पतला लेंस: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 21: Line 21:
यहाँ R<sub>1</sub> यदि पहली सतह उत्तल है तो धनात्मक लिया जाता है, और यदि सतह अवतल है तो ऋणात्मक लिया जाता है। लेंस की पिछली सतह के लिए संकेत उलटे होते हैं: R<sub>2</sub> यदि सतह अवतल है तो धनात्मक है और उत्तल है तो ऋणात्मक है। यह एक स्वैच्छिक चिह्न परिपाटी है; कुछ लेखक त्रिज्या के लिए अलग-अलग चिन्ह चुनते हैं, जो फोकल लम्बाई के लिए समीकरण को बदलता है।
यहाँ R<sub>1</sub> यदि पहली सतह उत्तल है तो धनात्मक लिया जाता है, और यदि सतह अवतल है तो ऋणात्मक लिया जाता है। लेंस की पिछली सतह के लिए संकेत उलटे होते हैं: R<sub>2</sub> यदि सतह अवतल है तो धनात्मक है और उत्तल है तो ऋणात्मक है। यह एक स्वैच्छिक चिह्न परिपाटी है; कुछ लेखक त्रिज्या के लिए अलग-अलग चिन्ह चुनते हैं, जो फोकल लम्बाई के लिए समीकरण को बदलता है।
== छवि निर्माण ==
== छवि निर्माण ==
पैराएक्सियल सन्निकटन में, कुछ किरण (ऑप्टिक्स) एक पतले लेंस से गुजरते समय सरल नियमों का पालन करती हैं:
पैराएक्सियल सन्निकटन में, कुछ किरण (ऑप्टिक्स) एक पतले लेंस से निकलते समय सरल नियमों का पालन करती हैं:
* कोई भी किरण जो लेंस के एक तरफ धुरी के समानांतर प्रवेश करती है, [[फोकस (ऑप्टिक्स)]] की ओर बढ़ती है <math>f_2</math> दूसरी ओर।
*कोई भी किरण जो लेंस के एक ओर अक्ष के समान्तर प्रवेश करती है, दूसरी ओर [[फोकस (ऑप्टिक्स)]] बिंदु <math>f_2</math> की ओर बढ़ती है।।
* कोई भी किरण जो लेंस के फोकस बिंदु से गुजरने के बाद पहुंचती है <math>f_1</math> सामने की तरफ, दूसरी तरफ अक्ष के समानांतर बाहर आता है।
* कोई भी किरण जो सामने की ओर फोकस बिंदु <math>f_1</math> से गुजरने के बाद लेंस पर आती है, दूसरी तरफ अक्ष के समानांतर निकलती है।
* लेंस के केंद्र से गुजरने वाली कोई भी किरण अपनी दिशा नहीं बदलेगी।
* लेंस के केंद्र से निकलने वाली कोई भी किरण अपनी दिशा नहीं बदलेगी।


यदि तीन ऐसी किरणें लेंस के सामने किसी वस्तु (जैसे कि शीर्ष) पर एक ही बिंदु से खींची जाती हैं, तो उनका प्रतिच्छेदन वस्तु की छवि पर संबंधित बिंदु के स्थान को चिह्नित करेगा। इन किरणों के पथ का अनुसरण करके, वस्तु की दूरी s और छवि की दूरी s' के बीच के संबंध को दिखाया जा सकता है
यदि तीन ऐसी किरणें लेंस के सामने किसी वस्तु (जैसे कि शीर्ष) पर एक ही बिंदु से खींची जाती हैं, तो उनका प्रतिच्छेदन वस्तु की छवि पर संबंधित बिंदु के स्थान को चिह्नित करता है। इन किरणों के पथ का अनुसरण करके, वस्तु की दूरी s और छवि की दूरी s' के बीच के संबंध को दिखाया जा सकता है
:<math>{1\over s} + {1\over s'} = {1\over f}</math>
:<math>{1\over s} + {1\over s'} = {1\over f}</math>
जिसे पतले लेंस समीकरण के रूप में जाना जाता है।
जिसे पतले लेंस समीकरण के रूप में जाना जाता है।

Revision as of 17:12, 12 June 2023

300पीएक्स

प्रकाशिकी में, पतला लेंस एक लेंस (प्रकाशिकी) होता है जिसकी मोटाई (लेंस की दो सतहों के बीच ऑप्टिकल अक्ष के साथ दूरी) लेंस सतहों की वक्रता की त्रिज्या की तुलना में नगण्य होती है। जिन लेंसों की मोटाई नगण्य नहीं होती, उन्हें कभी-कभी मोटा लेंस कहा जाता है।

पतला लेंस सादृश्य लेंस की मोटाई के कारण ऑप्टिकल प्रभावों की उपेक्षा करता है और किरण अनुरेखण (भौतिकी) गणनाओं को सरल करता है। इसे अधिकांश किरण स्थानांतरण मैट्रिक्स विश्लेषण जैसी विधियों में पैराएक्सियल सन्निकटन के साथ जोड़ा जाता है।

फोकल लम्बाई

वायु में एक लेंस की फोकल लंबाई, f, लेंसमेकर के समीकरण द्वारा दी गई है:


जहाँ n लेंस सामग्री के अपवर्तन का सूचकांक है, और R1 और R2 दो सतहों की वक्रता की त्रिज्याएँ हैं। एक पतले लेंस के लिए, d वक्रता (ऑप्टिक्स) की त्रिज्याओं (या तो R1 या R2) में से एक से बहुत छोटा है इन स्थितियों में, लेंसमेकर के समीकरण का अंतिम पद नगण्य हो जाता है, और वायु में एक पतले लेंस की फोकल लंबाई का अनुमान लगाया जा सकता है[1]

यहाँ R1 यदि पहली सतह उत्तल है तो धनात्मक लिया जाता है, और यदि सतह अवतल है तो ऋणात्मक लिया जाता है। लेंस की पिछली सतह के लिए संकेत उलटे होते हैं: R2 यदि सतह अवतल है तो धनात्मक है और उत्तल है तो ऋणात्मक है। यह एक स्वैच्छिक चिह्न परिपाटी है; कुछ लेखक त्रिज्या के लिए अलग-अलग चिन्ह चुनते हैं, जो फोकल लम्बाई के लिए समीकरण को बदलता है।

छवि निर्माण

पैराएक्सियल सन्निकटन में, कुछ किरण (ऑप्टिक्स) एक पतले लेंस से निकलते समय सरल नियमों का पालन करती हैं:

  • कोई भी किरण जो लेंस के एक ओर अक्ष के समान्तर प्रवेश करती है, दूसरी ओर फोकस (ऑप्टिक्स) बिंदु की ओर बढ़ती है।।
  • कोई भी किरण जो सामने की ओर फोकस बिंदु से गुजरने के बाद लेंस पर आती है, दूसरी तरफ अक्ष के समानांतर निकलती है।
  • लेंस के केंद्र से निकलने वाली कोई भी किरण अपनी दिशा नहीं बदलेगी।

यदि तीन ऐसी किरणें लेंस के सामने किसी वस्तु (जैसे कि शीर्ष) पर एक ही बिंदु से खींची जाती हैं, तो उनका प्रतिच्छेदन वस्तु की छवि पर संबंधित बिंदु के स्थान को चिह्नित करता है। इन किरणों के पथ का अनुसरण करके, वस्तु की दूरी s और छवि की दूरी s' के बीच के संबंध को दिखाया जा सकता है

जिसे पतले लेंस समीकरण के रूप में जाना जाता है।

भौतिक प्रकाशिकी

स्केलर वेव ऑप्टिक्स में एक लेंस एक हिस्सा होता है जो वेव-फ्रंट के चरण को बदलता है। गणितीय रूप से इसे निम्न कार्य के साथ तरंग-मोर्चे के गुणन के रूप में समझा जा सकता है:[2]

.

संदर्भ

  1. Hecht, Eugene (1987). Optics (2nd ed.). Addison Wesley. § 5.2.3. ISBN 0-201-11609-X.
  2. Saleh, B.E.A. (2007). Fundamentals of Photonics (2nd ed.). Wiley.