प्रतिक्रिया दर स्थिर: Difference between revisions
m (4 revisions imported from alpha:प्रतिक्रिया_दर_स्थिर) |
No edit summary |
||
Line 114: | Line 114: | ||
==संदर्भ== | ==संदर्भ== | ||
{{Reflist}} | {{Reflist}} | ||
[[Category:Created On 18/05/2023]] | [[Category:Created On 18/05/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Lua-based templates]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:रासायनिक गतिकी]] |
Latest revision as of 09:16, 15 June 2023
रासायनिक बलगतिकी में, प्रतिक्रिया दर स्थिरांक या प्रतिक्रिया दर गुणांक () एक रासायनिक प्रतिक्रिया की दर और दिशा की मात्रा निर्धारित करता है। [1] उत्पाद C बनाने के लिए अभिकारकों A और B के बीच प्रतिक्रिया के लिए,
जहाँ
- A और B अभिकारक हैं
- C एक उत्पाद है
- a, b, और c रससमीकरणमितीय गुणांक हैं,
प्रतिक्रिया दर प्रायः निम्नलिखित रूप में पाई जाती है:
प्रतिपादक m और n को प्रतिक्रिया के आंशिक आदेश कहा जाता है और सामान्यतः रससमीकरणमिति गुणांक A और B के बराबर नहीं होते हैं। इसके स्थान पर वे प्रतिक्रिया तंत्र पर निर्भर करते हैं और प्रयोगात्मक रूप से निर्धारित किए जा सकते हैं।
m और n का योग अर्थात (m + n) अभिक्रिया की समग्र कोटि कहलाती है।
प्रारंभिक चरण
एक प्रतिक्रिया कदम के लिए, बड़े मापक्रम पर कार्रवाई के नियम द्वारा निर्धारित रससमीकरणमिति और दर नियम के बीच एक संबंध है। लगभग सभी प्रारंभिक कदम या तो एक-आणविक या द्वि-आणविक हैं। एक एकाण्विक कदम के लिए
प्रतिक्रिया दर द्वारा वर्णित है, जहाँ एक एकाण्विक दर स्थिरांक है। चूंकि प्रतिक्रिया के लिए आणविक ज्यामिति में बदलाव की आवश्यकता होती है, आणविक दर स्थिरांक एक आणविक कंपन की आवृत्ति से बड़ा नहीं हो सकता। इस प्रकार, सामान्यतः, एक असमान दर स्थिरांक की ऊपरी सीमा k1 ≤ ~1013 s−1 होती है।
एक द्विआण्विक कदम के लिए
प्रतिक्रिया दर द्वारा वर्णित है, जहाँ द्विआणविक दर स्थिरांक है। द्विआणविक दर स्थिरांक की एक ऊपरी सीमा होती है जो इस बात से निर्धारित होती है कि अणु कितनी बार टकरा सकते हैं, और सबसे तीव्र ऐसी प्रक्रियाएँ विसरण द्वारा सीमित होती हैं। इस प्रकार, सामान्यतः, एक द्विध्रुवीय दर स्थिरांक की ऊपरी सीमा k2 ≤ ~1010 M−1s−1 होती है।
निम्नलिखित त्रिआण्विक कदम के लिए
प्रतिक्रिया दर द्वारा वर्णित है, जहाँ एक त्रिआण्विक दर स्थिरांक है।
प्राथमिक चरणों के कुछ उदाहरण हैं जो त्रिआण्विक या उच्च क्रम हैं, तीन या अधिक अणुओं की कम संभावना के कारण उनकी प्रतिक्रियाशील अनुरूपता में और एक विशेष संक्रमण अवस्था तक पहुंचने के लिए एक दूसरे के सापेक्ष सही अभिविन्यास में हैं। [2] हालाँकि, गैस चरण में कुछ त्रिआण्विक उदाहरण हैं। अधिकांश में एक निष्क्रिय तीसरे तत्व की उपस्थिति में दो परमाणुओं या छोटे कणों या अणुओं का पुनर्संयोजन सम्मिलित होता है जो अतिरिक्त ऊर्जा का वहन करता है, जैसे O + O
2 + N
2 → O
3 + N
2। हाइड्रोजन-आयोडीन अभिक्रिया में एक अच्छी तरह से स्थापित उदाहरण त्रिआण्विक चरण 2 I + H2 → 2 HI है। [3][4][5] ऐसी स्तिथियों में जहां एक त्रिआण्विक कदम संभवतः प्रस्तावित किया जा सकता है, अभिकारकों में से एक सामान्यतः उच्च सांद्रता में उपस्थित होता है (उदाहरण के लिए, एक विलायक या मंदक गैस के रूप में है)। [6]
अन्य मापदंडों से संबंध
प्रथम-क्रम की प्रतिक्रिया के लिए (एक एकाण्विक वन-कदम प्रक्रिया सहित), एकाण्विक दर स्थिर और प्रतिक्रिया के आधे जीवन के बीच सीधा संबंध है। संक्रमण अवस्था सिद्धांत दर स्थिरांक और गिब्स सक्रियण की मुक्त ऊर्जा के बीच संबंध देता है, जिसे संक्रमण अवस्था तक पहुँचने के लिए आवश्यक मुक्त ऊर्जा परिवर्तन के रूप में माना जा सकता है। विशेष रूप से, यह ऊर्जा अवरोध एन्थैल्पिक () और एंट्रोपिक () दोनों को सम्मिलित करता है जो प्रतिक्रिया होने के लिए प्राप्त करने की आवश्यकता है: [7][8] संक्रमण अवस्था सिद्धांत से प्राप्त परिणाम है जहां h प्लैंक स्थिरांक है और R मोलर गैस स्थिरांक है। अंगूठे के उपयोगी नियमों के रूप में, 10−4 s−1 की दर स्थिरांक वाली प्रथम-क्रम की प्रतिक्रिया में लगभग 2 घंटे का अर्ध-जीवन (t1/2) होगा। कमरे के तापमान पर होने वाली एक-चरणीय प्रक्रिया के लिए, सक्रियण की संगत गिब्स मुक्त ऊर्जा (ΔG‡) लगभग 23 किलो कैलोरी/मोल है।
तापमान पर निर्भरता
अरहेनियस समीकरण एक प्रारंभिक उपचार है जो सक्रियण ऊर्जा और प्रतिक्रिया दर के बीच संबंध का मात्रात्मक आधार देता है जिस पर प्रतिक्रिया होती है। ऊष्मागतिक तापमान के एक फलन के रूप में स्थिर दर तब द्वारा दी जाती है:
एक और लोकप्रिय प्रतिरूप जो अधिक परिष्कृत सांख्यिकीय यांत्रिकी के विचारों का उपयोग करके प्राप्त किया गया है, संक्रमण अवस्था सिद्धांत से आईरिंग समीकरण है:
कारक (C⊖)1-M दर स्थिरांक की आयामी शुद्धता सुनिश्चित करता है जब विचाराधीन संक्रमण अवस्था द्विअणुक या उच्चतर होती है। यहाँ, C⊖ मानक एकाग्रता है, सामान्यतः उपयोग की जाने वाली एकाग्रता की इकाई के आधार पर चुना जाता है (सामान्यतः C⊖ = 1 मोल एल−1 = 1 M), और M संक्रमण अवस्था की आणविकता है। अंत में, κ, सामान्यतः एकता पर सम्मुच्चय होता है, जिसे संचरण गुणांक के रूप में जाना जाता है, एक मापदण्ड जो अनिवार्य रूप से संक्रमण अवस्था सिद्धांत के लिए एक निरर्थक कारक के रूप में कार्य करता है।
दो सिद्धांतों के बीच सबसे बड़ा अंतर यह है कि अरहेनियस सिद्धांत प्रतिक्रिया (एकल या बहु-चरण) को समग्र रूप से प्रतिरूप करने का प्रयास करता है, जबकि संक्रमण अवस्था सिद्धांत व्यक्तिगत प्राथमिक चरणों को सम्मिलित करता है। इस प्रकार, जब तक कि प्रश्न में प्रतिक्रिया में केवल एक प्रारंभिक चरण सम्मिलित न हो तब तक वे प्रत्यक्ष रूप से तुलनीय नहीं हैं।
अंत में, अतीत में, टकराव सिद्धांत, जिसमें अभिकारकों को एक विशेष अनुप्रस्थ परिच्छेद के साथ कठोर क्षेत्रों के रूप में देखा जाता है, दर स्थिरांक की तापमान निर्भरता को युक्तिसंगत और प्रतिरूप करने का एक और सामान्य तरीका प्रदान किया, हालांकि यह दृष्टिकोण धीरे-धीरे अनुपयोगी हो गया है। दर स्थिरांक के लिए समीकरण कार्यात्मक रूप में अरहेनियस और आइरिंग समीकरण दोनों के समान है:
प्रतिरूपों की तुलना
सभी तीन सिद्धांत रूप के समीकरण का उपयोग करके k की तापमान निर्भरता को प्रतिरूप करते हैं
इकाइयां
दर स्थिरांक की इकाइयाँ प्रतिक्रिया के समग्र क्रम पर निर्भर करती हैं। [10]
यदि सघनता मोलर सघनता·L−1 की इकाइयों में मापी जाती है (कभी-कभी m के रूप में संक्षिप्त किया जाता है), फिर
- क्रम (m + n) के लिए, दर स्थिरांक में mol1−(m+n)·L(m+n)−1·s−1 (या M1−(m+n)·s−1) की इकाइयां होती हैं
- शून्य क्रम के लिए, दर स्थिरांक में mol·L−1·s−1 (या M·s−1) की इकाइयाँ होती हैं
- क्रम एक के लिए, दर स्थिरांक में s−1 की इकाइयाँ हैं
- क्रम दो के लिए, दर स्थिरांक में L·mol−1·s−1 (या M−1·s−1) की इकाइयां होती हैं
- क्रम तीन के लिए, दर स्थिरांक में L2·mol−2·s−1 (या M−2·s−1) की इकाइयां होती हैं
- क्रम चार के लिए, दर स्थिरांक में L3·mol−3·s−1 (या M−3·s−1) की इकाइयां हैं
प्रद्रव्य और गैसें
उत्पादन की प्रक्रियाओं की दर स्थिरांक की गणना और इलेक्ट्रॉनिक और कंपन से उत्साहित कणों की छूट का महत्वपूर्ण महत्व है। इसका उपयोग, उदाहरण के लिए, प्रद्रव्य रसायन या सूक्ष्म इलेक्ट्रॉनिकी में प्रक्रियाओं के कंप्यूटर अनुकरण में किया जाता है। ऐसी गणना के लिए प्रथम-सिद्धांत आधारित प्रतिरूप का उपयोग किया जाना चाहिए। यह कंप्यूटर अनुकरण सॉफ्टवेयर की मदद से किया जा सकता है।
दर निरंतर गणना
आणविक गतिकी अनुकरण द्वारा प्रारंभिक प्रतिक्रियाओं के लिए दर स्थिरांक की गणना की जा सकती है।
एक संभावित तरीका यह है कि अभिकारक अवस्था में अणु के औसत निवास समय की गणना की जाए। यद्यपि यह छोटी प्रणाली के लिए कम निवास समय के साथ संभव है, यह दृष्टिकोण व्यापक रूप से लागू नहीं होता है क्योंकि आणविक मापक्रम पर प्रतिक्रियाएं प्रायः दुर्लभ घटनाएं होती हैं।
इस समस्या को दूर करने का एक आसान तरीका विभाजित सैडल सिद्धांत है। [11] बेनेट चांडलर प्रक्रिया और माइलस्टोनिंग जैसे अन्य तरीके, [12][13][14] दर स्थिर गणनाओं के लिए भी विकसित किया गया है।
विभाजित सैडल सिद्धांत
सिद्धांत इस धारणा पर आधारित है कि प्रतिक्रिया को एक प्रतिक्रिया समन्वय द्वारा वर्णित किया जा सकता है, और यह कि हम कम से कम प्रतिक्रियाशील अवस्था में बोल्ट्जमान वितरण लागू कर सकते हैं।
अभिकारक का एक नया, विशेष रूप से प्रतिक्रियाशील खंड, जिसे सैडल कार्यछेत्र कहा जाता है, प्रस्तुत किया गया है, और निम्नलिखित दर स्थिर है:
RS प्रतिक्रियाशील स्थिति और सैडल कार्यछेत्र के बीच रूपांतरण कारक है, जबकि kSD सैडल कार्यछेत्र से दर स्थिर है। पहले की गणना केवल मुक्त ऊर्जा सतह से की जा सकती है, बाद वाले को लघु आणविक गतिकी अनुकरण से आसानी से पहुँचा जा सकता है [11]
यह भी देखें
- प्रतिक्रिया की दर
- निरंतर संतुलन
- आणविकता
संदर्भ
- ↑ "रासायनिक कैनेटीक्स नोट्स". www.chem.arizona.edu. Retrieved 5 May 2018.
- ↑ Lowry, Thomas H. (1987). कार्बनिक रसायन विज्ञान में तंत्र और सिद्धांत. Richardson, Kathleen Schueller (3rd ed.). New York: Harper & Row. ISBN 978-0060440848. OCLC 14214254.
- ↑ Moore, John W.; Pearson, Ralph G. (1981). कैनेटीक्स और तंत्र (3rd ed.). John Wiley. pp. 226–7. ISBN 978-0-471-03558-9.
- ↑ The reactions of nitric oxide with the diatomic molecules Cl
2, Br
2 or O
2 (e.g., 2 NO + Cl
2 → 2 NOCl, etc.) have also been suggested as examples of termolecular elementary processes. However, other authors favor a two-step process, each of which is bimolecular: (NO + Cl
2 ⇄ NOCl
2, NOCl
2 + NO → 2 NOCl). See: Compton, R.G.; Bamford, C. H.; Tipper, C.F.H., eds. (2014) [1972]. "5. Reactions of the Oxides of Nitrogen §5.5 Reactions with Chlorine". Reactions of Non-metallic Inorganic Compounds. Comprehensive Chemical Kinetics. Vol. 6. Elsevier. p. 174. ISBN 978-0-08-086801-1. - ↑ Sullivan, John H. (1967-01-01). "Mechanism of the Bimolecular Hydrogen—Iodine Reaction". The Journal of Chemical Physics. 46 (1): 73–78. Bibcode:1967JChPh..46...73S. doi:10.1063/1.1840433. ISSN 0021-9606.
- ↑ Kotz, John C. (2009). रसायन विज्ञान और रासायनिक प्रतिक्रियाशीलता. Treichel, Paul., Townsend, John R. (7th ed.). Belmont, Calif.: Thomson Brooks/ Cole. p. 703. ISBN 9780495387039. OCLC 220756597.
- ↑ Laidler, Keith J. (1987). रासायनिक गतिकी (3rd ed.). Harper & Row. p. 113. ISBN 0-06-043862-2.
- ↑ Steinfeld, Jeffrey I.; Francisco, Joseph S.; Hase, William L. (1999). रासायनिक कैनेटीक्स और गतिशीलता (2nd ed.). Prentice Hall. p. 301. ISBN 0-13-737123-3.
- ↑ Carpenter, Barry K. (1984). कार्बनिक प्रतिक्रिया तंत्र का निर्धारण. New York: Wiley. ISBN 978-0471893691. OCLC 9894996.
- ↑ Blauch, David. "विभेदक दर कानून". Chemical Kinetics.
- ↑ 11.0 11.1 Daru, János; Stirling, András (2014). "Divided Saddle Theory: A New Idea for Rate Constant Calculation" (PDF). J. Chem. Theory Comput. 10 (3): 1121–1127. doi:10.1021/ct400970y. PMID 26580187.
- ↑ Chandler, David (1978). "तरल पदार्थों में आइसोमेराइजेशन डायनेमिक्स के सांख्यिकीय यांत्रिकी और संक्रमण राज्य सन्निकटन". J. Chem. Phys. 68 (6): 2959. Bibcode:1978JChPh..68.2959C. doi:10.1063/1.436049.
- ↑ Bennett, C. H. (1977). Christofferson, R. (ed.). Algorithms for Chemical Computations, ACS Symposium Series No. 46. Washington, D.C.: American Chemical Society. ISBN 978-0-8412-0371-6.
- ↑ West, Anthony M.A.; Elber, Ron; Shalloway, David (2007). "Extending molecular dynamics time scales with milestoning: Example of complex kinetics in a solvated peptide". The Journal of Chemical Physics. 126 (14): 145104. Bibcode:2007JChPh.126n5104W. doi:10.1063/1.2716389. PMID 17444753.