लिए एक निश्चित मात्रा आधा हो जाती है।

अलग-अलग क्षय स्थिरांकों के संदर्भ में, कुल अर्ध-जीवन दिखाया जा सकता है

एक साथ तीन घातीय प्रक्रियाओं द्वारा क्षय के लिए कुल अर्ध-जीवन की गणना ऊपर की तरह की जा सकती है:


क्षय श्रृंखला / युग्मित क्षय

परमाणु विज्ञान और भेषज बलगतिकी में, भाग का कारक क्षय श्रृंखला में स्थित हो सकता है, जहां संचय एक स्रोत कारक के घातीय क्षय द्वारा नियंत्रित होता है, जबकि भाग का कारक स्वयं घातीय प्रक्रिया के माध्यम से घटता है।

इन प्रणालियों को बेटमैन समीकरण का उपयोग करके हल किया जाता है।

भेषजगुण विज्ञान संस्थापन में, कुछ अंतर्ग्रहण पदार्थों को एक प्रक्रिया द्वारा निकाय में अवशोषित किया जा सकता है जो उपयुक्त रूप से घातीय क्षय के रूप में प्रतिरूपित किया जाता है, या इस तरह के प्रदर्शन प्रोफाइल के लिए अभिप्रायः पूर्वक तैयार किया जा सकता है।

अनुप्रयोग और उदाहरण

घातीय क्षय विभिन्न प्रकार की स्थितियों में होता है। इनमें से अधिकांश प्राकृतिक विज्ञान के क्षेत्र में आते हैं।

कई क्षय प्रक्रियाएं जिन्हें अक्सर घातांक के रूप में माना जाता है, वास्तव में केवल घातीय होती हैं जब तक नमूना बड़ा होता है और बड़ी संख्या का नियम प्रयुक्त होता है। छोटे नमूनों के लिए, प्वासों प्रक्रिया के लिए एक अधिक सामान्य विश्लेषण आवश्यक है।

प्राकृतिक विज्ञान

  • रासायनिक अभिक्रियाएँ: कुछ प्रकार की रासायनिक अभिक्रियाओं की दरें एक या दूसरे अभिकारक की सांद्रता पर निर्भर करती हैं। प्रतिक्रियाएँ जिनकी दर केवल एक अभिकारक की सांद्रता पर निर्भर करती है (प्रथम-क्रम प्रतिक्रियाओं के रूप में जानी जाती है) परिणामस्वरूप घातीय क्षय का अनुसरण करती है। उदाहरण के लिए, कई एंजाइम-उत्प्रेरित प्रतिक्रियाएँ इस तरह से व्यवहार करती हैं।
  • विद्युत् स्थैतिक: एक संधारित्र (धारिता C) में निहित विद्युत आवेश (या समतुल्य, क्षमता) घातीय क्षय के साथ निर्वहन होता है जब संधारित्र प्रतिरोध R के निरंतर बाहरी भार का अनुभव करता है और इसी तरह घातीय क्षय की दर्पण छवि के साथ आवेशित करता है (जब संधारित्र को एक स्थिर विद्युत-दाब स्रोत से आवेशित किया जाता है, हालांकि एक निरंतर प्रतिरोध प्रक्रिया के लिए घातीय समय-स्थिरांक है, इसलिए अर्ध-जीवन है। प्रेरित्र में वर्तमान के दोहरे के लिए समान समीकरण प्रयुक्त किए जा सकते हैं।
  • भूभौतिकी: वायुमंडलीय दबाव लगभग 12% प्रति 1000 मीटर की दर से समुद्र तल से ऊंचाई बढ़ने के साथ लगभग घातीय रूप से घटता है।[citation needed]
  • ऊष्मा का हस्तांतरण: यदि एक तापमान पर कोई वस्तु दूसरे तापमान के माध्यम के संपर्क में आती है, तो वस्तु और माध्यम के बीच तापमान का अंतर घातीय क्षय (मंद प्रक्रियाओं की सीमा में; वस्तु के अंदर अच्छी ऊष्मा चालन के बराबर) के बाद होता है, ताकि इसका तापमान इसकी राशि के माध्यम से अपेक्षाकृत समान रहता है। न्यूटन के शीतलन के नियम को भी देखें।
  • संदीप्ति: उत्तेजना के बाद, उत्सर्जन की तीव्रता - जो उत्तेजित परमाणुओं या अणुओं की संख्या के समानुपाती होती है - संदीप्ति वस्तु का तेजी से क्षय होता है। सम्मिलित तंत्रों की संख्या के आधार पर, क्षय एकल- या बहु-घातीय हो सकता है।
  • औषध विज्ञान और विष विज्ञान: यह पाया गया है कि कई प्रबंधित पदार्थ घातीय क्षय पैटर्न के अनुसार वितरित और उपापयचयी किए जाते हैं (समाशोधन देखें)। किसी पदार्थ का जैविक आधा जीवन "अल्फा आधा जीवन" और "बीटा आधा जीवन" मापता है कि पदार्थ कितनी शीघ्र वितरित और समाप्त हो जाता है।
  • भौतिक प्रकाशिकी: एक शोषक माध्यम में प्रकाश या एक्स-किरण या गामा किरणों जैसे विद्युत चुम्बकीय विकिरण की तीव्रता, अवशोषित माध्यम में दूरी के साथ एक घातीय कमी का अनुसरण करती है। इसे बियर-लैम्बर्ट नियम के रूप में जाना जाता है।
  • रेडियोधर्मिता: एक रेडियोन्यूक्लाइड के एक नमूने में जो एक अलग अवस्था में रेडियोधर्मी क्षय से गुजरता है, मूल अवस्था में परमाणुओं की संख्या घातीय क्षय के बाद होती है जब तक कि परमाणुओं की शेष संख्या बड़ी होती है। क्षय उत्पाद को रेडियोजेनिक न्यूक्लाइड कहा जाता है।
  • तापविद्युत: तापमान बढ़ने पर एक ऋणात्मक तापमान गुणांक थर्मिस्टर के प्रतिरोध में पतन होता है।
  • कंपन: कुछ कंपन तेजी से क्षय हो सकते हैं; यह विशेषता प्रायः लयबद्ध दोलक में पाई जाती है, और संश्लेषक में एडीएसआर आवरण बनाने में उपयोग की जाती है। एक अतिसंक्रमित प्रणाली सिर्फ एक घातीय क्षय के माध्यम से संतुलन में वापस आ जाएगी।
  • बीयर फ्रॉथ: म्यूनिख के म्यूनिख के लुडविग मैक्सिमिलियन विश्वविद्यालय लेइक ने यह प्रदर्शित करने के लिए आईजी नोबेल पुरस्कार जीता कि बीयर फ्रॉथ घातीय क्षय के नियम का अनुसरण करता है।[4]


सामाजिक विज्ञान

  • वित्त: एक सेवानिवृत्ति निधि तेजी से क्षय हो जाएगी, असतत भुगतान राशि के अधीन, सामान्य रूप से मासिक, और एक निरंतर भाग दर के अधीन एक निवेश के अधीन होने के कारण तेजी से क्षय हो जाएगी।। अवकल समीकरण dA/dt = निर्दिष्ट - निर्गम को पूंजी में बची हुई किसी भी राशि A तक पहुंचने के लिए समय निकालने के लिए लिखा और हल किया जा सकता है।
  • सरल भाषाकालक्रमविज्ञान में, (विवाद योग्य) भाषाओं में निरंतर क्षय दर की धारणा एक भाषा की जीवन का अनुमान लगाने की स्वीकृति देती है। "दो" भाषाओं के बीच विभाजन के समय की गणना करने के लिए घातीय क्षय से स्वतंत्र अतिरिक्त अवधारणाओ की आवश्यकता होती है।

कंप्यूटर विज्ञान

  • इंटरनेट पर कोर रूटिंग प्रोटोकॉल, बीजीपी को उन पथों को स्मरण रखने के लिए एक रूटिंग सारणी को बनाए रखना पड़ता है जिससे एक पैकेट विचलित हो सकता है। जब इनमें से एक पथ बार-बार अपनी स्थिति को उपलब्ध से उपलब्ध नहीं (और इसके विपरीत) में बदलता है, तो उस पथ को नियंत्रित करने वाले बीजीपी राउटर को बार-बार अपनी रूटिंग तालिका से पथ रिकॉर्ड को जोड़ना और हटाना पड़ता है रूट को फ़्लैप करता है, इस प्रकार स्थानीय संसाधनों को उपभोग करना जैसे सीपीयू और रैम के रूप में और इससे भी अधिक, विकृत सूचनाओं को पीयर राउटर्स में प्रसारित करना। इस अवांछित व्यवहार को रोकने के लिए, रूट फ़्लैपिंग डंपिंग नाम का एक एल्गोरिथ्म प्रत्येक पथ को एक भार प्रदान करता है जो प्रत्येक बार बड़ा हो जाता है जब रूट अपनी स्थिति बदलता है और समय के साथ तेजी से घटता है। जब भार न एक निश्चित सीमा तक पहुंच जाता है, तो अधिक फ्लैपिंग नहीं की जाती है, इस प्रकार रूट को प्रतिबंधित कर दिया जाता है।
घातीय वृद्धि (बोल्ड रेखाए) और क्षय (अस्पष्ट रेखाएं), और उनके 70/t और 72/t सन्निकटन के दोहरीकरण समय और आधे जीवन की तुलना करने वाले रेखांकन। एसवीजी संस्करण में, इसे और इसके पूरक को हाइलाइट करने के लिए ग्राफ़ पर होवर करें।


यह भी देखें

टिप्पणियाँ

  1. Serway (1989, p. 384)
  2. Simmons (1972, p. 15)
  3. McGraw-Hill (2007)
  4. Leike, A. (2002). "बियर झाग का प्रयोग करते हुए घातीय क्षय नियम का प्रदर्शन". European Journal of Physics. 23 (1): 21–26. Bibcode:2002EJPh...23...21L. CiteSeerX 10.1.1.693.5948. doi:10.1088/0143-0807/23/1/304. S2CID 250873501.


संदर्भ


बाहरी संबंध