घातीय क्षय: Difference between revisions
No edit summary |
|||
Line 21: | Line 21: | ||
=== आधा जीवन === | === आधा जीवन === | ||
कई लोगों के लिए घातीय क्षय की एक अधिक सहज विशेषता क्षयकारी राशि के प्रारंभिक मान के आधे तक कम होने के लिए आवश्यक समय है। यदि N(t) असतत है, तो यह औसत जीवन-काल के अतिरिक्त औसत जीवन-काल है। इस समय को अर्ध-जीवन कहा जाता है, और प्रायः प्रतीक ''t''<sub>1/2</sub> द्वारा निरूपित किया जाता है। अर्ध-जीवन को क्षय स्थिरांक या माध्य जीवनकाल के रूप में लिखा जा सकता है: | |||
कई लोगों के लिए घातीय क्षय की एक अधिक सहज विशेषता क्षयकारी राशि के प्रारंभिक मान के आधे तक कम होने के लिए आवश्यक समय है। | |||
:<math>t_{1/2} = \frac{\ln (2)}{\lambda} = \tau \ln (2).</math> | :<math>t_{1/2} = \frac{\ln (2)}{\lambda} = \tau \ln (2).</math> | ||
Line 30: | Line 29: | ||
इस प्रकार, बची हुई वस्तु की राशि 2<sup>−1</sup> = 1/2 है जो आधे-अधूरे जीवन की संख्या (संपूर्ण या भिन्नात्मक) तक बढ़ जाती है। इस प्रकार, 3 अर्ध-जीवन के बाद मूल वस्तु का 1/2<sup>3</sup> = 1/8 शेष रह जाएगा। | इस प्रकार, बची हुई वस्तु की राशि 2<sup>−1</sup> = 1/2 है जो आधे-अधूरे जीवन की संख्या (संपूर्ण या भिन्नात्मक) तक बढ़ जाती है। इस प्रकार, 3 अर्ध-जीवन के बाद मूल वस्तु का 1/2<sup>3</sup> = 1/8 शेष रह जाएगा। | ||
इसलिए, औसत जीवनकाल <math>\tau</math> आधे जीवन को 2 के प्राकृतिक लॉग से विभाजित करने के समान होता है, या | इसलिए, औसत जीवनकाल <math>\tau</math> आधे जीवन को 2 के प्राकृतिक लॉग से विभाजित करने के समान होता है, या | ||
: <math>\tau = \frac{t_{1/2}}{\ln (2)} \approx 1.44 \cdot t_{1/2}.</math> | : <math>\tau = \frac{t_{1/2}}{\ln (2)} \approx 1.44 \cdot t_{1/2}.</math> | ||
Line 47: | Line 46: | ||
जहां अंतिम प्रतिस्थापन, ''N''<sub>0</sub> = ''e<sup>C</sup>'', t = 0 पर समीकरण का मूल्यांकन करके प्राप्त किया जाता है, क्योंकि ''N''<sub>0</sub> को t = 0 पर राशि के रूप में परिभाषित किया गया है। | जहां अंतिम प्रतिस्थापन, ''N''<sub>0</sub> = ''e<sup>C</sup>'', t = 0 पर समीकरण का मूल्यांकन करके प्राप्त किया जाता है, क्योंकि ''N''<sub>0</sub> को t = 0 पर राशि के रूप में परिभाषित किया गया है। | ||
यह समीकरण का वह रूप है जो घातीय क्षय का वर्णन करने के लिए सबसे अधिक उपयोग किया जाता है। कोई भी क्षय स्थिर, औसत जीवनकाल या अर्ध-जीवन क्षय को चिह्नित करने के लिए पर्याप्त होता है। क्षय स्थिरांक के लिए संकेतन λ एक आइगेनमान के लिए सामान्य संकेतन का अवशेष है। इस स्थितियों में, λ संबंधित [[eigenfunction|आइगेन]]फलन के रूप में ''N''(''t'') के साथ [[अंतर ऑपरेटर|अवकल संकारक]] के योगात्मक व्युत्क्रम का आइगेनमान है। क्षय स्थिरांक की इकाइयाँ s<sup>−1</sup> हैं। | यह समीकरण का वह रूप है जो घातीय क्षय का वर्णन करने के लिए सबसे अधिक उपयोग किया जाता है। कोई भी क्षय स्थिर, औसत जीवनकाल या अर्ध-जीवन क्षय को चिह्नित करने के लिए पर्याप्त होता है। क्षय स्थिरांक के लिए संकेतन λ एक आइगेनमान के लिए सामान्य संकेतन का अवशेष है। इस स्थितियों में, λ संबंधित [[eigenfunction|आइगेन]]फलन के रूप में ''N''(''t'') के साथ [[अंतर ऑपरेटर|अवकल संकारक]] के योगात्मक व्युत्क्रम का आइगेनमान है। क्षय स्थिरांक की इकाइयाँ s<sup>−1</sup> हैं। | ||
=== औसत जीवनकाल का अवकल === | === औसत जीवनकाल का अवकल === |
Revision as of 10:44, 12 June 2023
एक राशि घातीय क्षय के अधीन है यदि यह अपने वर्तमान मान के आनुपातिक दर से घटती है। प्रतीकात्मक रूप से, इस प्रक्रिया को निम्नलिखित अवकल समीकरण द्वारा व्यक्त किया जा सकता है, जहां N राशि है और λ (लैम्ब्डा) एक धनात्मक दर होती है जिसे घातीय क्षय स्थिरांक, विघटन स्थिरांक,[1] दर स्थिरांक,[2] या परिवर्तन स्थिरांक कहा जाता है:[3]
इस समीकरण का संशोधन (नीचे अवकलज देखें) है:
जहाँ N(t) समय t पर राशि है, N0 = N(0) प्रारंभिक राशि होती है, अर्थात समय t = 0 पर राशि होती है।
क्षय की दर मापना
औसत जीवनकाल
यदि क्षयकारी राशि, N(t), एक निश्चित समुच्चय (गणित) में असतत तत्वों की संख्या है, तो उस समय की औसत लंबाई की गणना करना संभव है जब कोई तत्व समुच्चय में रहता है। इसे 'औसत जीवनकाल' (या केवल 'जीवनकाल') कहा जाता है, जहां 'घातीय समय स्थिरांक' , क्षय दर स्थिरांक λ से निम्नलिखित तरीके से संबंधित है:
औसत जीवनकाल को अनुमापन समय के रूप में देखा जा सकता है, क्योंकि घातीय क्षय समीकरण को क्षय स्थिरांक λ के अतिरिक्त माध्य जीवनकाल के रूप में लिखा जा सकता है:
और कि वह समय है जिस पर संयोजन की संख्या 1/e ≈ 0.367879441 इसके प्रारंभिक मान से कम हो जाती है।
उदाहरण के लिए, यदि संयोजन की प्रारंभिक संख्या N(0), 1000 है, तो समय पर संख्या , 368 होती है।
एक बहुत ही समान समीकरण नीचे देखा जाएगा, जो तब उत्पन्न होता है जब घातीय का आधार e के अतिरिक्त 2 चयन किया जाता है। उस स्थिति में अनुमापन का समय आधा जीवन होता है।
आधा जीवन
कई लोगों के लिए घातीय क्षय की एक अधिक सहज विशेषता क्षयकारी राशि के प्रारंभिक मान के आधे तक कम होने के लिए आवश्यक समय है। यदि N(t) असतत है, तो यह औसत जीवन-काल के अतिरिक्त औसत जीवन-काल है। इस समय को अर्ध-जीवन कहा जाता है, और प्रायः प्रतीक t1/2 द्वारा निरूपित किया जाता है। अर्ध-जीवन को क्षय स्थिरांक या माध्य जीवनकाल के रूप में लिखा जा सकता है:
जब यह व्यंजक के लिए उपरोक्त घातीय समीकरण में प्रविष्ट किया जाता है, और ln(2) को आधार में अवशोषित कर लिया जाता है, तो यह समीकरण बन जाता है:
इस प्रकार, बची हुई वस्तु की राशि 2−1 = 1/2 है जो आधे-अधूरे जीवन की संख्या (संपूर्ण या भिन्नात्मक) तक बढ़ जाती है। इस प्रकार, 3 अर्ध-जीवन के बाद मूल वस्तु का 1/23 = 1/8 शेष रह जाएगा।
इसलिए, औसत जीवनकाल आधे जीवन को 2 के प्राकृतिक लॉग से विभाजित करने के समान होता है, या
उदाहरण के लिए, पोलोनियम-210 की अर्द्ध-जीवन 138 दिन और औसत जीवनकाल 200 दिनों का होता है।
अवकल समीकरण का संशोधन
समीकरण जो घातीय क्षय का वर्णन करता है
या, पुनर्व्यवस्थित करके (चरों के पृथक्करण नामक तकनीक को प्रयुक्त करके),
समाकलन, हमारे पास है
जहाँ C समाकलन का स्थिरांक है, और इसलिए
जहां अंतिम प्रतिस्थापन, N0 = eC, t = 0 पर समीकरण का मूल्यांकन करके प्राप्त किया जाता है, क्योंकि N0 को t = 0 पर राशि के रूप में परिभाषित किया गया है।
यह समीकरण का वह रूप है जो घातीय क्षय का वर्णन करने के लिए सबसे अधिक उपयोग किया जाता है। कोई भी क्षय स्थिर, औसत जीवनकाल या अर्ध-जीवन क्षय को चिह्नित करने के लिए पर्याप्त होता है। क्षय स्थिरांक के लिए संकेतन λ एक आइगेनमान के लिए सामान्य संकेतन का अवशेष है। इस स्थितियों में, λ संबंधित आइगेनफलन के रूप में N(t) के साथ अवकल संकारक के योगात्मक व्युत्क्रम का आइगेनमान है। क्षय स्थिरांक की इकाइयाँ s−1 हैं।
औसत जीवनकाल का अवकल
तत्वों की एक संयोजन को देखते हुए, जिसकी संख्या अंततः शून्य हो जाती है, औसत जीवनकाल, , (जिसे केवल जीवन-काल भी कहा जाता है) किसी वस्तु को संयोजन से हटाए जाने से पहले की राशि का अपेक्षित मान है। विशेष रूप से, यदि संयोजन के किसी तत्व का 'व्यक्तिगत जीवनकाल' कुछ संदर्भ समय और संयोजन से उस तत्व को हटाने के बीच का समय है, तो औसत जीवनकाल व्यक्तिगत जीवन काल का अंकगणितीय माध्य है।
संख्या सूत्र से प्रारंभ करते हुए
पहले c को प्रायिकता घनत्व फलन में परिवर्तित करने के लिए सामान्यीकृत कारक मान ले:
या, पुनर्व्यवस्थित करने पर,
घातीय क्षय घातीय वितरण का एक अदिश बहु राशि होती है अर्थात प्रत्येक वस्तु का व्यक्तिगत जीवनकाल घातीय रूप से वितरित किया जाता है, जिसका एक प्रसिद्ध अपेक्षित मान है। हम भागों द्वारा समाकलन का उपयोग करके यहां इसकी गणना कर सकते हैं।
दो या दो से अधिक प्रक्रियाओं द्वारा क्षय
एक राशि एक साथ दो या दो से अधिक विभिन्न प्रक्रियाओं के माध्यम से क्षय हो सकती है। सामान्य रूप से, इन प्रक्रियाओं (प्रायः "क्षय मोड", "क्षय प्रणाली", "क्षय पथ" आदि कहा जाता है) होने की अलग-अलग संभावनाएं होती हैं, और इस प्रकार समानांतर में अलग-अलग अर्ध-जीवन के साथ अलग-अलग दरों पर होती हैं। राशि N की कुल क्षय दर क्षय मार्गों के योग द्वारा दी गई है; इस प्रकार, दो प्रक्रियाओं के स्थितियों में:
इइस समीकरण का संशोधन पूर्व भाग में दिया गया है, जहाँ के योग को एक नए कुल क्षय स्थिरांक के रूप में माना जाता है।
व्यक्तिगत प्रक्रियाओं से जुड़ा आंशिक माध्य जीवन परिभाषा के अनुसार संबंधित आंशिक क्षय स्थिरांक का गुणात्मक व्युत्क्रम है। एक संयुक्त , के संदर्भ में दिया जा सकता है:
चूँकि अर्ध-जीवन औसत जीवन से एक स्थिर कारक से भिन्न होता है, वही समीकरण दो संबंधित अर्ध-जीवन के संदर्भ में होता है:
जहां क्रिया के लिए संयुक्त या कुल अर्ध-जीवन है, और तथा संबंधित प्रक्रियाओं के तथाकथित आंशिक अर्ध-जीवन हैं। शब्द "आंशिक आधा जीवन" और "आंशिक औसत जीवन" एक क्षय स्थिरांक से प्राप्त मात्राओं को दर्शाता है जैसे कि दिया गया क्षय मोड मात्रा के लिए एकमात्र क्षय मोड था। शब्द "आंशिक आधा जीवन" भ्रामक है, क्योंकि इसे एक समय अंतराल के रूप में नहीं मापा जा सकता है जिसके लिए एक निश्चित मात्रा आधा हो जाती है।
अलग-अलग क्षय स्थिरांकों के संदर्भ में, कुल अर्ध-जीवन दिखाया जा सकता है
एक साथ तीन घातीय प्रक्रियाओं द्वारा क्षय के लिए कुल अर्ध-जीवन की गणना ऊपर की तरह की जा सकती है:
क्षय श्रृंखला / युग्मित क्षय
परमाणु विज्ञान और भेषज बलगतिकी में, भाग का कारक क्षय श्रृंखला में स्थित हो सकता है, जहां संचय एक स्रोत कारक के घातीय क्षय द्वारा नियंत्रित होता है, जबकि भाग का कारक स्वयं घातीय प्रक्रिया के माध्यम से घटता है।
इन प्रणालियों को बेटमैन समीकरण का उपयोग करके संशोधन किया जाता है।
भेषजगुण विज्ञान संस्थापन में, कुछ अंतर्ग्रहण पदार्थों को एक प्रक्रिया द्वारा निकाय में अवशोषित किया जा सकता है जो उपयुक्त रूप से घातीय क्षय के रूप में प्रतिरूपित किया जाता है, या इस तरह के प्रदर्शन प्रोफाइल के लिए अभिप्रायः पूर्वक तैयार किया जा सकता है।
अनुप्रयोग और उदाहरण
घातीय क्षय विभिन्न प्रकार की स्थितियों में होता है। इनमें से अधिकांश प्राकृतिक विज्ञान के क्षेत्र में आते हैं।
कई क्षय प्रक्रियाएं जिन्हें अक्सर घातांक के रूप में माना जाता है, वास्तव में केवल घातीय होती हैं जब तक नमूना बड़ा होता है और बड़ी संख्या का नियम प्रयुक्त होता है। छोटे नमूनों के लिए, प्वासों प्रक्रिया के लिए एक अधिक सामान्य विश्लेषण आवश्यक है।
प्राकृतिक विज्ञान
- रासायनिक अभिक्रियाएँ: कुछ प्रकार की रासायनिक अभिक्रियाओं की दरें एक या दूसरे अभिकारक की सांद्रता पर निर्भर करती हैं। प्रतिक्रियाएँ जिनकी दर केवल एक अभिकारक की सांद्रता पर निर्भर करती है (प्रथम-क्रम प्रतिक्रियाओं के रूप में जानी जाती है) परिणामस्वरूप घातीय क्षय का अनुसरण करती है। उदाहरण के लिए, कई एंजाइम-उत्प्रेरित प्रतिक्रियाएँ इस तरह से व्यवहार करती हैं।
- विद्युत् स्थैतिक: एक संधारित्र (धारिता C) में निहित विद्युत आवेश (या समतुल्य, क्षमता) घातीय क्षय के साथ निर्वहन होता है जब संधारित्र प्रतिरोध R के निरंतर बाहरी भार का अनुभव करता है और इसी तरह घातीय क्षय की दर्पण छवि के साथ आवेशित करता है (जब संधारित्र को एक स्थिर विद्युत-दाब स्रोत से आवेशित किया जाता है, हालांकि एक निरंतर प्रतिरोध प्रक्रिया के लिए घातीय समय-स्थिरांक है, इसलिए अर्ध-जीवन है। प्रेरित्र में वर्तमान के दोहरे के लिए समान समीकरण प्रयुक्त किए जा सकते हैं।
- भूभौतिकी: वायुमंडलीय दबाव लगभग 12% प्रति 1000 मीटर की दर से समुद्र तल से ऊंचाई बढ़ने के साथ लगभग घातीय रूप से घटता है।[citation needed]
- ऊष्मा का हस्तांतरण: यदि एक तापमान पर कोई वस्तु दूसरे तापमान के माध्यम के संपर्क में आती है, तो वस्तु और माध्यम के बीच तापमान का अंतर घातीय क्षय (मंद प्रक्रियाओं की सीमा में; वस्तु के अंदर अच्छी ऊष्मा चालन के समान) के बाद होता है, ताकि इसका तापमान इसकी राशि के माध्यम से अपेक्षाकृत समान रहता है। न्यूटन के शीतलन के नियम को भी देखें।
- संदीप्ति: उत्तेजना के बाद, उत्सर्जन की तीव्रता - जो उत्तेजित परमाणुओं या अणुओं की संख्या के समानुपाती होती है - संदीप्ति वस्तु का तेजी से क्षय होता है। सम्मिलित तंत्रों की संख्या के आधार पर, क्षय एकल- या बहु-घातीय हो सकता है।
- औषध विज्ञान और विष विज्ञान: यह पाया गया है कि कई प्रबंधित पदार्थ घातीय क्षय पैटर्न के अनुसार वितरित और उपापयचयी किए जाते हैं (समाशोधन देखें)। किसी पदार्थ का जैविक आधा जीवन "अल्फा आधा जीवन" और "बीटा आधा जीवन" मापता है कि पदार्थ कितनी शीघ्र वितरित और समाप्त हो जाता है।
- भौतिक प्रकाशिकी: एक शोषक माध्यम में प्रकाश या एक्स-किरण या गामा किरणों जैसे विद्युत चुम्बकीय विकिरण की तीव्रता, अवशोषित माध्यम में दूरी के साथ एक घातीय कमी का अनुसरण करती है। इसे बियर-लैम्बर्ट नियम के रूप में जाना जाता है।
- रेडियोधर्मिता: एक रेडियोन्यूक्लाइड के एक नमूने में जो एक अलग अवस्था में रेडियोधर्मी क्षय से गुजरता है, मूल अवस्था में परमाणुओं की संख्या घातीय क्षय के बाद होती है जब तक कि परमाणुओं की शेष संख्या बड़ी होती है। क्षय उत्पाद को रेडियोजेनिक न्यूक्लाइड कहा जाता है।
- तापविद्युत: तापमान बढ़ने पर एक ऋणात्मक तापमान गुणांक थर्मिस्टर के प्रतिरोध में पतन होता है।
- कंपन: कुछ कंपन तेजी से क्षय हो सकते हैं; यह विशेषता प्रायः लयबद्ध दोलक में पाई जाती है, और संश्लेषक में एडीएसआर आवरण बनाने में उपयोग की जाती है। एक अतिसंक्रमित प्रणाली सिर्फ एक घातीय क्षय के माध्यम से संतुलन में वापस आ जाएगी।
- बीयर फ्रॉथ: म्यूनिख के म्यूनिख के लुडविग मैक्सिमिलियन विश्वविद्यालय लेइक ने यह प्रदर्शित करने के लिए आईजी नोबेल पुरस्कार जीता कि बीयर फ्रॉथ घातीय क्षय के नियम का अनुसरण करता है।[4]
सामाजिक विज्ञान
- वित्त: एक सेवानिवृत्ति निधि तेजी से क्षय हो जाएगी, असतत भुगतान राशि के अधीन, सामान्य रूप से मासिक, और एक निरंतर भाग दर के अधीन एक निवेश के अधीन होने के कारण तेजी से क्षय हो जाएगी।। अवकल समीकरण dA/dt = निर्दिष्ट - निर्गम को पूंजी में बची हुई किसी भी राशि A तक पहुंचने के लिए समय निकालने के लिए लिखा और संशोधन किया जा सकता है।
- सरल भाषाकालक्रमविज्ञान में, (विवाद योग्य) भाषाओं में निरंतर क्षय दर की धारणा एक भाषा की जीवन का अनुमान लगाने की स्वीकृति देती है। "दो" भाषाओं के बीच विभाजन के समय की गणना करने के लिए घातीय क्षय से स्वतंत्र अतिरिक्त अवधारणाओ की आवश्यकता होती है।
कंप्यूटर विज्ञान
- इंटरनेट पर कोर रूटिंग प्रोटोकॉल, बीजीपी को उन पथों को स्मरण रखने के लिए एक रूटिंग सारणी को बनाए रखना पड़ता है जिससे एक पैकेट विचलित हो सकता है। जब इनमें से एक पथ बार-बार अपनी स्थिति को उपलब्ध से उपलब्ध नहीं (और इसके विपरीत) में बदलता है, तो उस पथ को नियंत्रित करने वाले बीजीपी राउटर को बार-बार अपनी रूटिंग तालिका से पथ रिकॉर्ड को जोड़ना और हटाना पड़ता है रूट को फ़्लैप करता है, इस प्रकार स्थानीय संसाधनों को उपभोग करना जैसे सीपीयू और रैम के रूप में और इससे भी अधिक, विकृत सूचनाओं को पीयर राउटर्स में प्रसारित करना। इस अवांछित व्यवहार को रोकने के लिए, रूट फ़्लैपिंग डंपिंग नाम का एक एल्गोरिथ्म प्रत्येक पथ को एक भार प्रदान करता है जो प्रत्येक बार बड़ा हो जाता है जब रूट अपनी स्थिति बदलता है और समय के साथ तेजी से घटता है। जब भार न एक निश्चित सीमा तक पहुंच जाता है, तो अधिक फ्लैपिंग नहीं की जाती है, इस प्रकार रूट को प्रतिबंधित कर दिया जाता है।
यह भी देखें
- घातीय सूत्र
- घातीय वृद्धि
- अलग-अलग स्थिरांक वाली घातीय प्रक्रियाओं की श्रृंखलाओं के गणित के लिए रेडियोधर्मी क्षय
टिप्पणियाँ
- ↑ Serway (1989, p. 384)
- ↑ Simmons (1972, p. 15)
- ↑ McGraw-Hill (2007)
- ↑ Leike, A. (2002). "बियर झाग का प्रयोग करते हुए घातीय क्षय नियम का प्रदर्शन". European Journal of Physics. 23 (1): 21–26. Bibcode:2002EJPh...23...21L. CiteSeerX 10.1.1.693.5948. doi:10.1088/0143-0807/23/1/304. S2CID 250873501.
संदर्भ
- McGraw-Hill Encyclopedia of Science & Technology (10th ed.). New York: McGraw-Hill. 2007. ISBN 978-0-07-144143-8.
- Serway, Raymond A.; Moses, Clement J.; Moyer, Curt A. (1989), Modern Physics, Fort Worth: Harcourt Brace Jovanovich, ISBN 0-03-004844-3
- Simmons, George F. (1972), Differential Equations with Applications and Historical Notes, New York: McGraw-Hill, LCCN 75173716