अनुपालन स्थिरांक: Difference between revisions

From Vigyanwiki
No edit summary
Line 306: Line 306:
गणना किए गए आराम से बल स्थिरांक एक स्पष्ट प्रवृत्ति दिखाते हैं क्योंकि बी-बी बॉन्ड के बीच बॉन्ड ऑर्डर बढ़ता है, जो ब्राउनश्वेग के परिसर में ट्रिपल बॉन्ड के अस्तित्व की वकालत करता है।
गणना किए गए आराम से बल स्थिरांक एक स्पष्ट प्रवृत्ति दिखाते हैं क्योंकि बी-बी बॉन्ड के बीच बॉन्ड ऑर्डर बढ़ता है, जो ब्राउनश्वेग के परिसर में ट्रिपल बॉन्ड के अस्तित्व की वकालत करता है।


=== डिगैलियम बांड ===
=== डिगैलियम आबंध ===
ग्रुनेनबर्ग और एन गोल्डबर्ग<ref>{{Cite journal|last1=Grunenberg|first1=Jörg|last2=Goldberg|first2=Norman|date=2000-06-01|title=How Strong Is the Gallium⋮Gallium Triple Bond? Theoretical Compliance Matrices as a Probe for Intrinsic Bond Strengths|url=https://doi.org/10.1021/ja994148y|journal=Journal of the American Chemical Society|volume=122|issue=25|pages=6045–6047|doi=10.1021/ja994148y|issn=0002-7863}}</ref> एकल बॉन्ड, डबल बॉन्ड या ट्रिपल बॉन्ड के साथ डि[[गैलियम]] कॉम्प्लेक्स के अनुपालन स्थिरांक की गणना करके गैलियम-गा ट्रिपल बॉन्ड की बॉन्ड स्ट्रेंथ की जांच की। परिणाम बताते हैं कि एक मॉडल ना का गा-गा ट्रिपल बॉन्ड{{sub|2}[एच-गागा-एच] सी में यौगिक{{sub|2h}} [[आणविक समरूपता]] का अनुपालन स्थिरांक मान 0.870 aJ/Å है{{sup|2}} वास्तव में गा-गा डबल बॉन्ड (1.201 aJ/Å{{sup|2}}).
ग्रुनेनबर्ग और एन गोल्डबर्ग<ref>{{Cite journal|last1=Grunenberg|first1=Jörg|last2=Goldberg|first2=Norman|date=2000-06-01|title=How Strong Is the Gallium⋮Gallium Triple Bond? Theoretical Compliance Matrices as a Probe for Intrinsic Bond Strengths|url=https://doi.org/10.1021/ja994148y|journal=Journal of the American Chemical Society|volume=122|issue=25|pages=6045–6047|doi=10.1021/ja994148y|issn=0002-7863}}</ref>ने एकल बंध, द्विबंध या त्रिक आबंध के साथ डिगैलियम संकुल के अनुवृति स्थिरांक की गणना करके Ga-Ga त्रिक आबंध के आबंध सामर्थ्य की जांच की। परिणाम बताते हैं कि C2h समरूपता में एक मॉडल Na2 [H-GaGa-H] यौगिक के Ga-Ga त्रिक आबंध का अनुवृति स्थिरांक मान 0.870 aJ/Å2 है, जो वास्तव में Ga-Ga द्विबंध (1.201 aJ/Å2) से कमजोर है।


=== [[वॉटसन-क्रिक बेस पेयर]] ===
=== [[वॉटसन-क्रिक बेस पेयर]] ===
रासायनिक बंधनों के अलावा, गैर-सहसंयोजक बंधनों को निर्धारित करने के लिए अनुपालन स्थिरांक भी उपयोगी होते हैं, जैसे वाटसन-क्रिक बेस जोड़े में एच-बांड।<ref>{{Cite journal|last=Grunenberg|first=Jörg|date=2004-12-22|title=सैद्धांतिक अनुपालन स्थिरांक का उपयोग करते हुए वाटसन-क्रिक बेस जोड़े में अंतर-अवशेष बलों का प्रत्यक्ष मूल्यांकन|url=https://pubmed.ncbi.nlm.nih.gov/15600318/|journal=Journal of the American Chemical Society|volume=126|issue=50|pages=16310–16311|doi=10.1021/ja046282a|issn=0002-7863|pmid=15600318}}</ref> ग्रुनेनबर्ग ने एटी और सीजी बेस जोड़े में प्रत्येक दाता-एच⋯स्वीकर्ता लिंकेज के लिए अनुपालन स्थिरांक की गणना की और पाया कि सीजी बेस जोड़ी में केंद्रीय एन-एचएन बांड 2.284 Å/mdyn के अनुपालन निरंतर मूल्य के साथ सबसे मजबूत है। (ध्यान दें कि यूनिट को एक रिवर्स यूनिट में रिपोर्ट किया जाता है।) इसके अलावा, एटी बेस पेयर में तीन हाइड्रोजन बॉन्डिंग इंटरैक्शन में से एक एक कमजोर इंटरेक्शन का संकेत >20 Å/mdyn का एक बहुत बड़ा अनुपालन मान दिखाता है।
वाटसन-क्रिक आधारित युग्म में H-बंध जैसे गैर-सहसंयोजक बंध को निर्धारित करने के लिए रासायनिक बंध अनुवृति स्थिरांक के अतिरिक्त भी उपयोगी होते हैं।<ref>{{Cite journal|last=Grunenberg|first=Jörg|date=2004-12-22|title=सैद्धांतिक अनुपालन स्थिरांक का उपयोग करते हुए वाटसन-क्रिक बेस जोड़े में अंतर-अवशेष बलों का प्रत्यक्ष मूल्यांकन|url=https://pubmed.ncbi.nlm.nih.gov/15600318/|journal=Journal of the American Chemical Society|volume=126|issue=50|pages=16310–16311|doi=10.1021/ja046282a|issn=0002-7863|pmid=15600318}}</ref> ग्रुनेनबर्ग ने AT और CG आधारित युग्म में प्रत्येक दाता-H⋯अनुग्राही संयोजन के लिए अनुवृति स्थिरांक की गणना की और पाया कि CG आधारित युग्म में केंद्रीय N-H⋯N  बंध 2.284 Å/mdyn के अनुवृति स्थिरांक मान के साथ अधिक मजबूत है। '''(ध्यान दें कि यूनिट को एक रिवर्स यूनिट में रिपोर्ट किया जाता है।) इसके अलावा, एटी बेस पेयर में तीन हाइड्रोजन बॉन्डिंग इंटरैक्शन में से एक एक कमजोर इंटरेक्शन का संकेत >20 Å/mdyn का एक बहुत बड़ा अनुपालन मान दिखाता है।'''


== संदर्भ ==
== संदर्भ ==

Revision as of 21:56, 8 June 2023

अनुवृति स्थिरांक एक व्युत्क्रमित हेसियन मैट्रिक्स के तत्व हैं। अनुवृति स्थिरांकों की गणना व्यापक रूप से प्रयुक्त बल स्थिरांकों की तुलना में रासायनिक बंधों का एक वैकल्पिक विवरण प्रदान करती है जो समन्वय प्रणाली पर निर्भरता को स्पष्ट रूप से अस्वीकृत करती हैं। वे सहसंयोजक बंधन और गैर-सहसंयोजक रासायनिक बंधन के लिए यांत्रिक शक्ति का अद्वितीय विवरण प्रदान करते हैं। जबकि बल स्थिरांक (ऊर्जा द्वितीय व्युत्पन्न के रूप में) सामान्यतः aJ/Å2 या N/cm अनुवृति स्थिरांक Å2/aJ या Å/mdyn में दिए जाते हैं।

इतिहास

अब तक, आधुनिक प्रकाशनों ने[1] तथाकथित रासायनिक ज्ञान की दीवार को अनुत्यक्त कर दिया और पेचीदा बंधन वाले विशेषताओं के साथ नए यौगिकों की खोज / वियोजन प्रस्तुत किया, जो अभी भी समय-समय पर उत्तेजक हो सकते हैं।[2][3][4] इस तरह की खोजों में हलचल आंशिक रूप से सार्वभौमिक रूप से स्वीकृत बंधन विवरणक की कमी से उत्पन्न हुई। जबकि बॉन्ड-वियोजन ऊर्जा (बीडीई) और कठोर हूक के कानून को आम तौर पर इस तरह की व्याख्या के लिए प्राथमिक उपकरण माना जाता है, वे कुछ परिदृश्यों में रासायनिक बंधनों की त्रुटिपूर्ण परिभाषा के लिए प्रवण होते हैं चाहे सरल[4][5] या विवादास्पद।[6][7]

इस तरह के कारणों ने सहसंयोजक और गैर-सहसंयोजक अंतःक्रियाओं का अधिक सख्ती से वर्णन करने के लिए एक वैकल्पिक दृष्टिकोण की तलाश करने की आवश्यकता को प्रेरित किया। Jörg Grunenberg [de], टीयू ब्राउनश्विक में एक जर्मन रसायनज्ञ और उनके पीएच.डी. उस समय छात्र, काई ब्रैंडहोर्स्ट, ने एक कार्यक्रम अनुपालन विकसित किया[8] (जनता के लिए स्वतंत्र रूप से उपलब्ध), जो उपरोक्त कार्यों से निपटने के लिए अनुपालन स्थिरांक का उपयोग करता है। लेखक बल स्थिरांक के एक उल्टे मैट्रिक्स (गणित) का उपयोग करते हैं, अर्थात, उल्टे हेस्सियन मैट्रिक्स, जिसे मूल रूप से डब्ल्यूटी टेलर और केएस पित्जर द्वारा पेश किया गया था।[9] उल्टे मैट्रिक्स को चुनने की अंतर्दृष्टि इस बोध से है कि हेस्सियन मैट्रिक्स में सभी तत्व आवश्यक नहीं हैं - और इस प्रकार अनावश्यक - सहसंयोजक और गैर-सहसंयोजक इंटरैक्शन का वर्णन करने के लिए। इस तरह की अतिरेक कई अणुओं के लिए आम है,[10] और इससे भी महत्वपूर्ण बात यह है कि यह समन्वय प्रणाली की पसंद पर हेस्सियन मैट्रिक्स के तत्वों की निर्भरता की शुरुआत करता है। इसलिए, लेखक ने दावा किया कि अधिक व्यापक रूप से उपयोग किए जाने वाले बल स्थिरांक एक उपयुक्त बंधन विवरणक नहीं हैं जबकि गैर-निरर्थक और समन्वय प्रणाली-स्वतंत्र अनुपालन स्थिरांक हैं।[5][11]


सिद्धांत

बल स्थिरांक

टेलर श्रृंखला प्रसारण द्वारा किसी भी अणु की स्थितिज ऊर्जा को इस प्रकार व्यक्त किया जा सकता है:[5][11]

(eq. 1)

जहाँ यादृच्छिक और पूर्णतया निर्धारित विस्थापन निर्देशांक का एक स्तंभ सदिश है तथा और क्रमशः तदनुरूपी प्रवणता ( का प्रथम व्युत्पन्न) और हेस्सियन ( का द्वितीय व्युत्पन्न) हैं। स्थितिज ऊर्जा की सतह (PES) पर स्थिर बिंदु एक महत्वपूर्ण बिंदु है इसलिए शून्य माना जाता है, तथा सापेक्ष ऊर्जा पर विचार करके भी शून्य हो जाता है। संनादी (हार्मोनिक) स्थितिज तथा तृतीय व्युत्पन्न शब्द के विषय मानकर, नगण्य के रूप में स्थितिज ऊर्जा सूत्र पूर्णतया बन जाता है:

(eq. 2)

कार्तीय निर्देशांक जेड-मैट्रिक्स (रसायन विज्ञान) से आंतरिक निर्देशांक में संक्रमण जो सामान्यतः आणविक ज्यामिति के वर्णन के लिए उपयोग किया जाता है, समीकरण 3 को जन्म देता है:

(eq. 3)

जहाँ आंतरिक निर्देशांकों के लिए संबंधित हेसियन है (सामान्यतः बल स्थिरांक के रूप में संदर्भित) तथा यह सैद्धांतिक रूप में समस्थानिक अणुओं के पर्याप्त समुच्चय की आवृत्तियों द्वारा निर्धारित होता है। चूंकि हेस्सियन विस्थापन के संबंध में ऊर्जा का दूसरा व्युत्पन्न है और यह गुणधर्म के बल आकलन के प्रथम व्युत्पन्न के समान है जैसा कि समीकरण 4 में प्रदर्शित किया गया है, प्रायः रासायनिक बंधनों का वर्णन करने के लिए उपयोग किया जाता है।

(eq। 4)

तथापि इस पद्धति के साथ अनेक विवाद हैं, जिस प्रकार ग्रुनेनबर्ग द्वारा व्याख्या की गयी है,[5] जिसमें आंतरिक निर्देशांक के विकल्प पर बल स्थिरांक की निर्भरता तथा अनावश्यक हेस्सियन की उपस्थिति सम्मिलित है, जिसका कोई भौतिक अर्थ नहीं है और इसके परिणामस्वरूप बंधन शक्ति का अ-परिभाषित विवरण उत्पन्न होता है।

अनुवृति स्थिरांक

आंतरिक विस्थापन के स्थान पर एक अणु की स्थितिज ऊर्जा को लिखने के लिए एक वैकल्पिक दृष्टिकोण का समन्वय करता है जैसा कि डेसियस द्वारा समझाया गया है,[12] इसे सामान्यीकृत विस्थापन बलों (नकारात्मक प्रवणता) के संदर्भ में द्विघात रूप में लिखना है।

(eq. 5)

यह प्रवणता विस्थापन निर्देशांक के संबंध में संभावित ऊर्जा का प्रथम व्युत्पन्न है जिसे प्रदर्शित किये गए समीकरण के अनुसार व्यक्त किया जा सकता है:

(eq। 6)

समीकरण 5 में की अभिव्यक्ति को समीकरण 5 में प्रतिस्थापित करके, समीकरण 7 प्राप्त किया जाता है।

(eq. 7)

इस प्रकार ज्ञात होने के साथ कि धनात्मक निश्चित है, का एकमात्र संभव मान है:

(eq. 8)

समीकरण 7 स्थितिज ऊर्जा का प्रतिनिधिक सूत्रीकरण प्रदान करता है जो रासायनिक बंधनों को परिभाषित करने में सार्थक रूप से लाभकारी सिद्ध होता है। विशेष रूप से यह विधि समन्वय चयन पर स्वतंत्र है और अनावश्यक हेस्सियन के साथ ऐसे विवाद को भी समाप्त करती है जिससे सामान्य बल स्थिरांक गणना पद्धति बुरी तरह प्रभावित होती है। निर्देशांक के अतिरेक को ध्यान दिए बिना रोचक रूप से अनुवृति स्थिरांक गणना को नियोजित किया जा सकता है।

अनुवृति स्थिरांक की गणना

साइक्लोब्यूटेन: बल स्थिरांक गणना

यह वर्णन करने के लिए कि कैसे रासायनिक बंधों की गणना के लिए समन्वय प्रणालियों के विकल्प परिणामों को अत्यधिक प्रभावित कर सकते हैं और परिणामस्वरूप बंधों के अपरिभाषित निरुपक उत्पन्न कर सकते हैं, इस भाग में एन-ब्यूटेन और साइक्लोब्यूटेन के लिए प्रतिरूप गणनाएं प्रदर्शित की गई हैं।[5]ध्यान दें कि यह ज्ञात है कि साइक्लोब्यूटेन में सभी चार समकक्ष सीसी बांड एन-ब्यूटेन में दो अलग-अलग सीसी बांडों में से किसी से भी कमजोर हैं;[13]इसलिए, इस C4 सिस्टम में CC बॉन्ड की ताकत का मूल्यांकन और मूल्यांकन उदाहरण दे सकता है कि बल स्थिरांक कैसे विफल होते हैं और अनुपालन स्थिरांक कैसे नहीं होते हैं। नीचे दी गई सारणी तत्काल परिणाम हैं जो सामान्य बल स्थिरांक गणना के आधार पर सिद्धांत के MP2/aug-cc-pvtz स्तर पर गणना की जाती हैं।[14][15]

Table 1. प्राकृतिक आंतरिक निर्देशांक और z-मैट्रिक्स निर्देशांक में n-ब्यूटेन का बल स्थिरांक (N/cm)।
n-ब्यूटेन
प्राकृतिक आंतरिक निर्देशांक जेड-मैट्रिक्स निर्देशांक
1-2 2-3 3-4 1-2 2-3 3-4
1-2 4.708 1-2 4.708
2-3 0.124 4.679 2-3 0.124 4.679
3-4 0.016 0.124 4.708 3-4 0.016 0.124 4.708
Table 2. प्राकृतिक आंतरिक निर्देशांक और z-मैट्रिक्स निर्देशांक में साइक्लोब्यूटेन का बल स्थिरांक (N/cm)।
साइक्लोब्यूटेन
प्राकृतिक आंतरिक निर्देशांक जेड-मैट्रिक्स निर्देशांक
1-2 2-3 3-4 4-1 1-2 2-3 3-4 4-1
1-2 4.173 1-2 4.914
2-3 0.051 4.173 2-3 -0.459 4.906
3-4 0.155 0.051 4.173 3-4 -0.864 0.813 5.504
4-1 0.051 0.155 0.051 4.173 4-1 0.786 -0.771 -0.976 5.340

सारणी 1 और 2 कार्बन परमाणुओं (विकर्ण) के प्रत्येक जोड़े के साथ-साथ युग्मन (अप विकर्ण) के मध्य एन/सेमी में बल नियतांक प्रदर्शित करते हैं। बाईं ओर प्राकृतिक आंतरिक निर्देशांकों को ध्यान में रखते हुए, परिणाम रासायनिक समझ में आते हैं। सबसे पहले, सीसी बांड एन-ब्यूटेन हैं जो आमतौर पर साइक्लोब्यूटेन की तुलना में अधिक मजबूत होते हैं, जो कि अपेक्षित के अनुरूप है।[13] दूसरे, साइक्लोब्यूटेन में सीसी बांड 4.173 एन/सेमी के बल निरंतर मूल्यों के बराबर हैं। अंत में, बल स्थिरांक के बीच थोड़ा युग्मन होता है जैसा कि ऑफ-डायगोनल शर्तों में छोटे अनुपालन युग्मन स्थिरांक के रूप में देखा जाता है।

हालाँकि, जब z- मैट्रिक्स निर्देशांक का उपयोग किया जाता है, तो परिणाम प्राकृतिक आंतरिक निर्देशांक से प्राप्त परिणामों से भिन्न होते हैं और गलत हो जाते हैं। साइक्लोब्यूटेन में सभी चार सीसी बांडों के अलग-अलग मूल्य हैं, और युग्मन अधिक स्पष्ट हो जाता है। गौरतलब है कि यहां साइक्लोब्यूटेन में सीसी बांड के बल स्थिरांक भी एन-ब्यूटेन की तुलना में बड़े हैं, जो रासायनिक अंतर्ज्ञान के साथ संघर्ष में है।[13]स्पष्ट रूप से साइक्लोबुटेन- और कई अन्य अणुओं के लिए, बल स्थिरांक का उपयोग इसलिए समन्वय प्रणालियों पर निर्भरता के कारण गलत बॉन्ड डिस्क्रिप्टर को जन्म देता है।

साइक्लोब्यूटेन: अनुपालन स्थिरांक गणना

ग्रुनेनबर्ग द्वारा दावा किया गया एक अधिक सटीक दृष्टिकोण[5]जैसा कि नीचे दिखाया गया है, रासायनिक बंधों का वर्णन करने के लिए अनुपालन स्थिरांक का उपयोग करना है।

Table 3. प्राकृतिक आंतरिक निर्देशांकों और z-मैट्रिक्स निर्देशांकों में n-ब्यूटेन का अनुवृति स्थिरांक (N−1)
n-ब्यूटेन
प्राकृतिक आंतरिक निर्देशांक जेड-मैट्रिक्स निर्देशांक
1-2 2-3 3-4 1-2 2-3 3-4
1-2 0.230 1-2 0.230
2-3 -0.010 0.233 2-3 -0.010 0.233
3-4 0.002 -0.010 0.230 3-4 0.002 -0.010 0.230
Table 4. प्राकृतिक आंतरिक निर्देशांक और z-मैट्रिक्स निर्देशांक में साइक्लोब्यूटेन का अनुपालन स्थिरांक (N−1)
साइक्लोब्यूटेन
प्राकृतिक आंतरिक निर्देशांक जेड-मैट्रिक्स निर्देशांक
1-2 2-3 3-4 4-1 1-2 2-3 3-4 4-1
1-2 0.255 1-2 0.255
2-3 -0.006 0.255 2-3 -0.006 0.255
3-4 -0.010 -0.006 0.255 3-4 -0.010 -0.006 0.255
4-1 -0.006 -0.010 -0.006 0.255 4-1 -0.006 -0.010 -0.006 0.255

उपरोक्त सभी परिकलित अनुपालन स्थिरांक N में दिए गए हैं−1 इकाई। एन-ब्यूटेन और साइक्लोब्यूटेन दोनों के लिए, समन्वय प्रणालियों की पसंद की परवाह किए बिना परिणाम समान हैं। अनुपालन स्थिरांक का एक पहलू जो साइक्लोब्यूटेन में बल स्थिरांक से अधिक शक्तिशाली साबित होता है, कम युग्मन के कारण होता है। यह अनुपालन युग्मन स्थिरांक उल्टे हेस्सियन मैट्रिक्स में ऑफ-डायगोनल तत्व हैं और पूरी तरह से अनुपालन स्थिरांक के साथ, वे न्यूनतम ऊर्जा पथ के माध्यम से एक अणु के आराम से विरूपण का शारीरिक रूप से वर्णन करते हैं। इसके अलावा, अनुपालन स्थिरांक के मान सभी सीसी बॉन्ड के लिए समान परिणाम देते हैं और एन-ब्यूटेन के लिए प्राप्त मूल्यों की तुलना में मान कम होते हैं। अनुपालन स्थिरांक, इस प्रकार, ऐसे परिणाम देते हैं जो आमतौर पर साइक्लोब्यूटेन के रिंग स्ट्रेन के बारे में जाने जाते हैं।[13]


मुख्य समूह यौगिकों के लिए आवेदन

डिबोराने

डिबोरीने या बोरॉन-बोरॉन ट्रिपल बांड के साथ एक यौगिक को पहले ब्राउनश्वेग समूह में एन-हेटेरोसाइक्लिक कार्बेन समर्थित कॉम्प्लेक्स (एनएचसी-बीबी-एनएचसी) के रूप में अलग किया गया था।[1]और इसकी अनूठी, अजीब बंधन संरचना ने उस समय विवादास्पद ट्रिपल बॉन्ड की प्रकृति का कम्प्यूटेशनल रूप से आकलन करने के लिए नए शोध को उत्प्रेरित किया।

कुछ साल बाद, कोप्पे और श्नोकेल ने एक लेख प्रकाशित किया जिसमें तर्क दिया गया कि बी-बी बांड को ऊष्मप्रवैगिकी दृष्टिकोण और कठोर बल निरंतर गणनाओं के आधार पर 1.5 बंधन के रूप में परिभाषित किया जाना चाहिए।[2]उसी वर्ष, ग्रुनेनबर्ग ने सामान्यीकृत अनुपालन स्थिरांक का उपयोग करते हुए B-B बॉन्ड का पुनर्मूल्यांकन किया, जिसमें उन्होंने बॉन्ड स्ट्रेंथ डिस्क्रिप्टर के रूप में बेहतर अनुकूल होने का दावा किया।[4]

सिद्धांत के BP86/dz स्तर पर गणना किए गए NHC लिगैंड्स द्वारा समर्थित B-B बांडों का शिथिल बल स्थिरांक
यौगिक शिथिल बल स्थिरांक (mdyn/Å) बंधन
NHC-H2BBH2-NHC 1.5 एकल
NHC-HBBH-NHC 3.8 द्वि
NHC-BB-NHC 6.5 त्रिक

गणना किए गए आराम से बल स्थिरांक एक स्पष्ट प्रवृत्ति दिखाते हैं क्योंकि बी-बी बॉन्ड के बीच बॉन्ड ऑर्डर बढ़ता है, जो ब्राउनश्वेग के परिसर में ट्रिपल बॉन्ड के अस्तित्व की वकालत करता है।

डिगैलियम आबंध

ग्रुनेनबर्ग और एन गोल्डबर्ग[16]ने एकल बंध, द्विबंध या त्रिक आबंध के साथ डिगैलियम संकुल के अनुवृति स्थिरांक की गणना करके Ga-Ga त्रिक आबंध के आबंध सामर्थ्य की जांच की। परिणाम बताते हैं कि C2h समरूपता में एक मॉडल Na2 [H-GaGa-H] यौगिक के Ga-Ga त्रिक आबंध का अनुवृति स्थिरांक मान 0.870 aJ/Å2 है, जो वास्तव में Ga-Ga द्विबंध (1.201 aJ/Å2) से कमजोर है।

वॉटसन-क्रिक बेस पेयर

वाटसन-क्रिक आधारित युग्म में H-बंध जैसे गैर-सहसंयोजक बंध को निर्धारित करने के लिए रासायनिक बंध अनुवृति स्थिरांक के अतिरिक्त भी उपयोगी होते हैं।[17] ग्रुनेनबर्ग ने AT और CG आधारित युग्म में प्रत्येक दाता-H⋯अनुग्राही संयोजन के लिए अनुवृति स्थिरांक की गणना की और पाया कि CG आधारित युग्म में केंद्रीय N-H⋯N  बंध 2.284 Å/mdyn के अनुवृति स्थिरांक मान के साथ अधिक मजबूत है। (ध्यान दें कि यूनिट को एक रिवर्स यूनिट में रिपोर्ट किया जाता है।) इसके अलावा, एटी बेस पेयर में तीन हाइड्रोजन बॉन्डिंग इंटरैक्शन में से एक एक कमजोर इंटरेक्शन का संकेत >20 Å/mdyn का एक बहुत बड़ा अनुपालन मान दिखाता है।

संदर्भ

  1. 1.0 1.1 Braunschweig, Holger; Dewhurst, Rian D.; Hammond, Kai; Mies, Jan; Radacki, Krzysztof; Vargas, Alfredo (2012-06-15). "बोरोन-बोरॉन ट्रिपल बॉन्ड के साथ एक यौगिक का परिवेश-तापमान अलगाव". Science. 336 (6087): 1420–1422. Bibcode:2012Sci...336.1420B. doi:10.1126/science.1221138. PMID 22700924. S2CID 206540959.
  2. 2.0 2.1 Köppe, R.; Schnöckel, H. (2015-02-01). "The boron-boron triple bond? A thermodynamic and force field based interpretation of the N-heterocyclic carbene (NHC) stabilization procedure". Chemical Science. 6 (2): 1199–1205. doi:10.1039/c4sc02997f. ISSN 2041-6520. PMC 5811121. PMID 29560205.
  3. Holzmann, Nicole; Hermann, Markus; Frenking, Gernot (2015-06-15). "The boron–boron triple bond in NHC→BB←NHC". Chemical Science (in English). 6 (7): 4089–4094. doi:10.1039/C5SC01504A. ISSN 2041-6539. PMC 5707517. PMID 29218175.
  4. 4.0 4.1 4.2 Grunenberg, Jörg (2015-06-15). "III-defined concepts in chemistry: rigid force constants vs. compliance constants as bond strength descriptors for the triple bond in diboryne". Chemical Science (in English). 6 (7): 4086–4088. doi:10.1039/C5SC01322D. ISSN 2041-6539. PMC 5707508. PMID 29218174.
  5. 5.0 5.1 5.2 5.3 5.4 5.5 Brandhorst, Kai; Grunenberg, Jörg (2008-07-22). "How strong is it? The interpretation of force and compliance constants as bond strength descriptors". Chemical Society Reviews (in English). 37 (8): 1558–1567. doi:10.1039/B717781J. ISSN 1460-4744. PMID 18648681.
  6. Shaik, Sason; Rzepa, Henry S.; Hoffmann, Roald (2013-03-04). "One Molecule, Two Atoms, Three Views, Four Bonds?". Angewandte Chemie International Edition (in English). 52 (10): 3020–3033. doi:10.1002/anie.201208206. PMID 23362052.
  7. Shaik, Sason; Danovich, David; Wu, Wei; Su, Peifeng; Rzepa, Henry S.; Hiberty, Philippe C. (March 2012). "Quadruple bonding in C2 and analogous eight-valence electron species". Nature Chemistry (in English). 4 (3): 195–200. Bibcode:2012NatCh...4..195S. doi:10.1038/nchem.1263. ISSN 1755-4330. PMID 22354433.
  8. "ग्रुनेनबर्ग, आणविक सिमुलेशन, ब्राउनश्वेग, ग्रुनेनबर्ग, आणविक सिमुलेशन, ब्राउनश्वेग". www.oc.tu-bs.de. Retrieved 2021-11-08.
  9. Taylor, W.J.; Pitzer, K.S. (January 1947). "Vibrational frequencies of semirigid molecules: a general method and values for ethylbenzene". Journal of Research of the National Bureau of Standards. 38 (1): 1. doi:10.6028/jres.038.001. ISSN 0091-0635.
  10. MAJUMDER, MOUMITA; MANOGARAN, SADASIVAM (January 2013). "Redundant internal coordinates, compliance constants and non-bonded interactions – some new insights". Journal of Chemical Sciences. 125 (1): 9–15. doi:10.1007/s12039-012-0357-7. ISSN 0974-3626. S2CID 93304185.
  11. 11.0 11.1 Brandhorst, Kai; Grunenberg, Jörg (2010-05-14). "गैर-स्थिर बिंदुओं के लिए कार्टेशियन हेसियन से निरर्थक आंतरिक निर्देशांक में अनुपालन मैट्रिसेस की कुशल गणना". The Journal of Chemical Physics. 132 (18): 184101. Bibcode:2010JChPh.132r4101B. doi:10.1063/1.3413528. ISSN 0021-9606.
  12. Decius, J. C. (1963-01-01). "अनुपालन मैट्रिक्स और आणविक कंपन". The Journal of Chemical Physics. 38 (1): 241–248. Bibcode:1963JChPh..38..241D. doi:10.1063/1.1733469. ISSN 0021-9606.
  13. 13.0 13.1 13.2 13.3 Wiberg, Kenneth B. (1986). "कार्बनिक रसायन विज्ञान में तनाव की अवधारणा". Angewandte Chemie International Edition in English (in Deutsch). 25 (4): 312–322. doi:10.1002/anie.198603121. ISSN 1521-3773.
  14. Møller, Chr.; Plesset, M. S. (1934-10-01). "अनेक-इलेक्ट्रॉन प्रणालियों के लिए एक सन्निकटन उपचार पर ध्यान दें". Physical Review. 46 (7): 618–622. Bibcode:1934PhRv...46..618M. doi:10.1103/PhysRev.46.618.
  15. Kendall, Rick A.; Dunning, Thom H.; Harrison, Robert J. (1992-05-01). "Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions". The Journal of Chemical Physics. 96 (9): 6796–6806. Bibcode:1992JChPh..96.6796K. doi:10.1063/1.462569. ISSN 0021-9606.
  16. Grunenberg, Jörg; Goldberg, Norman (2000-06-01). "How Strong Is the Gallium⋮Gallium Triple Bond? Theoretical Compliance Matrices as a Probe for Intrinsic Bond Strengths". Journal of the American Chemical Society. 122 (25): 6045–6047. doi:10.1021/ja994148y. ISSN 0002-7863.
  17. Grunenberg, Jörg (2004-12-22). "सैद्धांतिक अनुपालन स्थिरांक का उपयोग करते हुए वाटसन-क्रिक बेस जोड़े में अंतर-अवशेष बलों का प्रत्यक्ष मूल्यांकन". Journal of the American Chemical Society. 126 (50): 16310–16311. doi:10.1021/ja046282a. ISSN 0002-7863. PMID 15600318.