एलन विचरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 136: Line 136:
:<math>\bar{y}_i = \frac{x_{i+1} - x_i}{\tau}.</math>
:<math>\bar{y}_i = \frac{x_{i+1} - x_i}{\tau}.</math>


औसत भिन्नात्मक आवृत्ति प्रतिरूप श्रृंखला ''M'' प्रतिरूपों की संख्या को दर्शाती है (<math>\bar{y}_0 \ldots \bar{y}_{M-1} </गणित>) श्रृंखला में परंपरागत परिपाटी 'M' के माध्यम से सूचकांक 1 का उपयोग करती है।
औसत भिन्नात्मक आवृत्ति प्रतिरूप श्रृंखला ''M'' प्रतिरूपों की संख्या को दर्शाती है या समय श्रृंखला के लिए,
 
आशुलिपि के रूप में, औसत भिन्नात्मक आवृत्ति को अक्सर इसके ऊपर औसत पट्टी के बिना लिखा जाता है। चूँकि, यह औपचारिक रूप से असत्य होता है, जिससे कि भिन्नात्मक आवृत्ति और औसत भिन्नात्मक आवृत्ति के दो भिन्न- भिन्न कार्य होते हैं। बिना समय सीमा के आवृत्ति अनुमान उत्पन्न करने में सक्षम माप उपकरण वास्तव में आवृत्ति-औसत समय श्रृंखला प्रदान करता है, जिसे केवल औसत भिन्नात्मक आवृत्ति में परिवर्तित करने की आवश्यकता होती है और फिर सीधे उपयोग किया जा सकता है।| It is further a convention to let ''τ'' denote the nominal time difference between adjacent phase or frequency samples. A time series taken for one time difference ''τ''<sub>0</sub> can be used to generate Allan variance for any ''τ'' being an integer multiple of ''τ''<sub>0</sub>, in which case ''τ'' = ''nτ''<sub>0</sub> का उपयोग किया जा रहा है और ''n'' अनुमानक के लिए चर बन जाता है।
| मापन के मध्य के समय को ''T'' द्वारा निरूपित किया जाता है, जो अवलोकन समय ''τ'' और मृत-समय का योग होता है।}}
 
=== निश्चित τ अनुमानक ===
परिभाषा का सीधे अनुवाद करना प्रथम सरल अनुमानक होता है।
 
:<math>\sigma_y^2(\tau, M) = \operatorname{AVAR}(\tau, M) = \frac{1}{2(M - 1)} \sum_{i=0}^{M-2}(\bar{y}_{i+1} - \bar{y}_i)^2,</math>
या समय श्रृंखला के लिए,


:<math>\sigma_y^2(\tau, N) = \operatorname{AVAR}(\tau, N) = \frac{1}{2\tau^2(N - 2)} \sum_{i=0}^{N-3}(x_{i+2} - 2x_{i+1} + x_i)^2.</math>
:<math>\sigma_y^2(\tau, N) = \operatorname{AVAR}(\tau, N) = \frac{1}{2\tau^2(N - 2)} \sum_{i=0}^{N-3}(x_{i+2} - 2x_{i+1} + x_i)^2.</math>
Line 178: Line 169:


=== संशोधित एलन विचरण ===
=== संशोधित एलन विचरण ===
पारंपरिक एलन प्रसरण अनुमानकों का '''उपयोग करके झिलमिलाहट चरण मॉड्यूलेशन से सफेद चरण मॉड्यूलेश'''न को भिन्न करने में असमर्थता को संबोधित करने के लिए, एल्गोरिथम फ़िल्टरिंग बैंडविड्थ को n से कम कर देता है। यह फ़िल्टरिंग परिभाषा और अनुमानकों के लिए संशोधन प्रदान करता है और अब इसे संशोधित एलन भिन्नता नामक भिन्नता के भिन्न वर्ग के रूप में पहचाना जाता है। संशोधित एलन भिन्नता माप आवृत्ति स्थिरता माप है, जैसा कि एलन भिन्नता है।
पारंपरिक एलन प्रसरण अनुमानकों का उपयोग करके झिलमिलाहट चरण समायोजन से सफेद चरण समायोजन को भिन्न करने में असमर्थता को संबोधित करने के लिए, एल्गोरिथम फ़िल्टरिंग बैंडविड्थ को n से कम कर देता है। यह फ़िल्टरिंग परिभाषा और अनुमानकों के लिए संशोधन प्रदान करता है और अब इसे संशोधित एलन भिन्नता नामक भिन्नता के भिन्न वर्ग के रूप में पहचाना जाता है। इस प्रकार संशोधित एलन भिन्नता माप आवृत्ति स्थिरता की माप होती है, जैसा कि एलन भिन्नता होती है।


=== समय स्थिरता अनुमानक ===
=== समय स्थिरता अनुमानक ===
समय स्थिरता (σ<sub>''x''</sub>) सांख्यिकीय माप, जिसे अधिकांशतः समय विचलन (TDEV) कहा जाता है, की गणना संशोधित एलन विचलन (MDEV) से की जा सकती है। टीडीईवी मूल एलन विचलन के अतिरिक्त एमडीईवी पर आधारित है, जिससे कि एमडीईवी सफेद और झिलमिलाहट चरण मॉड्यूलेशन (पीएम) के मध्य भेदभाव कर सकता है। निम्नलिखित संशोधित एलन भिन्नता के आधार पर समय भिन्नता अनुमान है:
समय स्थिरता (σ<sub>''x''</sub>) सांख्यिकीय माप, जिसे अधिकांशतः समय विचलन (टीडीईवी) कहा जाता है, इसकी गणना संशोधित एलन विचलन (एमडीईवी) से की जा सकती है। इस प्रकार टीडीईवी मूल एलन विचलन के अतिरिक्त एमडीईवी पर आधारित होता है, जिससे कि एमडीईवी सफेद और झिलमिलाहट चरण समायोजन (पीएम) के मध्य भेदभाव कर सकता है। निम्नलिखित संशोधित एलन भिन्नता के आधार पर समय भिन्नता अनुमान है।


:<math>\sigma_x^2(\tau) = \frac{\tau^2}{3}\bmod\sigma_y^2(\tau),</math>
:<math>\sigma_x^2(\tau) = \frac{\tau^2}{3}\bmod\sigma_y^2(\tau),</math>
और इसी प्रकार समय विचलन के लिए संशोधित एलन विचलन के लिए:
और इसी प्रकार समय विचलन के लिए संशोधित एलन विचलन के लिए,


:<math>\sigma_x(\tau) = \frac{\tau}{\sqrt{3}}\bmod\sigma_y(\tau).</math>
:<math>\sigma_x(\tau) = \frac{\tau}{\sqrt{3}}\bmod\sigma_y(\tau).</math>
TDEV को सामान्यीकृत किया जाता है जिससे कि यह समय स्थिर τ = τ के लिए सफेद PM के मौलिक विचलन के बराबर हो<sub>0</sub>. सांख्यिकीय उपायों के मध्य सामान्यीकरण पैमाने के कारक को समझने के लिए, निम्नलिखित प्रासंगिक सांख्यिकीय नियम है: स्वतंत्र यादृच्छिक चर X और Y के लिए, विचरण (σ<sub>''z''</sub><sup>योग या अंतर (z = x − y) का 2</sup>) उनके प्रसरण (σ) का योग वर्ग है<sub>''z''</sub><sup>2</sup> = पी<sub>''x''</sub><sup>2</sup> + पृ<sub>''y''</sub><sup>2</sup>). योग या अंतर का विचरण (y = x<sub>2''τ''</sub> - एक्स<sub>''τ''</sub>) यादृच्छिक चर के दो स्वतंत्र प्रतिरूप यादृच्छिक चर (σ<sub>''y''</sub><sup>2</sup> = 2σ<sub>''x''</sub><sup>2</sup>). MDEV स्वतंत्र चरण माप (x) का दूसरा अंतर है जिसका विचरण (σ<sub>''x''</sub><sup>2</sup>). चूंकि गणना दोहरा अंतर है, जिसके लिए तीन स्वतंत्र चरण माप (x<sub>2''τ''</sub> -2x<sub>''τ''</sub> + x), संशोधित एलन विचरण (एमवीएआर) चरण माप के प्रसरण का तीन गुना है।
सामान्यतः टीडीईवी को सामान्यीकृत किया जाता है जिससे कि यह समय स्थिर τ = τ<sub>0</sub> के लिए सफेद PM के मौलिक विचलन के समान्तर होता है। इस प्रकार सांख्यिकीय उपायों के मध्य सामान्यीकरण प्रतिरूप के कारक को समझने के लिए, निम्नलिखित प्रासंगिक सांख्यिकीय नियम होते है। अतः स्वतंत्र यादृच्छिक चर X और Y के लिए, योग या अंतर (z = x - y) का विचरण (σ<sub>''z''</sub><sup>2</sup>) उनके योग का वर्ग होता है प्रसरण (σ<sub>''z''</sub><sup>2</sup> = σ<sub>''x''</sub><sup>2</sup> + σ<sub>''y''</sub><sup>2</sup>) यादृच्छिक चर के दो स्वतंत्र प्रतिरूप के योग या अंतर (''y'' = ''x''<sub>2''τ''</sub> − ''x<sub>τ</sub>'') का प्रसरण यादृच्छिक चर (σ<sub>''y''</sub><sup>2</sup> = 2σ<sub>''x''</sub><sup>2</sup>) के विचर'''ण का दोगुना है। MDEV''' स्वतंत्र चरण माप (x) का दूसरा अंतर है जिसका विचरण (σ<sub>''x''</sub><sup>2</sup>). चूंकि गणना दोहरा अंतर है, जिसके लिए तीन स्वतंत्र चरण माप (x<sub>2''τ''</sub> -2x<sub>''τ''</sub> + x), संशोधित एलन विचरण (एमवीएआर) चरण माप के प्रसरण का तीन गुना है।


=== अन्य अनुमानक ===
=== अन्य अनुमानक ===
Line 470: Line 461:


===माप बैंडविड्थ सीमा===
===माप बैंडविड्थ सीमा===
शैनन-हार्टले प्रमेय के भीतर वर्णित मापन प्रणाली में Nyquist दर पर या उससे कम बैंडविड्थ होने की उम्मीद है। जैसा कि पावर-लॉ ध्वनि फ़ार्मुलों में देखा जा सकता है, सफेद और झिलमिलाहट ध्वनि मॉड्यूलेशन दोनों ऊपरी कोने की आवृत्ति पर निर्भर करते हैं <math>f_H</math> (इन प्रणालियों को केवल लो-पास फ़िल्टर्ड माना जाता है)। फ़्रीक्वेंसी फ़िल्टर गुण को ध्यान में रखते हुए, यह स्पष्ट रूप से देखा जा सकता है कि कम आवृत्ति वाले ध्वनि का परिणाम पर अधिक प्रभाव पड़ता है। अपेक्षाकृत सपाट चरण-मॉड्यूलेशन ध्वनि प्रकारों (जैसे डब्लूपीएम और एफपीएम) के लिए, फ़िल्टरिंग की प्रासंगिकता है, जबकि अधिक ढलान वाले ध्वनि प्रकारों के लिए ऊपरी आवृत्ति सीमा कम महत्व की हो जाती है, यह मानते हुए कि माप प्रणाली बैंडविड्थ व्यापक सापेक्ष है <math>\tau</math> जैसा दिया गया है
शैनन-हार्टले प्रमेय के भीतर वर्णित मापन प्रणाली में Nyquist दर पर या उससे कम बैंडविड्थ होने की उम्मीद है। जैसा कि पावर-लॉ ध्वनि फ़ार्मुलों में देखा जा सकता है, सफेद और झिलमिलाहट ध्वनि समायोजन दोनों ऊपरी कोने की आवृत्ति पर निर्भर करते हैं <math>f_H</math> (इन प्रणालियों को केवल लो-पास फ़िल्टर्ड माना जाता है)। फ़्रीक्वेंसी फ़िल्टर गुण को ध्यान में रखते हुए, यह स्पष्ट रूप से देखा जा सकता है कि कम आवृत्ति वाले ध्वनि का परिणाम पर अधिक प्रभाव पड़ता है। अपेक्षाकृत सपाट चरण-समायोजन ध्वनि प्रकारों (जैसे डब्लूपीएम और एफपीएम) के लिए, फ़िल्टरिंग की प्रासंगिकता है, जबकि अधिक ढलान वाले ध्वनि प्रकारों के लिए ऊपरी आवृत्ति सीमा कम महत्व की हो जाती है, यह मानते हुए कि माप प्रणाली बैंडविड्थ व्यापक सापेक्ष है <math>\tau</math> जैसा दिया गया है


:<math>\tau \gg \frac{1}{2\pi f_H}.</math>
:<math>\tau \gg \frac{1}{2\pi f_H}.</math>

Revision as of 20:50, 17 June 2023

अधिक त्रुटिहीन संदर्भ घड़ी के साथ तुलना करके घड़ी का सबसे सरली से परीक्षण किया जाता है। समय के अंतराल के समय τ, जैसा कि संदर्भ घड़ी द्वारा मापा जाता है, परीक्षण के अनुसार घड़ी τy से आगे बढ़ती है, जहां y उस अंतराल पर औसत (सापेक्ष) घड़ी आवृत्ति है। यदि हम दिखाए गए अनुसार लगातार दो अंतरालों को मापते हैं, तो हम का मान प्राप्त कर सकते हैं (yy′)2—छोटा मान अधिक स्थिर और त्रुटिहीन घड़ी का संकेत देता है। यदि हम इस प्रक्रिया को अनेक बार दोहराते हैं, तो का औसत मान (yy′)2 अवलोकन समय τ के लिए एलन प्रसरण (या एलन विचलन वर्ग) के दोगुने के बराबर है।

एलन विचरण (एवीएआर), जिसे दो-प्रतिरूप प्रसरण के रूप में भी जाना जाता है, घड़ियों, ऑसीलेटर और एम्पलीफायरों में आवृत्ति स्थिरता का उपाय होता है। इसका नाम डेविड डब्ल्यू एलन के नाम पर रखा गया है और इसे गणितीय रूप में व्यक्त किया गया है। इस प्रकार एलन विचलन (एडीईवी), जिसे सिग्मा-ताऊ के नाम से भी जाना जाता है, अतः एलन भिन्नता का वर्गमूल होता है।

सामान्यतः एम-प्रतिरूप भिन्नता एम-प्रतिरूप का उपयोग करके आवृत्ति स्थिरता का उपाय होता है, जिसे माप और अवलोकन समय के मध्य समय टी . एम-प्रतिरूप विचरण के रूप में व्यक्त किया गया है।

एलन विचरण का उद्देश्य ध्वनि प्रक्रियाओं के कारण स्थिरता का अनुमान लगाना होता है, न कि व्यवस्थित त्रुटियों या कमियों जैसे कि आवृत्ति बहाव या तापमान प्रभाव। इस प्रकार एलन विचरण और एलन विचलन आवृत्ति स्थिरता का वर्णन करते हैं। अतः नीचे दिए गए खंड मान की व्याख्या भी देख सकते है।

एलन प्रसरण के विभिन्न अनुकूलन या परिवर्तन भी होते हैं, विशेष रूप से संशोधित एलन प्रसरण एमएवीएआर या एमवीएआर, कुल प्रसरण और हैडमार्ड विचरण, समय विचलन (टीडीईवी) या समय भिन्नता (टीवीएआर) जैसे समय-स्थिरता संस्करण भी उपस्तिथ होता हैं। इस प्रकार एलन विचरण और इसके रूपांतर समयनिर्धारक की सीमा से बाहर उपयोगी सिद्ध हुए हैं और जब भी ध्वनि प्रक्रिया बिना शर्त स्थिर नहीं होती है, तब उपयोग करने के लिए उत्तम सांख्यिकीय उपकरणों का समूह होता है, इस प्रकार व्युत्पन्न उपस्तिथ होता है।

सामान्य एम-प्रतिरूप भिन्नता महत्वपूर्ण बनी हुई है, जिससे कि यह मापन में मृत समय की अनुमति देता है और पूर्वाग्रह कार्य एलन भिन्नता मूल्यों में रूपांतरण की अनुमति देते हैं। फिर भी, अधिकांश अनुप्रयोगों के लिए 2-प्रतिरूप या एलन विचरण की विशेष स्थिति सबसे बड़ी रुचि होती है।

घड़ी के एलन विचलन का उदाहरण प्लॉट। बहुत कम अवलोकन समय τ पर, ध्वनि के कारण एलन विचलन अधिक होता है। अधिक τ पर, यह घट जाती है जिससे कि ध्वनि औसत हो जाता है। अभी भी लंबे τ पर, एलन विचलन फिर से बढ़ने लगता है, यह सुझाव देता है कि तापमान परिवर्तन, घटकों की उम्र बढ़ने, या ऐसे अन्य कारकों के कारण घड़ी की आवृत्ति धीरे-धीरे बढ़ रही है। त्रुटि पट्टियाँ τ के साथ बढ़ती हैं जिससे कि बड़े τ के लिए बहुत सारे डेटा बिंदु प्राप्त करने में समय लगता है।

पृष्ठभूमि

क्रिस्टल ऑसीलेटर और परमाणु घड़ियों की स्थिरता की जांच करते समय, यह पाया गया है कि उनके समीप केवल सफेद ध्वनि से युक्त चरण ध्वनि नहीं था, बल्कि झिलमिलाहट ध्वनि भी थी। यह ध्वनि रूप मानक विचलन जैसे पारंपरिक सांख्यिकीय उपकरणों के लिए चुनौती बन जाते हैं, जिससे कि अनुमानक अभिसरण नहीं करता है। इस प्रकार ध्वनि को भिन्न-भिन्न कहा जाता है। अतः स्थिरता के विश्लेषण के प्रारंभी प्रयासों में सैद्धांतिक विश्लेषण और व्यावहारिक माप दोनों सम्मिलित होते थे।[1][2]

इस प्रकार की ध्वनि होने का महत्वपूर्ण पक्ष परिणाम यह था कि चूंकि माप की विभिन्न विधि एक-दूसरे से सहमत नहीं थी, इसलिए माप की पुनरावृत्ति का मुख्य पहलू प्राप्त नहीं किया जा सकता है। यह स्रोतों की तुलना करने और आपूर्तिकर्ताओं से आवश्यकता के लिए सार्थक विनिर्देश बनाने की संभावना को सीमित करता है। इस प्रकार अनिवार्य रूप से सभी प्रकार के वैज्ञानिक और व्यावसायिक उपयोग तब समर्पित मापों तक सीमित थे, जिससे उम्मीद है कि उस एप्लिकेशन की आवश्यकता को प्राप्त कर सकते है।

इन समस्याओं का समाधान करने के लिए, डेविड एलन ने एम-प्रतिरूप भिन्नता और (अप्रत्यक्ष रूप से) दो-प्रतिरूप भिन्नता प्रस्तुत किये थे।[3] जबकि दो-प्रतिरूप विचरण ने सभी प्रकार के ध्वनि को पूर्ण प्रकार से भिन्न करने की अनुमति नहीं दी थी, इसने दो या दो से अधिक ऑसिलेटर्स के मध्य चरण या आवृत्ति माप की समय-श्रृंखला के लिए अनेक ध्वनि-रूपों को सार्थक रूप से भिन्न करने का साधन प्रदान किया था। एलन ने सामान्य 2-प्रतिरूप भिन्नता के माध्यम से किसी भी एम-प्रतिरूप भिन्नता को किसी भी एन-प्रतिरूप भिन्नता के मध्य परिवर्तित करने के लिए विधि प्रदान की थी। इस प्रकार सभी एम-प्रतिरूप भिन्नता तुलनीय हो गई थी, अतः रूपांतरण तंत्र ने यह भी सिद्ध किया कि एम-प्रतिरूप विचरण बड़े एम के लिए अभिसरण नहीं करता है। इस प्रकार उन्हें कम उपयोगी बना देता है। सामान्यतः आईईईई ने बाद में 2-प्रतिरूप भिन्नता को पसंदीदा उपाय के रूप में पहचाना था।[4]

प्रारंभिक चिंता समय से संबंधित होती थी और आवृत्ति-माप उपकरण जिनके माप के मध्य मृत समय था। इस प्रकार माप की ऐसी श्रृंखला ने संकेत का निरंतर अवलोकन नहीं किया था और इस प्रकार माप में व्यवस्थित पूर्वाग्रह प्रस्तुत किया गया था। इन पूर्वाग्रहों का अनुमान लगाने में अधिक सावधानी बरती गई थी। इस प्रकार शून्य-मृत-समय काउंटरों की प्रारंभ ने आवश्यकता को दूर कर दिया था, किन्तु पूर्वाग्रह-विश्लेषण उपकरण उपयोगी सिद्ध हुए हैं।

चिंता का अन्य प्रारंभिक पक्ष इस बात से संबंधित था कि माप उपकरण की बैंडविड्थ (सिग्नल प्रोसेसिंग) माप को कैसे प्रभावित करती है, जैसे कि इसे नोट करने की आवश्यकता होती है। यह बाद में पाया गया था कि एल्गोरिदमिक रूप से अवलोकन को परिवर्तित करके , केवल कम मूल्य प्रभावित होते है, जबकि उच्च मूल्य अप्रभावित रहते है। इसका परिवर्तन करके इसे पूर्णांक एकाधिक होने का माप समय आधार का देकर किया जाता है।

डीबी लेसन द्वारा क्रिस्टल ऑसिलेटर्स के भौतिकी का विश्लेषण किया गया था[2] और इस परिणाम को अब लीसन के समीकरण के रूप में संदर्भित किया जाता है। इस प्रकार ऑसिलेटर्स में फीडबैक एम्पलीफायर की सफेद ध्वनि और झिलमिलाहट ध्वनि बना देती है और क्रिस्टल शक्ति-सिद्धांत ध्वनि बन जाती है। इस प्रकार सफेद आवृत्ति ध्वनि और झिलमिलाहट आवृत्ति ध्वनि क्रमशः इन ध्वनि रूपों का प्रभाव होती है कि समय-त्रुटि के प्रतिरूप संसाधित करते समय मानक भिन्नता अनुमानक अभिसरण नहीं करता है। जब ऑसिलेटर स्थिरता पर कार्य प्रारंभ होता है, तब फीडबैक ऑसिलेटर्स की यह यांत्रिकी अज्ञात होती थी, किन्तु लेसन द्वारा उसी समय प्रस्तुत किया गया था जब सांख्यिकीय उपकरणों का समूह डेविड डब्ल्यू एलन द्वारा उपलब्ध कराया गया था। अतः लीसन प्रभाव पर अधिक विस्तृत प्रस्तुति के लिए, आधुनिक चरण-ध्वनि साहित्य देख सकते है।[5]

मूल्य की व्याख्या

एलन विचरण को प्रतिरूप अवधि के समय प्रतिरूप की गई आवृत्ति विचलन के लगातार रीडिंग के मध्य अंतर के वर्गों के समय के औसत के आधे के रूप में परिभाषित किया गया है। चूँकि एलन विचरण प्रतिरूपों के मध्य उपयोग की जाने वाली समयावधि पर निर्भर करता है, अतः यह प्रतिरूप अवधि का कार्य होता है, जिसे सामान्यतः τ के रूप में दर्शाया जाता है। इसी प्रकार वितरण को मापा जाता है और इसे संख्या के अतिरिक्त ग्राफ के रूप में प्रदर्शित किया जाता है। इस प्रकार कम एलन विचरण माप अवधि के समय अच्छी स्थिरता वाली घड़ी की विशेषता होती है।

एलन विचलन व्यापक रूप से भूखंडों के लिए उपयोग किया जाता है (पारंपरिक रूप से लॉग-लॉग प्रारूप में) और संख्याओं की प्रस्तुति में यह पसंद किया जाता है, जिससे कि यह सापेक्ष आयाम स्थिरता देता है, जिसे त्रुटियों के अन्य स्रोतों के साथ तुलना में सरलता होती है।

सामान्यतः 1.3 का एलन विचलन×10−9 अवलोकन के समय 1 s (अर्थात् τ = 1 s) की व्याख्या की जाती है, जिससे कि 1.3×10−9 के सापेक्ष मूल माध्य वर्ग (आरएमएस) मान के साथ 1 सेकंड के अतिरिक्त दो प्रेक्षणों के मध्य आवृत्ति में अस्थिरता है। इस प्रकार 10 मेगाहर्ट्ज घड़ी के लिए, यह 13 मेगाहर्ट्ज आरएमएस मूवमेंट के समान्तर होता है। यदि ऑसिलेटर की चरण स्थिरता की आवश्यकता होती है, तब समय विचलन रूपांतर से परामर्श किया जाता है और उसका उपयोग किया जाता है।

कोई एलन भिन्नता और अन्य समय-क्षेत्र भिन्नताओं को समय (चरण) और आवृत्ति स्थिरता के आवृत्ति-कार्यक्षेत्र उपायों में परिवर्तित कर सकता है।[6]

परिभाषाएँ

एम-प्रतिरूप विचरण

- प्रतिरूप प्रसरण परिभाषित किया गया है[3] (यहाँ आधुनिक अंकन रूप में) के रूप में,

जहाँ घड़ी की रीडिंग (सेकंड में) समय पर मापी जाती है या औसत भिन्नात्मक आवृत्ति समय श्रृंखला के साथ,

जहाँ विचरण में प्रयुक्त आवृत्ति प्रतिरूपों की संख्या होती है, प्रत्येक आवृत्ति प्रतिरूप के मध्य का समय होता है और प्रत्येक आवृत्ति अनुमान की समय अवधि होती है।

सामान्यतः प्रमुख प्रकार यह है -प्रतिरूप रूपांतर मॉडल में समय से भिन्न हो देकर मृत-समय सम्मिलित किया जा सकता है।

इस सूत्र को देखने का वैकल्पिक (और समतुल्य) विधि जो विशिष्ट प्रतिरूप प्रसरण सूत्र से संबंध को अधिक स्पष्ट बनाता है, अतः द्वारा से गुणा करके प्राप्त किया जाता है और कर्ली ब्रेसिज़ के अंदर 2 शब्दों को विभाजित करके :

अब गुणांक को बेसेल के सुधार के रूप में व्याख्या किया जा सकता है जो कि के रूप में घुंघराले ब्रेसिज़ के अंदर दिखाई देता है।

एलन विचरण

एलन संस्करण के रूप में परिभाषित किया गया है।

जहाँ उम्मीद ऑपरेटर को दर्शाता है। इसे सुविधाजनक रूप में व्यक्त किया जा सकता है।

जहाँ अवलोकन अवधि होती है, जो अवलोकन समय पर nवां भिन्नात्मक आवृत्ति औसत होता है।

प्रतिरूप उनके मध्य बिना किसी मृत-समय के लिए जाते हैं, जो अनुमति देकर प्राप्त किया जाता है।

एलन विचलन

मानक विचलन और विचरण के प्रकार, एलन विचलन को एलन विचरण के वर्गमूल के रूप में परिभाषित किया गया है।

सहायक परिभाषाएँ

ऑसिलेटर मॉडल

विश्लेषण किया जा रहा ऑसिलेटर के मूल मॉडल का पालन करने के लिए माना जाता है।

माना जाता है कि ऑसिलेटर की नाममात्र आवृत्ति होती है, जिसे चक्र प्रति सेकंड (SI इकाई: हेटर्स) में दिया गया है। इस प्रकार नाममात्र कोणीय आवृत्ति (रेडियन प्रति सेकंड के) द्वारा दिया जाता है।

कुल चरण को पूर्ण प्रकार से चक्रीय घटक में भिन्न किया जा सकता है, जिसे उतार-चढ़ाव वाले घटक के साथ व्यक्त किया जाता है।

समय त्रुटि

समय-त्रुटि फलन x(t) अपेक्षित नाममात्र समय और वास्तविक सामान्य समय के मध्य का अंतर होता है।

मापे गए मानों के लिए समय-त्रुटि श्रृंखला TE(t) को संदर्भ समय फलन T से परिभाषित किया गया ref(t) के रूप में होता है।

आवृत्ति फलन

आवृत्ति फलन समय के साथ आवृत्ति होती है, इसे इसके रूप में परिभाषित किया गया है।

आंशिक आवृत्ति

भिन्नात्मक आवृत्ति y(t) आवृत्ति के मध्य सामान्यीकृत अंतर होता है और नाममात्र आवृत्ति होती है।

औसत आंशिक आवृत्ति

औसत आंशिक आवृत्ति के रूप में परिभाषित किया गया है।

जहां अवलोकन समय τ पर औसत y(t) लिया जाता है, अतः समय t पर भिन्नात्मक-आवृत्ति त्रुटि होती है और τ अवलोकन समय होता है।

चूँकि y(t) x(t) का अवकलज होता है, हम बिना व्यापकता विलुप्त किये इसे पुनः लिख सकते हैं।

अनुमानक

यह परिभाषा सांख्यिकीय अपेक्षित मूल्य पर आधारित होती है, जो अनंत समय में एकीकृत होती है। वास्तविक दुनिया की स्थिति ऐसी समय-श्रृंखला की अनुमति नहीं देती है, जिस स्थिति में इसके स्थान पर सांख्यिकीय अनुमानक का उपयोग करने की आवश्यकता होती है। इस प्रकार अनेक भिन्न-भिन्न अनुमानकों को प्रस्तुत किया जाता है और चर्चा की जाती है।

अभिसमय

{{bulleted list |भिन्नात्मक-आवृत्ति श्रृंखला में आवृत्ति प्रतिरूपों की संख्या को M द्वारा निरूपित किया जाता है। | समय-त्रुटि श्रृंखला में समय त्रुटि प्रतिरूपों की संख्या को N द्वारा निरूपित किया जाता है।

इस प्रकार भिन्नात्मक-आवृत्ति प्रतिरूपों की संख्या और समय-त्रुटि श्रृंखला के मध्य संबंध निश्चित होता है।

|समय त्रुटि प्रतिरूप श्रृंखला के लिए, xi निरंतर समय फलन x के i'-वें प्रतिरूप को दर्शाता है, जिसे (t) द्वारा दिया गया है।

जहां 'टी' माप के मध्य का समय है। एलन विचरण के लिए, उपयोग किए जा रहे समय में T अवलोकन समय τ पर समूह होता है। समय-त्रुटी प्रतिरूप सीरीज़ चलो N प्रतिरूप की संख्या को दर्शाता है (x0...x N−1) श्रृंखला में पारंपरिक परंपरा 'एन' के माध्यम से सारणी 1 का उपयोग करती है।|औसत भिन्नात्मक आवृत्ति प्रतिरूप श्रृंखला के लिए, औसत निरंतर भिन्नात्मक-आवृत्ति फलन y के iवें प्रतिरूप को दर्शाता है। इसे (t) द्वारा दिया गया है।

जो देता है।

एलन प्रसरण के लिए T के τ होने की धारणा बन जाती है।

औसत भिन्नात्मक आवृत्ति प्रतिरूप श्रृंखला M प्रतिरूपों की संख्या को दर्शाती है या समय श्रृंखला के लिए,

चूँकि, यह सूत्र केवल τ = τ0 के लिए गणना प्रदान करते हैं। इस स्थिति में τ के भिन्न मान की गणना करने के लिए, नई समय-श्रृंखला प्रदान करने की आवश्यकता होती है।

गैर-अतिव्यापी चर τ अनुमानक

समय-श्रृंखला लेना और पिछले n − 1 प्रतिरूप को छोड़ना, τ0 के साथ नई (छोटी) समय-श्रृंखला उत्पन्न होती है। इस प्रकार आसन्न प्रतिरूपों के मध्य के समय के रूप में, जिसके लिए एलन विचरण की गणना साधारण अनुमानकों के साथ की जा सकती है। इन्हें नए चर n को प्रस्तुत करने के लिए संशोधित किया जा सकता है, जिससे कि कोई नई समय-श्रृंखला उत्पन्न नही होती है, बल्कि n के विभिन्न मूल्यों के लिए मूल समय श्रृंखला का पुन: उपयोग किया जा सकता है। इस प्रकार अनुमानक बन जाते हैं।

साथ ,

और समय श्रृंखला के लिए,

साथ .

इन अनुमानकों में महत्वपूर्ण कमी होती है कि वह प्रतिरूप डेटा की महत्वपूर्ण मात्रा छोड़ देते है, जिससे कि उपलब्ध प्रतिरूपों में से केवल 1/n का उपयोग किया जा रहा है।

अतिव्यापी चर τ अनुमानक

जे जे स्नाइडर द्वारा प्रस्तुत विधि[7] उत्तम उपकरण प्रदान किया जाता है, जिससे कि माप मूल श्रृंखला से बाहर एन ओवरलैप श्रृंखला में ओवरलैप किए गए थे। इस प्रकार ओवरलैपिंग एलन प्रसरण अनुमानक हॉवे, एलन और बार्न्स द्वारा प्रस्तुत किया गया था।[8] यह प्रसंस्करण से पहले एन प्रतिरूप के ब्लॉक में औसत समय या सामान्यीकृत आवृत्ति प्रतिरूप के समान्तर दिखाया जा सकता है। जिससे कि परिणामी भविष्यवक्ता बन जाता है।

या समय श्रृंखला के लिए,

अतिव्यापी अनुमानकों का गैर-अतिव्यापी अनुमानकों की तुलना में कहीं उत्तम प्रदर्शन होता है, जिससे कि n बढ़ता है और समय-श्रृंखला मध्यम लंबाई की होती है। इस प्रकार अतिव्यापी अनुमानकों को आईईईई में पसंदीदा एलन प्रसरण अनुमानकों के रूप में स्वीकार किया गया है,[4] यह टी[9] अतः[10] तुलनीय माप के लिए मानक जैसे दूरसंचार योग्यता के लिए आवश्यक होती है।

संशोधित एलन विचरण

पारंपरिक एलन प्रसरण अनुमानकों का उपयोग करके झिलमिलाहट चरण समायोजन से सफेद चरण समायोजन को भिन्न करने में असमर्थता को संबोधित करने के लिए, एल्गोरिथम फ़िल्टरिंग बैंडविड्थ को n से कम कर देता है। यह फ़िल्टरिंग परिभाषा और अनुमानकों के लिए संशोधन प्रदान करता है और अब इसे संशोधित एलन भिन्नता नामक भिन्नता के भिन्न वर्ग के रूप में पहचाना जाता है। इस प्रकार संशोधित एलन भिन्नता माप आवृत्ति स्थिरता की माप होती है, जैसा कि एलन भिन्नता होती है।

समय स्थिरता अनुमानक

समय स्थिरता (σx) सांख्यिकीय माप, जिसे अधिकांशतः समय विचलन (टीडीईवी) कहा जाता है, इसकी गणना संशोधित एलन विचलन (एमडीईवी) से की जा सकती है। इस प्रकार टीडीईवी मूल एलन विचलन के अतिरिक्त एमडीईवी पर आधारित होता है, जिससे कि एमडीईवी सफेद और झिलमिलाहट चरण समायोजन (पीएम) के मध्य भेदभाव कर सकता है। निम्नलिखित संशोधित एलन भिन्नता के आधार पर समय भिन्नता अनुमान है।

और इसी प्रकार समय विचलन के लिए संशोधित एलन विचलन के लिए,

सामान्यतः टीडीईवी को सामान्यीकृत किया जाता है जिससे कि यह समय स्थिर τ = τ0 के लिए सफेद PM के मौलिक विचलन के समान्तर होता है। इस प्रकार सांख्यिकीय उपायों के मध्य सामान्यीकरण प्रतिरूप के कारक को समझने के लिए, निम्नलिखित प्रासंगिक सांख्यिकीय नियम होते है। अतः स्वतंत्र यादृच्छिक चर X और Y के लिए, योग या अंतर (z = x - y) का विचरण (σz2) उनके योग का वर्ग होता है प्रसरण (σz2 = σx2 + σy2) यादृच्छिक चर के दो स्वतंत्र प्रतिरूप के योग या अंतर (y = x2τxτ) का प्रसरण यादृच्छिक चर (σy2 = 2σx2) के विचरण का दोगुना है। MDEV स्वतंत्र चरण माप (x) का दूसरा अंतर है जिसका विचरण (σx2). चूंकि गणना दोहरा अंतर है, जिसके लिए तीन स्वतंत्र चरण माप (x2τ -2xτ + x), संशोधित एलन विचरण (एमवीएआर) चरण माप के प्रसरण का तीन गुना है।

अन्य अनुमानक

आगे की घटनाओं ने समान स्थिरता माप, आवृत्ति के विचरण / विचलन के लिए उत्तम अनुमान विधियों का उत्पादन किया है, किन्तु इन्हें भिन्न-भिन्न नामों से जाना जाता है जैसे कि हैडमार्ड विचरण, संशोधित हैडमार्ड विचरण, कुल विचरण, संशोधित कुल विचरण और थियो विचरण। ये उत्तम आत्मविश्वास सीमा या रैखिक आवृत्ति बहाव को संभालने की क्षमता के लिए आँकड़ों के उत्तम उपयोग में खुद को भिन्न करते हैं।

विश्वास अंतराल और स्वतंत्रता के समकक्ष डिग्री

सांख्यिकीय अनुमानक प्रयुक्त प्रतिरूप श्रृंखला पर अनुमानित मूल्य की गणना करेंगे। अनुमान सही मूल्य से विचलित हो सकते हैं और मूल्यों की श्रेणी जिसमें कुछ संभावना के लिए सही मूल्य सम्मिलित होगा, विश्वास अंतराल के रूप में जाना जाता है। विश्वास अंतराल प्रतिरूप श्रृंखला में टिप्पणियों की संख्या, प्रमुख ध्वनि प्रकार और उपयोग किए जा रहे अनुमानक पर निर्भर करता है। चौड़ाई सांख्यिकीय निश्चितता पर भी निर्भर करती है जिसके लिए कॉन्फिडेंस इंटरवल मान सीमित सीमा बनाता है, इस प्रकार सांख्यिकीय निश्चितता है कि सही मूल्य मूल्यों की उस सीमा के भीतर है। चर-τ अनुमानकों के लिए, τ0 एकाधिक n भी चर है।

कॉन्फिडेंस इंटरवल

स्केल्ड ची-स्क्वायर वितरण का उपयोग करके ची-स्क्वायर वितरण का उपयोग करके विश्वास अंतराल स्थापित किया जा सकता है:[4][8]

कहाँ एस2 हमारे अनुमान, σ का प्रतिरूप प्रसरण है2 वास्तविक विचरण मान है, df अनुमानक के लिए स्वतंत्रता की कोटि है, और χ2 निश्चित प्रायिकता के लिए स्वतंत्रता की कोटि है। 90% प्रायिकता के लिए, प्रायिकता वक्र पर 5% से 95% की सीमा को कवर करते हुए, असमानता का उपयोग करके ऊपरी और निचली सीमाएँ पाई जा सकती हैं

जो सही विचरण के लिए पुनर्व्यवस्था के पश्चात् बन जाता है

स्वतंत्रता की प्रभावी डिग्री

स्वतंत्रता की डिग्री (सांख्यिकी) अनुमान में योगदान करने में सक्षम मुक्त चर की संख्या का प्रतिनिधित्व करती है। अनुमानक और ध्वनि के प्रकार के आधार पर, स्वतंत्रता की प्रभावी डिग्री भिन्न होती है। एन और एन के आधार पर अनुमानक सूत्र अनुभवजन्य रूप से पाए गए हैं:[8]:{| class="wikitable"

|+ Allan variance degrees of freedom

|-

!Noise type

!degrees of freedom

|-

|white phase modulation (डब्लूपीएम)

|

|-

|flicker phase modulation (एफपीएम)

|

|-

|white frequency modulation (WFM)

|

|-

|flicker frequency modulation (FFM)

|

|-

|random-walk frequency modulation (RWFM)

|

|}

विद्युत-नियम ध्वनि

एलन विचरण विभिन्न विद्युत-नियम ध्वनि प्रकारों का भिन्न-भिन्न व्यवहार करेगा, जिससे उन्हें सरली से पहचाना जा सकेगा और उनकी ताकत का अनुमान लगाया जा सकेगा। परंपरा के रूप में, मापन प्रणाली की चौड़ाई (उच्च कोना आवृत्ति) को f निरूपित किया जाता हैH.

Allan variance power-law response
Power-law noise type Phase noise slope Frequency noise slope Power coefficient Phase noise
Allan variance
Allan deviation
white phase modulation (डब्लूपीएम)
flicker phase modulation (एफपीएम)
white frequency modulation (WFM)
flicker frequency modulation (FFM)
random walk frequency modulation (RWFM)

जैसा में पाया गया[11][12] और आधुनिक रूपों में।[13][14]

एलन विचरण डब्लूपीएम और एफपीएम के मध्य अंतर करने में असमर्थ है, किन्तु अन्य पावर-लॉ ध्वनि प्रकारों को हल करने में सक्षम है। डब्लूपीएम और एफपीएम में अंतर करने के लिए, संशोधित एलन प्रसरण को नियोजित करने की आवश्यकता है।

उपरोक्त सूत्र मानते हैं

और इस प्रकार अवलोकन समय की बैंडविड्थ उपकरण बैंडविड्थ से बहुत कम है। जब यह स्थिति पूरी नहीं होती है, तो ध्वनि के सभी रूप उपकरण की बैंडविड्थ पर निर्भर करते हैं।

α-μ मानचित्रण

प्रपत्र के चरण मॉडुलन का विस्तृत मानचित्रण

कहाँ

या प्रपत्र की आवृत्ति मॉडुलन

फार्म के एलन संस्करण में

α और μ के मध्य मानचित्रण प्रदान करके अधिक सरल किया जा सकता है। α और K के मध्य मानचित्रणα सुविधा के लिए भी प्रस्तुत है:[4]

Allan variance αμ mapping
α β μ Kα
−2 −4 1
−1 −3 0
0 −2 −1
1 −1 −2
2 0 −2

चरण ध्वनि से सामान्य रूपांतरण

वर्णक्रमीय चरण ध्वनि के साथ संकेत इकाइयों रेड के साथ2/Hz को एलन प्रसरण में किसके द्वारा परिवर्तित किया जा सकता है[14]

रैखिक प्रतिक्रिया

जबकि एलन विचरण का उपयोग ध्वनि के रूपों को भिन्न करने के लिए किया जाता है, यह समय के लिए कुछ किन्तु सभी रैखिक प्रतिक्रियाओं पर निर्भर नहीं करेगा। वे तालिका में दिए गए हैं:

Allan variance linear response
Linear effect time response frequency response Allan variance Allan deviation
phase offset
frequency offset
linear drift

इस प्रकार, रैखिक बहाव आउटपुट परिणाम में योगदान देगा। वास्तविक प्रणाली को मापते समय, रैखिक बहाव या अन्य बहाव तंत्र को अनुमानित करने और एलन भिन्नता की गणना करने से पहले समय-श्रृंखला से निकालने की आवश्यकता हो सकती है।[13]

समय और आवृत्ति फ़िल्टर गुण

एलन विचरण और दोस्तों के गुणों का विश्लेषण करने में, सामान्यीकृत आवृत्ति पर फ़िल्टर गुणों पर विचार करना उपयोगी सिद्ध हुआ है। के लिए एलन प्रसरण की परिभाषा से प्रारंभ करें

कहाँ

की समय श्रृंखला को परिवर्तित करना फूरियर-रूपांतरित संस्करण के साथ एलन विचरण को आवृत्ति कार्यक्षेत्र में व्यक्त किया जा सकता है

इस प्रकार एलन विचरण के लिए स्थानांतरण कार्य है

पूर्वाग्रह कार्य

एम-प्रतिरूप भिन्नता, और परिभाषित विशेष स्थिति एलन भिन्नता, प्रतिरूप एम की विभिन्न संख्या और टी और τ के मध्य भिन्न संबंध के आधार पर व्यवस्थित पूर्वाग्रह का अनुभव करेगा। इन पूर्वाग्रहों को दूर करने के लिए, पूर्वाग्रह-कार्य B1 और बी2 परिभाषित किया गया है[15] और विभिन्न एम और टी मूल्यों के मध्य रूपांतरण की अनुमति देता है।

ये पूर्वाग्रह कार्य M प्रतिरूपों को Mτ से जोड़ने के परिणामस्वरूप होने वाले पूर्वाग्रह को संभालने के लिए पर्याप्त नहीं हैं0 एमटी पर अवलोकन समय0 माप के अंत के अतिरिक्त एम माप ब्लॉकों के मध्य वितरित मृत-समय के साथ। इसने बी की आवश्यकता का प्रतिपादन किया3 पक्षपात।[16]

पूर्वाग्रह कार्यों का मूल्यांकन विशेष μ मान के लिए किया जाता है, इसलिए ध्वनि पहचान का उपयोग करके पाए जाने वाले प्रमुख ध्वनि रूप के लिए α-μ मानचित्रण करने की आवश्यकता होती है। वैकल्पिक रूप से,[3][15]पूर्वाग्रह कार्यों का उपयोग करके माप से प्रमुख ध्वनि प्रपत्र का μ मान अनुमान लगाया जा सकता है।

बी1 पूर्वाग्रह फलन

बी1 पूर्वाग्रह फलन एम-प्रतिरूप भिन्नता को 2-प्रतिरूप भिन्नता (एलन भिन्नता) से संबंधित करता है, माप टी के मध्य का समय और प्रत्येक माप के लिए समय τ स्थिर रखता है। यह परिभाषित है[15]जैसा

कहाँ

पूर्वाग्रह फलन विश्लेषण के पश्चात् बन जाता है

बी2 पूर्वाग्रह फलन

बी2 पूर्वाग्रह फलन प्रतिरूप समय टी के लिए 2-प्रतिरूप भिन्नता को 2-प्रतिरूप भिन्नता (एलन भिन्नता) के साथ संबंधित करता है, प्रतिरूप एन = 2 की संख्या और अवलोकन समय τ स्थिर रखते हुए। यह परिभाषित है[15]जैसा

कहाँ

पूर्वाग्रह फलन विश्लेषण के पश्चात् बन जाता है

बी3 पूर्वाग्रह फलन

बी3 पूर्वाग्रह फलन प्रतिरूप समय एमटी के लिए 2-प्रतिरूप भिन्नता से संबंधित है0 और अवलोकन समय Mτ0 2-प्रतिरूप भिन्नता (एलन भिन्नता) के साथ और परिभाषित किया गया है[16] जैसा

कहाँ

बी3 बायस फलन गैर-अतिव्यापी और अतिव्यापी चर τ अनुमानक मानों को अवलोकन समय τ के मृत-समय माप के आधार पर समायोजित करने के लिए उपयोगी है0 और टिप्पणियों के मध्य का समय टी0 सामान्य मृत-समय अनुमानों के लिए।

पूर्वाग्रह फलन विश्लेषण के पश्चात् बन जाता है (एन = 2 स्थिति के लिए)

कहाँ


τ पूर्वाग्रह फलन

जबकि औपचारिक रूप से तैयार नहीं किया गया है, यह α-µ मानचित्रण के परिणामस्वरूप अप्रत्यक्ष रूप से अनुमान लगाया गया है। भिन्न-भिन्न τ के लिए दो एलन भिन्नता माप की तुलना करते समय, ही μ गुणांक के रूप में ही प्रभावशाली ध्वनि मानते हुए, पूर्वाग्रह को परिभाषित किया जा सकता है

पूर्वाग्रह फलन विश्लेषण के पश्चात् बन जाता है

मूल्यों के मध्य रूपांतरण

माप के सेट से दूसरे सेट में परिवर्तित करने के लिए B1, बी2 और τ पूर्वाग्रह कार्यों को इकट्ठा किया जा सकता है। सबसे पहले बी1 फलन कनवर्ट करता है (एन1, टी1,टी1) मूल्य में (2, टी1,टी1), जिसमें से बी2 फलन (2, τ1,टी1) मान, इस प्रकार τ पर एलन प्रसरण1. एलन प्रसरण माप को τ से τ बायस फलन का उपयोग करके परिवर्तित किया जा सकता है1 टी के लिए2, जिससे तब (2, टी2,टी2) बी का उपयोग करना2 और फिर अंत में बी का उपयोग करना1 में (एन2, टी2,टी2) विचरण। पूर्ण रूपान्तरण हो जाता है

कहाँ

इसी प्रकार, एम वर्गों का उपयोग करते हुए समेकित मापन के लिए, तार्किक विस्तार बन जाता है

मापन विवाद

एलन प्रसरण या एलन विचलन की गणना करने के लिए माप करते समय, अनेक विवादों के कारण माप खराब हो सकते हैं। एलन विचरण के लिए विशिष्ट प्रभाव यहां सम्मिलित हैं, जहां परिणाम पक्षपाती होंगे।

माप बैंडविड्थ सीमा

शैनन-हार्टले प्रमेय के भीतर वर्णित मापन प्रणाली में Nyquist दर पर या उससे कम बैंडविड्थ होने की उम्मीद है। जैसा कि पावर-लॉ ध्वनि फ़ार्मुलों में देखा जा सकता है, सफेद और झिलमिलाहट ध्वनि समायोजन दोनों ऊपरी कोने की आवृत्ति पर निर्भर करते हैं (इन प्रणालियों को केवल लो-पास फ़िल्टर्ड माना जाता है)। फ़्रीक्वेंसी फ़िल्टर गुण को ध्यान में रखते हुए, यह स्पष्ट रूप से देखा जा सकता है कि कम आवृत्ति वाले ध्वनि का परिणाम पर अधिक प्रभाव पड़ता है। अपेक्षाकृत सपाट चरण-समायोजन ध्वनि प्रकारों (जैसे डब्लूपीएम और एफपीएम) के लिए, फ़िल्टरिंग की प्रासंगिकता है, जबकि अधिक ढलान वाले ध्वनि प्रकारों के लिए ऊपरी आवृत्ति सीमा कम महत्व की हो जाती है, यह मानते हुए कि माप प्रणाली बैंडविड्थ व्यापक सापेक्ष है जैसा दिया गया है

जब यह धारणा पूरी नहीं होती है, प्रभावी बैंडविड्थ माप के साथ नोट किया जाना चाहिए। रुचि रखने वालों को NBS TN394 से संपर्क करना चाहिए।[11]

यदि, चूंकि, कोई प्रतिरूप समय के पूर्णांक गुणकों का उपयोग करके अनुमानक की बैंडविड्थ को समायोजित करता है , तब सिस्टम बैंडविड्थ प्रभाव को नगण्य स्तर तक कम किया जा सकता है। दूरसंचार की जरूरतों के लिए, माप की तुलनीयता सुनिश्चित करने और विक्रेताओं को भिन्न-भिन्न कार्यान्वयन करने के लिए कुछ स्वतंत्रता की अनुमति देने के लिए इस प्रकार के तरीकों की आवश्यकता होती है। आईटीयू-टी आरईसी। जी.813[17] TDEV माप के लिए।

यह सिफारिश की जा सकती है कि पहले गुणकों को नजरअंदाज किया जाना चाहिए, जैसे कि पता चला ध्वनि का अधिकांश हिस्सा माप प्रणाली बैंडविड्थ के पासबैंड के भीतर है।

हार्डवेयर बैंडविड्थ को सॉफ्टवेयर के माध्यम से कम करने के लिए एलन भिन्नता पर आगे के विकास किए गए थे। सॉफ्टवेयर बैंडविड्थ के इस विकास ने शेष ध्वनि को संबोधित करने की अनुमति दी, और विधि को अब संशोधित एलन विचरण के रूप में संदर्भित किया गया है। इस बैंडविड्थ कमी विधि को संशोधित एलन विचरण के वर्धित संस्करण के साथ भ्रमित नहीं होना चाहिए, जो स्मूथिंग फ़िल्टर बैंडविड्थ को भी बदलता है।

माप में मृत समय

समय और आवृत्ति के अनेक माप उपकरणों में आर्मिंग टाइम, टाइम-बेस टाइम, प्रोसेसिंग टाइम के चरण होते हैं और फिर आर्मिंग को फिर से ट्रिगर कर सकते हैं। आर्मिंग का समय उस समय से होता है जब आर्मिंग ट्रिगर होता है जब स्टार्ट चैनल पर स्टार्ट इवेंट होता है। समय-आधार तब सुनिश्चित करता है कि स्टॉप चैनल पर किसी ईवेंट को स्टॉप इवेंट के रूप में स्वीकार करने से पहले कम से कम समय लगता है। ईवेंट की संख्या और प्रारंभ ईवेंट और स्टॉप ईवेंट के मध्य बीता हुआ समय रिकॉर्ड किया जाता है और प्रसंस्करण समय के समय प्रस्तुत किया जाता है। जब प्रसंस्करण होता है (निवास समय के रूप में भी जाना जाता है), उपकरण सामान्यतः और माप करने में असमर्थ होता है। प्रसंस्करण होने के पश्चात्, निरंतर मोड में उपकरण आर्म सर्किट को फिर से ट्रिगर करता है। स्टॉप इवेंट और अगले स्टार्ट इवेंट के मध्य का समय डेड टाइम हो जाता है, जिसके समय सिग्नल नहीं देखा जा रहा है। इस प्रकार के मृत समय व्यवस्थित माप पूर्वाग्रहों का परिचय देते हैं, जिन्हें उचित परिणाम प्राप्त करने के लिए क्षतिपूर्ति करने की आवश्यकता होती है। ऐसी माप प्रणालियों के लिए समय टी आसन्न प्रारंभ घटनाओं (और इस प्रकार माप) के मध्य के समय को दर्शाता है, जबकि समय-आधार लंबाई को निरूपित करें, अर्थात किसी भी माप की प्रारंभ और समाप्ति घटना के मध्य की नाममात्र लंबाई।

माप पर डेड-टाइम प्रभावों का उत्पादित परिणाम पर इतना प्रभाव पड़ता है कि इसके गुणों को ठीक से निर्धारित करने के लिए क्षेत्र का बहुत अध्ययन किया गया है। जीरो-डेड-टाइम काउंटरों की प्रारंभिक ने इस विश्लेषण की आवश्यकता को समाप्त कर दिया। शून्य-डेड-टाइम काउंटर में संपत्ति है कि माप की स्टॉप इवेंट का उपयोग निम्न ईवेंट की प्रारंभ की घटना के रूप में भी किया जा रहा है। इस प्रकार के काउंटर इवेंट और टाइम टाइमस्टैम्प जोड़े की श्रृंखला बनाते हैं, प्रत्येक चैनल के लिए समय-आधार द्वारा स्थान दिया जाता है। इस प्रकार के माप समय-श्रृंखला विश्लेषण के क्रम रूपों में भी उपयोगी सिद्ध हुए हैं।

डेड टाइम के साथ किए जा रहे मापन को बायस फलन बी का उपयोग करके ठीक किया जा सकता है1, बी2 और बी3. इस प्रकार, मृत समय जैसे कि एलन भिन्नता तक पहुंच को प्रतिबंधित नहीं कर रहा है, किन्तु यह इसे और अधिक समस्याग्रस्त बना देता है। मृत समय ज्ञात होना चाहिए, जैसे कि प्रतिरूप टी के मध्य का समय स्थापित किया जा सकता है।

माप की लंबाई और प्रतिरूपों का प्रभावी उपयोग

  1. कॉन्फिडेंस इंटरवल पर प्रभाव का अध्ययन करना कि प्रतिरूप श्रृंखला की लंबाई एन है, और चर τ पैरामीटर एन कॉन्फिडेंस इंटरवल का प्रभाव बहुत बड़ा हो सकता है, जिससे कि एन के कुछ संयोजन के लिए स्वतंत्रता की #प्रभावी डिग्री छोटी हो सकती है और n प्रमुख ध्वनि रूप के लिए (उस τ के लिए)।

इसका प्रभाव यह हो सकता है कि अनुमानित मूल्य वास्तविक मूल्य से बहुत कम या बहुत अधिक हो सकता है, जिससे परिणाम के गलत निष्कर्ष निकल सकते हैं।

यह अनुशंसा की जाती है कि कॉन्फिडेंस इंटरवल को डेटा के साथ प्लॉट किया जाए, जिससे कि प्लॉट के पाठक मूल्यों की सांख्यिकीय अनिश्चितता से अवगत हो सकें।

यह अनुशंसा की जाती है कि प्रतिरूप अनुक्रम की लंबाई, अर्थात् प्रतिरूपों की संख्या N को उच्च रखा जाए जिससे कि यह सुनिश्चित किया जा सके कि विश्वास अंतराल ब्याज की τ सीमा से छोटा है।

यह अनुशंसा की जाती है कि τ श्रेणी को τ द्वारा स्वीप किया जाए0 गुणक एन ऊपरी अंत सापेक्ष एन में सीमित है, जैसे कि साजिश के पढ़ने को अत्यधिक अस्थिर अनुमानक मूल्यों से भ्रमित नहीं किया जा रहा है।

यह अनुशंसा की जाती है कि स्वतंत्रता मूल्यों की उत्तम डिग्री प्रदान करने वाले अनुमानकों का उपयोग एलन भिन्नता अनुमानकों के प्रतिस्थापन में या उन्हें पूरक के रूप में किया जाए जहां वे एलन भिन्नता अनुमानकों से उत्तम प्रदर्शन करते हैं। इनमें कुल प्रसरण और थियो प्रसरण अनुमानकों पर विचार किया जाना चाहिए।

प्रमुख ध्वनि प्रकार

बड़ी संख्या में रूपांतरण स्थिरांक, पूर्वाग्रह सुधार और विश्वास अंतराल प्रमुख ध्वनि प्रकार पर निर्भर करते हैं। उचित व्याख्या के लिए ध्वनि पहचान के माध्यम से ब्याज के विशेष τ के लिए प्रमुख ध्वनि प्रकार की पहचान की जानी चाहिए। प्रमुख ध्वनि प्रकार की पहचान करने में विफल रहने से पक्षपाती मूल्य उत्पन्न होंगे। इनमें से कुछ पूर्वाग्रह परिमाण के अनेक क्रम के हो सकते हैं, इसलिए यह बड़े महत्व का हो सकता है।

रेखीय बहाव

सिग्नल पर व्यवस्थित प्रभाव केवल आंशिक रूप से रद्द कर दिया गया है। चरण और आवृत्ति ऑफसेट रद्द कर दिया गया है, किन्तु रैखिक बहाव या बहुपद चरण घटता के अन्य उच्च-डिग्री रूपों को रद्द नहीं किया जाएगा और इस प्रकार माप सीमा बनती है। कर्व फिटिंग और व्यवस्थित ऑफसेट को हटाने को नियोजित किया जा सकता है। अधिकांशतः रैखिक बहाव को हटाना पर्याप्त हो सकता है। हैडमार्ड विचरण जैसे रेखीय-बहाव अनुमानकों का उपयोग भी नियोजित किया जा सकता है। पल-आधारित अनुमानक का उपयोग करके रैखिक बहाव हटाने को नियोजित किया जा सकता है।

माप उपकरण अनुमानक पूर्वाग्रह

पारंपरिक उपकरणों ने केवल एकल घटनाओं या घटना जोड़े का माप प्रदान किया। जे. जे. स्नाइडर द्वारा अतिव्यापी मापन के उन्नत सांख्यिकीय उपकरण का परिचय[7] पारंपरिक अंकों/समय-आधार संतुलन को तोड़ते हुए आवृत्ति रीडआउट में बहुत उत्तम रिज़ॉल्यूशन की अनुमति दी। जबकि इस प्रकार के विधि अपने इच्छित उद्देश्य के लिए उपयोगी होते हैं, एलन विचरण गणनाओं के लिए ऐसे चिकने मापों का उपयोग करने से उच्च रिज़ॉल्यूशन का झूठा आभास होता है,[18][19][20] किन्तु लंबे τ के लिए प्रभाव धीरे-धीरे हटा दिया जाता है, और माप के निचले-τ क्षेत्र में पक्षपाती मान होते हैं। यह पूर्वाग्रह जितना होना चाहिए उससे कम मूल्य प्रदान कर रहा है, इसलिए यह अति-आशावादी पूर्वाग्रह है (यह मानते हुए कि कम संख्या वही है जो कोई चाहता है) पूर्वाग्रह, माप की उपयोगिता को सुधारने के अतिरिक्त इसे कम करता है। इस प्रकार के स्मार्ट एल्गोरिदम को सामान्यतः टाइम-स्टैम्प मोड का उपयोग करके अक्षम या अन्यथा बाधित किया जा सकता है, जो उपलब्ध होने पर बहुत पसंद किया जाता है।

व्यावहारिक माप

जबकि एलन विचरण के मापन के लिए अनेक दृष्टिकोण तैयार किए जा सकते हैं, सरल उदाहरण यह बता सकता है कि माप कैसे किया जा सकता है।

नाप

एलन भिन्नता के सभी माप प्रभावी रूप से दो भिन्न-भिन्न घड़ियों की तुलना करेंगे। संदर्भ घड़ी और परीक्षण के अनुसार उपकरण (DUT) पर विचार करें, और दोनों में 10 मेगाहर्ट्ज की सामान्य नाममात्र आवृत्ति हो। संदर्भ के बढ़ते किनारे (चैनल ए) और परीक्षण के अनुसार डिवाइस के बढ़ते किनारे के मध्य के समय को मापने के लिए समय-अंतराल काउंटर का उपयोग किया जा रहा है।

समान रूप से स्थान माप प्रदान करने के लिए, संदर्भ घड़ी को माप दर बनाने के लिए विभाजित किया जाएगा, समय-अंतराल काउंटर (एआरएम इनपुट) को ट्रिगर किया जाएगा। यह दर 1 Hz हो सकती है (किसी संदर्भ घड़ी के पल्स प्रति सेकंड आउटपुट का उपयोग करके), किन्तु 10 Hz और 100 Hz जैसी अन्य दरों का भी उपयोग किया जा सकता है। जिस गति से समय-अंतराल काउंटर माप को पूर्ण कर सकता है, परिणाम का उत्पादन कर सकता है और अगली भुजा के लिए खुद को तैयार कर सकता है वह ट्रिगर आवृत्ति को सीमित करेगा।

कंप्यूटर तब देखे जा रहे समय के अंतर की श्रृंखला को रिकॉर्ड करने के लिए उपयोगी होता है।

पोस्ट-प्रोसेसिंग

रिकॉर्ड की गई समय-श्रृंखला को लिपटे हुए चरण को खोलने के लिए पोस्ट-प्रोसेसिंग की आवश्यकता होती है, जैसे कि निरंतर चरण त्रुटि प्रदान की जा रही है। यदि आवश्यक हो, तो लॉगिंग और माप की गलतियों को भी ठीक किया जाना चाहिए। ड्रिफ्ट आकलन और ड्रिफ्ट हटाने का कार्य किया जाना चाहिए, ड्रिफ्ट मैकेनिज्म को स्रोतों के लिए पहचानने और समझने की आवश्यकता है। मापन में बहाव की सीमाएँ गंभीर हो सकती हैं, इसलिए ऑसिलेटर्स को लंबे समय तक चालू रखने के लिए स्थिर होने देना आवश्यक है।

एलन विचरण की गणना तब दिए गए अनुमानकों का उपयोग करके की जा सकती है, और व्यावहारिक उद्देश्यों के लिए अतिव्यापी अनुमानक का उपयोग गैर-अतिव्यापी अनुमानक पर डेटा के उत्तम उपयोग के कारण किया जाना चाहिए। अन्य अनुमानक जैसे टोटल या थियो वैरियंस एस्टिमेटर्स का भी उपयोग किया जा सकता है यदि पूर्वाग्रह सुधार प्रयुक्त किया जाता है जैसे कि वे एलन प्रसरण-संगत परिणाम प्रदान करते हैं।

मौलिक प्लॉट बनाने के लिए, एलन विचलन (एलन विचरण का वर्गमूल) अवलोकन अंतराल τ के विरुद्ध लॉग-लॉग प्रारूप में प्लॉट किया जाता है।

उपकरण और सॉफ्टवेयर

समय-अंतराल काउंटर सामान्यतः व्यावसायिक रूप से उपलब्ध ऑफ-द-शेल्फ काउंटर है। सीमित कारकों में सिंगल-शॉट रिज़ॉल्यूशन, ट्रिगर जिटर, माप की गति और संदर्भ घड़ी की स्थिरता सम्मिलित है। कंप्यूटर संग्रह और पोस्ट-प्रोसेसिंग उपस्तिथा वाणिज्यिक या सार्वजनिक-कार्यक्षेत्र सॉफ़्टवेयर का उपयोग करके किया जा सकता है। अत्यधिक उन्नत समाधान उपस्तिथ हैं, जो बॉक्स में माप और संगणना प्रदान करेंगे।

अनुसंधान इतिहास

आवृत्ति स्थिरता के क्षेत्र का लंबे समय तक अध्ययन किया गया है। चूँकि, 1960 के दशक के समय यह पाया गया कि सुसंगत परिभाषाओं का अभाव था। नवंबर 1964 में अल्पकालिक स्थिरता पर नासा-आईईईई संगोष्ठी[21] आवृत्ति स्टेबिलिटी पर आईईईई प्रोसीडिंग्स के फरवरी 1966 के विशेष अंक के परिणामस्वरूप।

नासा-आईईईई संगोष्ठी अनेक भिन्न-भिन्न योगदानकर्ताओं के कागजात के साथ अनेक क्षेत्रों और लघु और दीर्घकालिक स्थिरता के उपयोग को साथ लाया। लेख और पैनल चर्चा आवृत्ति झिलमिलाहट ध्वनि के अस्तित्व और अल्पकालिक और दीर्घकालिक स्थिरता दोनों के लिए सामान्य परिभाषा प्राप्त करने की इच्छा पर सहमत हैं।

डेविड एलन सहित महत्वपूर्ण कागजात,[3] जेम्स ए बार्न्स,[22] एल.एस. कटलर और सी.एल. सियरल[1] और डी. बी. लेसन,[2] आवृत्ति स्टेबिलिटी पर आईईईई प्रोसीडिंग्स में दिखाई दिया और क्षेत्र को आकार देने में सहायता की।

डेविड एलन का लेख प्रारंभिक पूर्वाग्रह फलन के साथ माप के मध्य मृत-समय के विवाद से निपटने, आवृत्ति के मौलिक एम-प्रतिरूप भिन्नता का विश्लेषण करता है।[3] यद्यपि एलन का प्रारंभिक पूर्वाग्रह कार्य कोई मृत-समय नहीं मानता है, उसके सूत्रों में मृत-समय की गणना सम्मिलित है। उनका लेख एम आवृत्ति प्रतिरूप (लेख में एन कहा जाता है) और भिन्नता अनुमानक के स्थिति का विश्लेषण करता है। यह अब मानक α–µ मानचित्रण प्रदान करता है, स्पष्ट रूप से जेम्स बार्न्स के कार्य पर निर्माण करता है[22] इसी विवाद में।

2-प्रतिरूप भिन्नता स्थिति एम-प्रतिरूप भिन्नता का विशेष स्थिति है, जो औसत आवृत्ति व्युत्पन्न का उत्पादन करता है। एलन स्पष्ट रूप से आधार स्थिति के रूप में 2-प्रतिरूप भिन्नता का उपयोग करता है, जिससे कि अनैतिक रूप से चुने गए एम के लिए, मूल्यों को 2-प्रतिरूप भिन्नता के माध्यम से एम-प्रतिरूप भिन्नता में स्थानांतरित किया जा सकता है। 2-प्रतिरूप भिन्नता के लिए कोई वरीयता स्पष्ट रूप से नहीं बताई गई थी, यदि उपकरण प्रदान किए गए हों। चूंकि, इस आलेख ने अन्य एम-प्रतिरूप भिन्नताओं की तुलना करने के विधि के रूप में 2-प्रतिरूप भिन्नता का उपयोग करने की नींव रखी।

जेम्स बार्न्स ने पूर्वाग्रह कार्यों पर कार्य को महत्वपूर्ण रूप से विस्तारित किया,[15] आधुनिक बी प्रस्तुत करना1 और बी2 पक्षपात कार्य। विचित्र रूप से पर्याप्त, यह एम-प्रतिरूप भिन्नता को एलन भिन्नता के रूप में संदर्भित करता है, जबकि एलन के लेख परमाणु आवृत्ति मानकों के सांख्यिकी का जिक्र करते हुए।[3] इन आधुनिक पूर्वाग्रह कार्यों के साथ, विभिन्न एम, टी और τ मूल्यों के एम-प्रतिरूप भिन्नता उपायों के मध्य पूर्ण रूपांतरण, 2-प्रतिरूप भिन्नता के माध्यम से रूपांतरण द्वारा किया जा सकता है।

जेम्स बार्न्स और डेविड एलन ने बी के साथ पूर्वाग्रह कार्यों को आगे बढ़ाया3 फलन[16] श्रृंखलाबद्ध प्रतिरूप अनुमानक पूर्वाग्रह को संभालने के लिए। मध्य में डेड-टाइम के साथ श्रृंखलाबद्ध प्रतिरूप प्रेक्षणों के नए उपयोग को संभालने के लिए यह आवश्यक था।

1970 में, आवृत्ति और समय पर आईईईई विधिी समिति, उपकरण और मापन पर आईईईई समूह के भीतर, NBS विधि सूचना 394 के रूप में प्रकाशित क्षेत्र का सारांश प्रदान किया।[11]यह पेपर पहले अधिक शैक्षिक और व्यावहारिक पेपरों की पंक्ति में था, जिससे साथी इंजीनियरों को क्षेत्र को समझने में सहायता मिली। इस पत्र ने टी = τ के साथ 2-प्रतिरूप भिन्नता की सिफारिश की, इसे 'एलन भिन्नता' (अब उद्धरण चिह्नों के बिना) के रूप में संदर्भित किया। इस प्रकार के पैरामीट्रिजेशन की पसंद कुछ ध्वनि रूपों की अच्छी हैंडलिंग और तुलनीय माप प्राप्त करने की अनुमति देती है; यह अनिवार्य रूप से पूर्वाग्रह कार्यों बी की सहायता से कम से कम सामान्य विभाजक है1 और बी2.

जे. जे. स्नाइडर ने आवृत्ति काउंटरों के लिए प्रतिरूप आँकड़ों का उपयोग करते हुए आवृत्ति या भिन्नता अनुमान के लिए उत्तम विधि प्रस्तावित की।[7]उपलब्ध डेटासेट से स्वतंत्रता की अधिक प्रभावी डिग्री प्राप्त करने के लिए, अतिव्यापी अवलोकन अवधि का उपयोग करने की चाल है। यह प्रदान करता है n सुधार, और ओवरलैपिंग एलन भिन्नता अनुमानक में सम्मिलित किया गया था।[8]चर-τ सॉफ्टवेयर प्रोसेसिंग को भी सम्मिलित किया गया था।[8] इस विकास ने मौलिक एलन भिन्नता अनुमानकों में सुधार किया, वैसे ही संशोधित एलन भिन्नता पर कार्य के लिए प्रत्यक्ष प्रेरणा प्रदान की।

होवे, एलन और बार्न्स ने विश्वास अंतराल, स्वतंत्रता की डिग्री और स्थापित अनुमानकों का विश्लेषण प्रस्तुत किया।[8]

शैक्षिक और व्यावहारिक संसाधन

समय और आवृत्ति का क्षेत्र और एलन विचरण, एलन विचलन और दोस्तों का उपयोग ऐसा क्षेत्र है जिसमें अनेक पहलू सम्मिलित हैं, जिसके लिए अवधारणाओं की समझ और व्यावहारिक माप और पोस्ट-प्रोसेसिंग दोनों के लिए देखभाल और समझ की आवश्यकता होती है। इस प्रकार, लगभग 40 वर्षों से उपलब्ध शैक्षिक सामग्री का क्षेत्र उपलब्ध है। चूंकि ये अपने समय के अनुसंधान में विकास को प्रतिबिंबित करते हैं, वे समय के साथ भिन्न-भिन्न पहलुओं को पढ़ाने पर ध्यान केंद्रित करते हैं, इस स्थिति में उपलब्ध संसाधनों का सर्वेक्षण सही संसाधन खोजने का उपयुक्त विधि हो सकता है।

पहला सार्थक सारांश एनबीएस टेक्निकल नोट 394 कैरेक्टराइजेशन ऑफ आवृत्ति स्टेबिलिटी है।[11] यह इंस्ट्रुमेंटेशन और मापन पर आईईईई समूह की आवृत्ति और समय पर विधि समिति का उत्पाद है। यह क्षेत्र का पहला अवलोकन देता है, समस्याओं को बताता है, बुनियादी सहायक परिभाषाओं को परिभाषित करता है और एलन विचरण, पूर्वाग्रह कार्य बी में प्रवेश करता है।1 और बी2, टाइम- कार्यक्षेत्र उपायों का रूपांतरण। यह उपयोगी है, जिससे कि यह पाँच बुनियादी ध्वनि प्रकारों के लिए एलन विचरण को सारणीबद्ध करने वाले पहले संदर्भों में से है।

मौलिक संदर्भ एनबीएस मोनोग्राफ 140 है[23] 1974 से, जिसके अध्याय 8 में समय और आवृत्ति डेटा विश्लेषण के आँकड़े हैं।[24] यह एनबीएस टेक्निकल नोट 394 का विस्तारित संस्करण है और माप विधियों और मूल्यों के व्यावहारिक प्रसंस्करण में अनिवार्य रूप से जोड़ता है।

महत्वपूर्ण जोड़ संकेत स्रोतों और माप विधियों के गुण होंगे।[8] यह डेटा के प्रभावी उपयोग, विश्वास अंतराल, स्वतंत्रता की प्रभावी डिग्री को कवर करता है, इसी प्रकार अतिव्यापी एलन विचरण अनुमानक को प्रस्तुत करता है। यह उन विषयों के लिए अत्यधिक अनुशंसित पठन है।

आईईईई मानक 1139 मौलिक आवृत्ति और समय मेट्रोलोजी के लिए भौतिक मात्रा की मानक परिभाषाएं[4] मानक से परे व्यापक संदर्भ और शैक्षिक संसाधन है।

दूरसंचार की दिशा में लक्षित आधुनिक पुस्तक स्टेफानो ब्रेग्नी सिंक्रोनाइज़ेशन ऑफ़ डिजिटल टेलीकम्युनिकेशन नेटवर्क्स है।[13] यह न केवल क्षेत्र को सारांशित करता है, बल्कि उस बिंदु तक क्षेत्र में उसके अधिकांश शोधों को भी सारांशित करता है। इसका उद्देश्य मौलिक उपायों और दूरसंचार-विशिष्ट उपायों जैसे एमटीआईई दोनों को सम्मिलित करना है। दूरसंचार मानकों से संबंधित मापों को देखते समय यह सरल साथी है।

WJ रिले की आवृत्ति स्थिरता विश्लेषण की NIST विशेष प्रकाशन 1065 हैंडबुक[14] क्षेत्र का पीछा करने के इच्छुक किसी भी व्यक्ति के लिए अनुशंसित पढ़ना है। यह सन्दर्भों से समृद्ध है और उपायों, पूर्वाग्रहों और संबंधित कार्यों की विस्तृत श्रृंखला को भी सम्मिलित करता है जो आधुनिक विश्लेषक के पास उपलब्ध होनी चाहिए। आगे यह आधुनिक उपकरण के लिए आवश्यक समग्र प्रसंस्करण का वर्णन करता है।

उपयोग करता है

एलन विचरण का उपयोग विभिन्न प्रकार के त्रुटिहीन ऑसिलेटर्स में आवृत्ति स्थिरता के माप के रूप में किया जाता है, जैसे कि क्रिस्टल ऑसिलेटर्स, एटॉमिक क्लॉक और फ़्रीक्वेंसी-स्टेबलाइज़्ड लेज़र सेकंड या उससे अधिक की अवधि में। अल्पकालिक स्थिरता (सेकंड के अनुसार) सामान्यतः चरण ध्वनि के रूप में व्यक्त की जाती है। एलन विचरण का उपयोग जाइरोस्कोप की पूर्वाग्रह स्थिरता को चिह्नित करने के लिए भी किया जाता है, जिसमें फाइबर ऑप्टिक जाइरोस्कोप, गोलार्ध रेज़ोनेटर गायरोस्कोप और माइक्रोइलेक्ट्रॉनिक सिस्टम गायरोस्कोप और एक्सेलेरोमीटर सम्मिलित हैं।[25][26]

50वीं वर्षगांठ

2016 में, आईईईई-UFFC एलन रूपांतर (1966-2016) की 50वीं वर्षगांठ मनाने के लिए विशेष अंक प्रकाशित करने जा रहा है।[27] उस अंक के अतिथि संपादक राष्ट्रीय मानक और प्रौद्योगिकी संस्थान, जुडाह लेविन में डेविड के पूर्व सहयोगी होंगे, जो हाल ही में आई. आई. रबी पुरस्कार के प्राप्तकर्ता हैं।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Cutler, L. S.; Searle, C. L. (February 1966), "Some Aspects of the Theory and Measurements of Frequency Fluctuations in Frequency Standards" (PDF), Proceedings of the IEEE, 54 (2): 136–154, doi:10.1109/proc.1966.4627, archived (PDF) from the original on 2022-10-09
  2. 2.0 2.1 2.2 Leeson, D. B (February 1966), "A simple Model of Feedback Oscillator Noise Spectrum", Proceedings of the IEEE, 54 (2): 329–330, doi:10.1109/proc.1966.4682, archived from the original on 1 February 2014, retrieved 20 September 2012
  3. 3.0 3.1 3.2 3.3 3.4 3.5 Allan, D. Statistics of Atomic Frequency Standards, pages 221–230. Proceedings of the IEEE, Vol. 54, No 2, February 1966.
  4. 4.0 4.1 4.2 4.3 4.4 "Definitions of physical quantities for fundamental frequency and time metrology – Random Instabilities". IEEE STD 1139-1999. 1999. doi:10.1109/IEEESTD.1999.90575. ISBN 978-0-7381-1753-9.
  5. Rubiola, Enrico (2008), Phase Noise and Frequency Stability in Oscillators, Cambridge university press, ISBN 978-0-521-88677-2
  6. http://www.allanstime.com/Publications/DWA/Conversion_from_Allan_variance_to_Spectral_Densities.pdf. Archived 6 February 2012 at the Wayback Machine
  7. 7.0 7.1 7.2 Snyder, J. J.: An ultra-high resolution frequency meter, pages 464–469, Frequency Control Symposium #35, 1981.
  8. 8.0 8.1 8.2 8.3 8.4 8.5 8.6 D. A. Howe, D. W. Allan, J. A. Barnes: Properties of signal sources and measurement methods, pages 464–469, Frequency Control Symposium #35, 1981.
  9. ITU-T Rec. G.810: Definitions and terminology for synchronization and networks, ITU-T Rec. G.810 (08/96).
  10. ETSI EN 300 462-1-1: Definitions and terminology for synchronisation networks, ETSI EN 300 462-1-1 V1.1.1 (1998–05).
  11. 11.0 11.1 11.2 11.3 J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. Sydnor, R. F. C. Vessot, G. M. R. Winkler: Characterization of Frequency Stability, NBS Technical Note 394, 1970.
  12. J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, Jr., W. L. Smith, R. L. Sydnor, R. F. C. Vessot, G. M. R. Winkler: Characterization of Frequency Stability, IEEE Transactions on Instruments and Measurements 20, pp. 105–120, 1971.
  13. 13.0 13.1 13.2 Bregni, Stefano: Synchronisation of digital telecommunication networks, Wiley 2002, ISBN 0-471-61550-1.
  14. 14.0 14.1 14.2 NIST SP 1065: Handbook of Frequency Stability Analysis .
  15. 15.0 15.1 15.2 15.3 15.4 Barnes, J. A.: Tables of Bias Functions, B1 and B2, for Variances Based On Finite Samples of Processes with Power Law Spectral Densities, NBS Technical Note 375, 1969.
  16. 16.0 16.1 16.2 J. A. Barnes, D. W. Allan: Variances Based on Data with Dead Time Between the Measurements, NIST Technical Note 1318, 1990.
  17. ITU-T Rec. G.813: Timing characteristics of SDH equipment slave clock (SEC), ITU-T Rec. G.813 (03/2003).
  18. Rubiola, Enrico (2005). "उच्च-रिज़ॉल्यूशन काउंटरों के साथ आवृत्ति और उसके नमूना विचरण की माप पर" (PDF). Review of Scientific Instruments. 76 (5): 054703–054703–6. arXiv:physics/0411227. Bibcode:2005RScI...76e4703R. doi:10.1063/1.1898203. S2CID 119062268. Archived from the original (PDF) on 20 July 2011.
  19. Rubiola, Enrico: On the measurement of frequency and of its sample variance with high-resolution counters Archived 20 July 2011 at the Wayback Machine, Proc. Joint IEEE International Frequency Control Symposium and Precise Time and Time Interval Systems and Applications Meeting pp. 46–49, Vancouver, Canada, 29–31 August 2005.
  20. Rubiola, Enrico: High-resolution frequency counters (extended version, 53 slides) Archived 20 July 2011 at the Wayback Machine, seminar given at the FEMTO-ST Institute, at the Université Henri Poincaré, and at the Jet Propulsion Laboratory, NASA-Caltech.
  21. NASA: [1] Short-Term Frequency Stability, NASA-IEEE symposium on Short Term Frequency Stability Goddard Space Flight Center 23–24 November 1964, NASA Special Publication 80.
  22. 22.0 22.1 Barnes, J. A.: Atomic Timekeeping and the Statistics of Precision Signal Generators, IEEE Proceedings on Frequency Stability, Vol 54 No 2, pages 207–220, 1966.
  23. Blair, B. E.: Time and Frequency: Theory and Fundamentals, NBS Monograph 140, May 1974.
  24. David W. Allan, John H. Shoaf and Donald Halford: Statistics of Time and Frequency Data Analysis, NBS Monograph 140, pages 151–204, 1974.
  25. http://www.afahc.ro/ro/afases/2014/mecanica/marinov_petrov_allan.pdf[bare URL PDF]
  26. Bose, S.; Gupta, A. K.; Handel, P. (September 2017). "शू-माउंटेड मल्टी-आईएमयू जड़त्वीय पोजिशनिंग सिस्टम के शोर और शक्ति प्रदर्शन पर". 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN): 1–8. doi:10.1109/IPIN.2017.8115944. ISBN 978-1-5090-6299-7. S2CID 19055090.
  27. "IEEE UFFC | Publications | Transactions on UFFC | Proposal for an IEEE Transactions on UFFC Special Issue". Archived from the original on 3 September 2014. Retrieved 28 August 2014.


बाहरी संबंध