अनुपालन स्थिरांक: Difference between revisions
No edit summary |
|||
Line 164: | Line 164: | ||
सारणी 1 और 2 [[कार्बन]] परमाणुओं (विकर्ण) के प्रत्येक जोड़े के साथ-साथ युग्मन (अप विकर्ण) के मध्य एन/सेमी में बल नियतांक प्रदर्शित करते हैं। बाईं ओर प्राकृतिक आंतरिक निर्देशांकों को ध्यान में रखते हुए, परिणाम रासायनिक समझ में आते हैं। सर्वप्रथम, C-C बंध n-ब्यूटेन हैं जो सामान्यतः साइक्लोब्यूटेन की तुलना में अधिक मजबूत होते हैं जो कि अपेक्षित के अनुरूप है।<ref name=":1">{{Cite journal|last=Wiberg|first=Kenneth B.|date=1986|title=कार्बनिक रसायन विज्ञान में तनाव की अवधारणा|url=https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.198603121|journal=Angewandte Chemie International Edition in English|language=de|volume=25|issue=4|pages=312–322|doi=10.1002/anie.198603121|issn=1521-3773}}</ref> दूसरा, साइक्लोब्यूटेन में C-C बंध 4.173 एन/सेमी के बल नियतांक मानों के समान हैं। अंत में, बल स्थिरांक के मध्य थोड़ा युग्मन होता है जैसा कि अप विकर्ण नियमों में न्यूनतम अनुवृति युग्मन स्थिरांक के रूप में देखा जाता है। | सारणी 1 और 2 [[कार्बन]] परमाणुओं (विकर्ण) के प्रत्येक जोड़े के साथ-साथ युग्मन (अप विकर्ण) के मध्य एन/सेमी में बल नियतांक प्रदर्शित करते हैं। बाईं ओर प्राकृतिक आंतरिक निर्देशांकों को ध्यान में रखते हुए, परिणाम रासायनिक समझ में आते हैं। सर्वप्रथम, C-C बंध n-ब्यूटेन हैं जो सामान्यतः साइक्लोब्यूटेन की तुलना में अधिक मजबूत होते हैं जो कि अपेक्षित के अनुरूप है।<ref name=":1">{{Cite journal|last=Wiberg|first=Kenneth B.|date=1986|title=कार्बनिक रसायन विज्ञान में तनाव की अवधारणा|url=https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.198603121|journal=Angewandte Chemie International Edition in English|language=de|volume=25|issue=4|pages=312–322|doi=10.1002/anie.198603121|issn=1521-3773}}</ref> दूसरा, साइक्लोब्यूटेन में C-C बंध 4.173 एन/सेमी के बल नियतांक मानों के समान हैं। अंत में, बल स्थिरांक के मध्य थोड़ा युग्मन होता है जैसा कि अप विकर्ण नियमों में न्यूनतम अनुवृति युग्मन स्थिरांक के रूप में देखा जाता है। | ||
हालाँकि, जब z- मैट्रिक्स निर्देशांक का उपयोग किया जाता है, तो प्राकृतिक आंतरिक निर्देशांक द्वारा अभिप्राप्त परिणामों से भिन्न तथा गलत होते हैं। साइक्लोब्यूटेन में सभी चार सीसी बंधो के अलग-अलग मान हैं तथा युग्मन अधिक स्पष्ट हो जाता है। | हालाँकि, जब z- मैट्रिक्स निर्देशांक का उपयोग किया जाता है, तो प्राकृतिक आंतरिक निर्देशांक द्वारा अभिप्राप्त परिणामों से भिन्न तथा गलत होते हैं। साइक्लोब्यूटेन में सभी चार सीसी बंधो के अलग-अलग मान हैं तथा युग्मन अधिक स्पष्ट हो जाता है। महत्वपूर्ण ढंग से यहां साइक्लोब्यूटेन में C-C बंध के बल स्थिरांक भी n-ब्यूटेन की तुलना में बड़े हैं, जो रासायनिक अंतर्ज्ञान के साथ विवाद में है।<ref name=":1" />स्पष्ट रूप से साइक्लोब्यूटेन और बल स्थिरांक का उपयोग करने वाले अनेक अन्य अणुओं के लिए समन्वय प्रणालियों पर निर्भरता के कारण अशुद्ध बंध निरुपक का विकास करता है। | ||
=== साइक्लोब्यूटेन: अनुपालन स्थिरांक गणना === | === साइक्लोब्यूटेन: अनुपालन स्थिरांक गणना === | ||
Line 283: | Line 283: | ||
=== [[डिबोराने]] === | === [[डिबोराने]] === | ||
डिबोरीने या त्रिकबंध के साथ यौगिक बोरॉन- बोरॉन को पहले ब्राउनश्वेग समूह में [[एन-हेटेरोसाइक्लिक कार्बेन]] समर्थित जटिलता (एनएचसी-बीबी-एनएचसी) के रूप में पृथक किया गया था<ref name=":2" />और इसकी विशिष्ट व असामान्य बंध संरचना ने उस समय विवादास्पद त्रिकबंध की प्रकृति का संगणनात्मक रूप से आकलन करने के लिए नए शोध को उत्प्रेरित किया। | |||
कुछ वर्ष पश्चात कोप्पे और श्नोकेल ने एक लेख प्रकाशित किया जिसमें तर्क दिया गया कि बी-बी बंध को [[ऊष्मप्रवैगिकी]] दृष्टिकोण और कठोर बल स्थिरांक गणनाओं के आधार पर 1.5 बंध के रूप में परिभाषित किया जाना चाहिए।<ref name=":3" />उसी वर्ष ग्रुनेनबर्ग ने सामान्यीकृत अनुवृति स्थिरांक का उपयोग करते हुए B-B बॉन्ड का पुनर्मूल्यांकन किया, जिसके विषय में उन्होंने दावा किया कि यह बॉन्ड स्ट्रेंथ डिस्क्रिप्टर के रूप में अधिक अनुकूल है।<ref name=":4" /> | कुछ वर्ष पश्चात कोप्पे और श्नोकेल ने एक लेख प्रकाशित किया जिसमें तर्क दिया गया कि बी-बी बंध को [[ऊष्मप्रवैगिकी]] दृष्टिकोण और कठोर बल स्थिरांक गणनाओं के आधार पर 1.5 बंध के रूप में परिभाषित किया जाना चाहिए।<ref name=":3" />उसी वर्ष ग्रुनेनबर्ग ने सामान्यीकृत अनुवृति स्थिरांक का उपयोग करते हुए B-B बॉन्ड का पुनर्मूल्यांकन किया, जिसके विषय में उन्होंने दावा किया कि यह बॉन्ड स्ट्रेंथ डिस्क्रिप्टर के रूप में अधिक अनुकूल है।<ref name=":4" /> |
Revision as of 19:41, 11 June 2023
अनुवृति स्थिरांक एक व्युत्क्रमित हेसियन मैट्रिक्स के तत्व हैं। अनुवृति स्थिरांकों की गणना व्यापक रूप से प्रयुक्त बल स्थिरांकों की तुलना में रासायनिक बंधों का एक वैकल्पिक विवरण प्रदान करती है जो समन्वय प्रणाली पर निर्भरता को स्पष्ट रूप से अस्वीकृत करती हैं। वे सहसंयोजक बंधन और गैर-सहसंयोजक रासायनिक बंधन के लिए यांत्रिक शक्ति का अद्वितीय विवरण प्रदान करते हैं। जबकि बल स्थिरांक (ऊर्जा द्वितीय व्युत्पन्न के रूप में) सामान्यतः aJ/Å2 या N/cm अनुवृति स्थिरांक Å2/aJ या Å/mdyn में दिए जाते हैं।
इतिहास
अब तक, आधुनिक प्रकाशनों ने[1] तथाकथित रासायनिक ज्ञान की दीवार को अनुत्यक्त कर दिया और पेचीदा बंधन वाले विशेषताओं के साथ नए यौगिकों की खोज / वियोजन प्रस्तुत किया, जो अभी भी समय-समय पर उत्तेजक हो सकते हैं।[2][3][4] इस तरह की खोजों में हलचल आंशिक रूप से सार्वभौमिक रूप से स्वीकृत बंधन विवरणक की कमी से उत्पन्न हुई। जबकि बॉन्ड-वियोजन ऊर्जा (बीडीई) और कठोर हूक के कानून को आम तौर पर इस तरह की व्याख्या के लिए प्राथमिक उपकरण माना जाता है, वे कुछ परिदृश्यों में रासायनिक बंधनों की त्रुटिपूर्ण परिभाषा के लिए प्रवण होते हैं चाहे सरल[4][5] या विवादास्पद।[6][7]
इस तरह के कारणों ने सहसंयोजक और गैर-सहसंयोजक अंतःक्रियाओं का अधिक यथार्थ रूप से वर्णन करने के लिए एक वैकल्पिक दृष्टिकोण की खोज करने की आवश्यकता को प्रेरित किया। जॉर्ग ग्रुनेनबर्ग टीयू ब्राउनश्वेग में एक जर्मन रसायनज्ञ और उनके उस समय के पीएच.डी. के छात्र काई ब्रैंडहोर्स्ट ने एक कार्यक्रम "कम्प्लाएंस"[8] (जनता के लिए स्वतंत्र रूप से उपलब्ध), विकसित किया था, जो उपरोक्त कार्यों का सामना करने के लिए अनुवृति स्थिरांक का उपयोग करता है। लेखक बल स्थिरांक के व्युत्क्रमित मैट्रिक्स (गणित) का उपयोग करते हैं, अर्थात व्युत्क्रमित हेस्सियन मैट्रिक्स, जिसे मूल रूप से डब्ल्यू.टी. टेलर और के.एस.पिट्जर द्वारा प्रस्तुत किया गया था।[9] व्युत्क्रमित मैट्रिक्स का चयन करने की अंतर्दृष्टि इस प्रतिफलन से है कि हेस्सियन मैट्रिक्स में सभी तत्व आवश्यक नहीं हैं और इस प्रकार सहसंयोजक और गैर-सहसंयोजक पारस्परिक क्रिया का वर्णन करने के लिए निरर्थक हैं। इस प्रकार की अतिरेक अनेक अणुओं के लिए सामान्य है,[10] और इससे भी अधिक महत्वपूर्ण बात यह है कि यह समन्वय प्रणाली के चयन पर हेस्सियन मैट्रिक्स के तत्वों की निर्भरता का आरंभ करता है। इसलिए, लेखक ने अधियाचित किया कि अधिक व्यापक रूप से उपयोग किए जाने वाले बल स्थिरांक एक उपयुक्त बंध निरुपक नहीं हैं जबकि गैर-निरर्थक और समन्वय प्रणाली-स्वतंत्र अनुवृति स्थिरांक हैं।[5][11]
सिद्धांत
बल स्थिरांक
टेलर श्रृंखला प्रसारण द्वारा किसी भी अणु की स्थितिज ऊर्जा को इस प्रकार व्यक्त किया जा सकता है:[5][11]
- (eq. 1)
जहाँ यादृच्छिक और पूर्णतया निर्धारित विस्थापन निर्देशांक का एक स्तंभ सदिश है तथा और क्रमशः तदनुरूपी प्रवणता ( का प्रथम व्युत्पन्न) और हेस्सियन ( का द्वितीय व्युत्पन्न) हैं। स्थितिज ऊर्जा की सतह (PES) पर स्थिर बिंदु एक महत्वपूर्ण बिंदु है इसलिए शून्य माना जाता है, तथा सापेक्ष ऊर्जा पर विचार करके भी शून्य हो जाता है। संनादी (हार्मोनिक) स्थितिज तथा तृतीय व्युत्पन्न शब्द के विषय मानकर, नगण्य के रूप में स्थितिज ऊर्जा सूत्र पूर्णतया बन जाता है:
- (eq. 2)
कार्तीय निर्देशांक जेड-मैट्रिक्स (रसायन विज्ञान) से आंतरिक निर्देशांक में संक्रमण जो सामान्यतः आणविक ज्यामिति के वर्णन के लिए उपयोग किया जाता है, समीकरण 3 को जन्म देता है:
- (eq. 3)
जहाँ आंतरिक निर्देशांकों के लिए संबंधित हेसियन है (सामान्यतः बल स्थिरांक के रूप में संदर्भित) तथा यह सैद्धांतिक रूप में समस्थानिक अणुओं के पर्याप्त समुच्चय की आवृत्तियों द्वारा निर्धारित होता है। चूंकि हेस्सियन विस्थापन के संबंध में ऊर्जा का दूसरा व्युत्पन्न है और यह गुणधर्म के बल आकलन के प्रथम व्युत्पन्न के समान है जैसा कि समीकरण 4 में प्रदर्शित किया गया है, प्रायः रासायनिक बंधनों का वर्णन करने के लिए उपयोग किया जाता है।
- (eq। 4)
तथापि इस पद्धति के साथ अनेक विवाद हैं, जिस प्रकार ग्रुनेनबर्ग द्वारा व्याख्या की गयी है,[5] जिसमें आंतरिक निर्देशांक के विकल्प पर बल स्थिरांक की निर्भरता तथा अनावश्यक हेस्सियन की उपस्थिति सम्मिलित है, जिसका कोई भौतिक अर्थ नहीं है और इसके परिणामस्वरूप बंधन शक्ति का अ-परिभाषित विवरण उत्पन्न होता है।
अनुवृति स्थिरांक
आंतरिक विस्थापन के स्थान पर एक अणु की स्थितिज ऊर्जा को लिखने के लिए एक वैकल्पिक दृष्टिकोण का समन्वय करता है जैसा कि डेसियस द्वारा समझाया गया है,[12] इसे सामान्यीकृत विस्थापन बलों (नकारात्मक प्रवणता) के संदर्भ में द्विघात रूप में लिखना है।
- (eq. 5)
यह प्रवणता विस्थापन निर्देशांक के संबंध में संभावित ऊर्जा का प्रथम व्युत्पन्न है जिसे प्रदर्शित किये गए समीकरण के अनुसार व्यक्त किया जा सकता है:
- (eq। 6)
समीकरण 5 में की अभिव्यक्ति को समीकरण 5 में प्रतिस्थापित करके, समीकरण 7 प्राप्त किया जाता है।
- (eq. 7)
इस प्रकार ज्ञात होने के साथ कि धनात्मक निश्चित है, का एकमात्र संभव मान है:
- (eq. 8)
समीकरण 7 स्थितिज ऊर्जा का प्रतिनिधिक सूत्रीकरण प्रदान करता है जो रासायनिक बंधनों को परिभाषित करने में सार्थक रूप से लाभकारी सिद्ध होता है। विशेष रूप से यह विधि समन्वय चयन पर स्वतंत्र है और अनावश्यक हेस्सियन के साथ ऐसे विवाद को भी समाप्त करती है जिससे सामान्य बल स्थिरांक गणना पद्धति बुरी तरह प्रभावित होती है। निर्देशांक के अतिरेक को ध्यान दिए बिना रोचक रूप से अनुवृति स्थिरांक गणना को नियोजित किया जा सकता है।
अनुवृति स्थिरांक की गणना
साइक्लोब्यूटेन: बल स्थिरांक गणना
यह वर्णन करने के लिए कि कैसे रासायनिक बंधों की गणना के लिए समन्वय प्रणालियों के विकल्प परिणामों को अत्यधिक प्रभावित कर सकते हैं और परिणामस्वरूप बंधों के अपरिभाषित निरुपक उत्पन्न कर सकते हैं, इस भाग में एन-ब्यूटेन और साइक्लोब्यूटेन के लिए प्रतिरूप गणनाएं प्रदर्शित की गई हैं।[5]ध्यान दें कि यह ज्ञात है कि साइक्लोब्यूटेन में सभी चार समकक्ष सीसी बांड एन-ब्यूटेन में दो अलग-अलग सीसी बांडों में से किसी से भी कमजोर हैं;[13]इसलिए, इस C4 सिस्टम में CC बॉन्ड की ताकत का मूल्यांकन और मूल्यांकन उदाहरण दे सकता है कि बल स्थिरांक कैसे विफल होते हैं और अनुपालन स्थिरांक कैसे नहीं होते हैं। नीचे दी गई सारणी तत्काल परिणाम हैं जो सामान्य बल स्थिरांक गणना के आधार पर सिद्धांत के MP2/aug-cc-pvtz स्तर पर गणना की जाती हैं।[14][15]
प्राकृतिक आंतरिक निर्देशांक | जेड-मैट्रिक्स निर्देशांक | |||||||
---|---|---|---|---|---|---|---|---|
1-2 | 2-3 | 3-4 | 1-2 | 2-3 | 3-4 | |||
1-2 | 4.708 | 1-2 | 4.708 | |||||
2-3 | 0.124 | 4.679 | 2-3 | 0.124 | 4.679 | |||
3-4 | 0.016 | 0.124 | 4.708 | 3-4 | 0.016 | 0.124 | 4.708 |
प्राकृतिक आंतरिक निर्देशांक | जेड-मैट्रिक्स निर्देशांक | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1-2 | 2-3 | 3-4 | 4-1 | 1-2 | 2-3 | 3-4 | 4-1 | |||
1-2 | 4.173 | 1-2 | 4.914 | |||||||
2-3 | 0.051 | 4.173 | 2-3 | -0.459 | 4.906 | |||||
3-4 | 0.155 | 0.051 | 4.173 | 3-4 | -0.864 | 0.813 | 5.504 | |||
4-1 | 0.051 | 0.155 | 0.051 | 4.173 | 4-1 | 0.786 | -0.771 | -0.976 | 5.340 |
सारणी 1 और 2 कार्बन परमाणुओं (विकर्ण) के प्रत्येक जोड़े के साथ-साथ युग्मन (अप विकर्ण) के मध्य एन/सेमी में बल नियतांक प्रदर्शित करते हैं। बाईं ओर प्राकृतिक आंतरिक निर्देशांकों को ध्यान में रखते हुए, परिणाम रासायनिक समझ में आते हैं। सर्वप्रथम, C-C बंध n-ब्यूटेन हैं जो सामान्यतः साइक्लोब्यूटेन की तुलना में अधिक मजबूत होते हैं जो कि अपेक्षित के अनुरूप है।[13] दूसरा, साइक्लोब्यूटेन में C-C बंध 4.173 एन/सेमी के बल नियतांक मानों के समान हैं। अंत में, बल स्थिरांक के मध्य थोड़ा युग्मन होता है जैसा कि अप विकर्ण नियमों में न्यूनतम अनुवृति युग्मन स्थिरांक के रूप में देखा जाता है।
हालाँकि, जब z- मैट्रिक्स निर्देशांक का उपयोग किया जाता है, तो प्राकृतिक आंतरिक निर्देशांक द्वारा अभिप्राप्त परिणामों से भिन्न तथा गलत होते हैं। साइक्लोब्यूटेन में सभी चार सीसी बंधो के अलग-अलग मान हैं तथा युग्मन अधिक स्पष्ट हो जाता है। महत्वपूर्ण ढंग से यहां साइक्लोब्यूटेन में C-C बंध के बल स्थिरांक भी n-ब्यूटेन की तुलना में बड़े हैं, जो रासायनिक अंतर्ज्ञान के साथ विवाद में है।[13]स्पष्ट रूप से साइक्लोब्यूटेन और बल स्थिरांक का उपयोग करने वाले अनेक अन्य अणुओं के लिए समन्वय प्रणालियों पर निर्भरता के कारण अशुद्ध बंध निरुपक का विकास करता है।
साइक्लोब्यूटेन: अनुपालन स्थिरांक गणना
ग्रुनेनबर्ग द्वारा दावा किया गया एक अधिक सटीक दृष्टिकोण[5]जैसा कि नीचे दिखाया गया है, रासायनिक बंधों का वर्णन करने के लिए अनुपालन स्थिरांक का उपयोग करना है।
प्राकृतिक आंतरिक निर्देशांक | जेड-मैट्रिक्स निर्देशांक | |||||||
---|---|---|---|---|---|---|---|---|
1-2 | 2-3 | 3-4 | 1-2 | 2-3 | 3-4 | |||
1-2 | 0.230 | 1-2 | 0.230 | |||||
2-3 | -0.010 | 0.233 | 2-3 | -0.010 | 0.233 | |||
3-4 | 0.002 | -0.010 | 0.230 | 3-4 | 0.002 | -0.010 | 0.230 |
प्राकृतिक आंतरिक निर्देशांक | जेड-मैट्रिक्स निर्देशांक | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1-2 | 2-3 | 3-4 | 4-1 | 1-2 | 2-3 | 3-4 | 4-1 | |||
1-2 | 0.255 | 1-2 | 0.255 | |||||||
2-3 | -0.006 | 0.255 | 2-3 | -0.006 | 0.255 | |||||
3-4 | -0.010 | -0.006 | 0.255 | 3-4 | -0.010 | -0.006 | 0.255 | |||
4-1 | -0.006 | -0.010 | -0.006 | 0.255 | 4-1 | -0.006 | -0.010 | -0.006 | 0.255 |
उपरोक्त सभी परिकलित अनुपालन स्थिरांक N में दिए गए हैं−1 इकाई। एन-ब्यूटेन और साइक्लोब्यूटेन दोनों के लिए, समन्वय प्रणालियों की पसंद की परवाह किए बिना परिणाम समान हैं। अनुपालन स्थिरांक का एक पहलू जो साइक्लोब्यूटेन में बल स्थिरांक से अधिक शक्तिशाली साबित होता है, कम युग्मन के कारण होता है। यह अनुपालन युग्मन स्थिरांक उल्टे हेस्सियन मैट्रिक्स में ऑफ-डायगोनल तत्व हैं और पूरी तरह से अनुपालन स्थिरांक के साथ, वे न्यूनतम ऊर्जा पथ के माध्यम से एक अणु के आराम से विरूपण का शारीरिक रूप से वर्णन करते हैं। इसके अलावा, अनुपालन स्थिरांक के मान सभी सीसी बॉन्ड के लिए समान परिणाम देते हैं और एन-ब्यूटेन के लिए प्राप्त मूल्यों की तुलना में मान कम होते हैं। अनुपालन स्थिरांक, इस प्रकार, ऐसे परिणाम देते हैं जो आमतौर पर साइक्लोब्यूटेन के रिंग स्ट्रेन के बारे में जाने जाते हैं।[13]
मुख्य समूह यौगिकों के लिए आवेदन
डिबोराने
डिबोरीने या त्रिकबंध के साथ यौगिक बोरॉन- बोरॉन को पहले ब्राउनश्वेग समूह में एन-हेटेरोसाइक्लिक कार्बेन समर्थित जटिलता (एनएचसी-बीबी-एनएचसी) के रूप में पृथक किया गया था[1]और इसकी विशिष्ट व असामान्य बंध संरचना ने उस समय विवादास्पद त्रिकबंध की प्रकृति का संगणनात्मक रूप से आकलन करने के लिए नए शोध को उत्प्रेरित किया।
कुछ वर्ष पश्चात कोप्पे और श्नोकेल ने एक लेख प्रकाशित किया जिसमें तर्क दिया गया कि बी-बी बंध को ऊष्मप्रवैगिकी दृष्टिकोण और कठोर बल स्थिरांक गणनाओं के आधार पर 1.5 बंध के रूप में परिभाषित किया जाना चाहिए।[2]उसी वर्ष ग्रुनेनबर्ग ने सामान्यीकृत अनुवृति स्थिरांक का उपयोग करते हुए B-B बॉन्ड का पुनर्मूल्यांकन किया, जिसके विषय में उन्होंने दावा किया कि यह बॉन्ड स्ट्रेंथ डिस्क्रिप्टर के रूप में अधिक अनुकूल है।[4]
यौगिक | शिथिल बल स्थिरांक (mdyn/Å) | बंधन |
---|---|---|
NHC-H2BBH2-NHC | 1.5 | एकल |
NHC-HBBH-NHC | 3.8 | द्वि |
NHC-BB-NHC | 6.5 | त्रिक |
गणना किए गए निश्चित बल स्थिरांक एक स्पष्ट प्रवृत्ति दिखाते हैं क्योंकि बी-बी बॉन्ड के मध्य आबंध क्रम में वृद्धि होती है, जो ब्राउनश्वेग के परिसर में त्रिक आबंध के अस्तित्व को प्रस्तुत करता है।
डिगैलियम आबंध
ग्रुनेनबर्ग और एन गोल्डबर्ग[16]ने एकल बंध, द्विबंध या त्रिक आबंध के साथ डिगैलियम संकुल के अनुवृति स्थिरांक की गणना करके Ga-Ga त्रिक आबंध के आबंध सामर्थ्य की जांच की। परिणाम बताते हैं कि C2h समरूपता में एक मॉडल Na2 [H-GaGa-H] यौगिक के Ga-Ga त्रिक आबंध का अनुवृति स्थिरांक मान 0.870 aJ/Å2 है, जो वास्तव में Ga-Ga द्विबंध (1.201 aJ/Å2) से कमजोर है।
वॉटसन-क्रिक बेस पेयर
वाटसन-क्रिक आधारित युग्म में H-बंध जैसे गैर-सहसंयोजक बंध को निर्धारित करने के लिए रासायनिक बंध अनुवृति स्थिरांक के अतिरिक्त भी उपयोगी होते हैं।[17] ग्रुनेनबर्ग ने AT और CG आधारित युग्म में प्रत्येक दाता-H⋯अनुग्राही संयोजन के लिए अनुवृति स्थिरांक की गणना की और पाया कि CG आधारित युग्म में केंद्रीय N-H⋯N बंध 2.284 Å/mdyn के अनुवृति स्थिरांक मान के साथ अधिक मजबूत है। (ध्यान दें कि यूनिट को एक रिवर्स यूनिट में रिपोर्ट किया जाता है।) इसके अलावा, एटी बेस पेयर में तीन हाइड्रोजन बॉन्डिंग इंटरैक्शन में से एक एक कमजोर इंटरेक्शन का संकेत >20 Å/mdyn का एक बहुत बड़ा अनुपालन मान दिखाता है।
संदर्भ
- ↑ 1.0 1.1 Braunschweig, Holger; Dewhurst, Rian D.; Hammond, Kai; Mies, Jan; Radacki, Krzysztof; Vargas, Alfredo (2012-06-15). "बोरोन-बोरॉन ट्रिपल बॉन्ड के साथ एक यौगिक का परिवेश-तापमान अलगाव". Science. 336 (6087): 1420–1422. Bibcode:2012Sci...336.1420B. doi:10.1126/science.1221138. PMID 22700924. S2CID 206540959.
- ↑ 2.0 2.1 Köppe, R.; Schnöckel, H. (2015-02-01). "The boron-boron triple bond? A thermodynamic and force field based interpretation of the N-heterocyclic carbene (NHC) stabilization procedure". Chemical Science. 6 (2): 1199–1205. doi:10.1039/c4sc02997f. ISSN 2041-6520. PMC 5811121. PMID 29560205.
- ↑ Holzmann, Nicole; Hermann, Markus; Frenking, Gernot (2015-06-15). "The boron–boron triple bond in NHC→BB←NHC". Chemical Science (in English). 6 (7): 4089–4094. doi:10.1039/C5SC01504A. ISSN 2041-6539. PMC 5707517. PMID 29218175.
- ↑ 4.0 4.1 4.2 Grunenberg, Jörg (2015-06-15). "III-defined concepts in chemistry: rigid force constants vs. compliance constants as bond strength descriptors for the triple bond in diboryne". Chemical Science (in English). 6 (7): 4086–4088. doi:10.1039/C5SC01322D. ISSN 2041-6539. PMC 5707508. PMID 29218174.
- ↑ 5.0 5.1 5.2 5.3 5.4 5.5 Brandhorst, Kai; Grunenberg, Jörg (2008-07-22). "How strong is it? The interpretation of force and compliance constants as bond strength descriptors". Chemical Society Reviews (in English). 37 (8): 1558–1567. doi:10.1039/B717781J. ISSN 1460-4744. PMID 18648681.
- ↑ Shaik, Sason; Rzepa, Henry S.; Hoffmann, Roald (2013-03-04). "One Molecule, Two Atoms, Three Views, Four Bonds?". Angewandte Chemie International Edition (in English). 52 (10): 3020–3033. doi:10.1002/anie.201208206. PMID 23362052.
- ↑ Shaik, Sason; Danovich, David; Wu, Wei; Su, Peifeng; Rzepa, Henry S.; Hiberty, Philippe C. (March 2012). "Quadruple bonding in C2 and analogous eight-valence electron species". Nature Chemistry (in English). 4 (3): 195–200. Bibcode:2012NatCh...4..195S. doi:10.1038/nchem.1263. ISSN 1755-4330. PMID 22354433.
- ↑ "ग्रुनेनबर्ग, आणविक सिमुलेशन, ब्राउनश्वेग, ग्रुनेनबर्ग, आणविक सिमुलेशन, ब्राउनश्वेग". www.oc.tu-bs.de. Retrieved 2021-11-08.
- ↑ Taylor, W.J.; Pitzer, K.S. (January 1947). "Vibrational frequencies of semirigid molecules: a general method and values for ethylbenzene". Journal of Research of the National Bureau of Standards. 38 (1): 1. doi:10.6028/jres.038.001. ISSN 0091-0635.
- ↑ MAJUMDER, MOUMITA; MANOGARAN, SADASIVAM (January 2013). "Redundant internal coordinates, compliance constants and non-bonded interactions – some new insights". Journal of Chemical Sciences. 125 (1): 9–15. doi:10.1007/s12039-012-0357-7. ISSN 0974-3626. S2CID 93304185.
- ↑ 11.0 11.1 Brandhorst, Kai; Grunenberg, Jörg (2010-05-14). "गैर-स्थिर बिंदुओं के लिए कार्टेशियन हेसियन से निरर्थक आंतरिक निर्देशांक में अनुपालन मैट्रिसेस की कुशल गणना". The Journal of Chemical Physics. 132 (18): 184101. Bibcode:2010JChPh.132r4101B. doi:10.1063/1.3413528. ISSN 0021-9606.
- ↑ Decius, J. C. (1963-01-01). "अनुपालन मैट्रिक्स और आणविक कंपन". The Journal of Chemical Physics. 38 (1): 241–248. Bibcode:1963JChPh..38..241D. doi:10.1063/1.1733469. ISSN 0021-9606.
- ↑ 13.0 13.1 13.2 13.3 Wiberg, Kenneth B. (1986). "कार्बनिक रसायन विज्ञान में तनाव की अवधारणा". Angewandte Chemie International Edition in English (in Deutsch). 25 (4): 312–322. doi:10.1002/anie.198603121. ISSN 1521-3773.
- ↑ Møller, Chr.; Plesset, M. S. (1934-10-01). "अनेक-इलेक्ट्रॉन प्रणालियों के लिए एक सन्निकटन उपचार पर ध्यान दें". Physical Review. 46 (7): 618–622. Bibcode:1934PhRv...46..618M. doi:10.1103/PhysRev.46.618.
- ↑ Kendall, Rick A.; Dunning, Thom H.; Harrison, Robert J. (1992-05-01). "Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions". The Journal of Chemical Physics. 96 (9): 6796–6806. Bibcode:1992JChPh..96.6796K. doi:10.1063/1.462569. ISSN 0021-9606.
- ↑ Grunenberg, Jörg; Goldberg, Norman (2000-06-01). "How Strong Is the Gallium⋮Gallium Triple Bond? Theoretical Compliance Matrices as a Probe for Intrinsic Bond Strengths". Journal of the American Chemical Society. 122 (25): 6045–6047. doi:10.1021/ja994148y. ISSN 0002-7863.
- ↑ Grunenberg, Jörg (2004-12-22). "सैद्धांतिक अनुपालन स्थिरांक का उपयोग करते हुए वाटसन-क्रिक बेस जोड़े में अंतर-अवशेष बलों का प्रत्यक्ष मूल्यांकन". Journal of the American Chemical Society. 126 (50): 16310–16311. doi:10.1021/ja046282a. ISSN 0002-7863. PMID 15600318.