विसरण धारिता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
डिफ्यूजन [[ समाई ]] वह कैपेसिटेंस है जो किसी डिवाइस के दो टर्मिनलों के बीच आवेश वाहकों के परिवहन के कारण होता है, उदाहरण के लिए, [[अग्र अभिनति]] [[डायोड]] में एनोड से कैथोड तक या [[ट्रांजिस्टर]] के एमिटर से बेसफॉरवर्ड-बायस्ड [[पी-एन जंक्शन]] तक वाहक का प्रसार।<ref group="note">The "forward biased" in this context means that the diode/transistor allows the current to flow.</ref>{{Citation needed|date=May 2021}} एक [[अर्धचालक उपकरण]] में इसके माध्यम से बहने वाली धारा (उदाहरण के लिए, [[प्रसार]] द्वारा आवेश का एक सतत परिवहन) एक विशेष क्षण में उपकरण के माध्यम से पारगमन की प्रक्रिया में आवश्यक रूप से कुछ आवेश होता है। यदि लागू वोल्टेज एक अलग मूल्य में बदल जाता है और वर्तमान एक अलग मूल्य में बदल जाता है, तो नई परिस्थितियों में चार्ज की एक अलग मात्रा पारगमन में होगी। ट्रांसिटिंग चार्ज की मात्रा में परिवर्तन वोल्टेज में परिवर्तन से विभाजित होता है जिससे यह प्रसार क्षमता होती है। विशेषण प्रसार का उपयोग किया जाता है क्योंकि इस शब्द का मूल उपयोग जंक्शन डायोड के लिए था, जहां चार्ज परिवहन प्रसार तंत्र के माध्यम से होता था। फ़िक के प्रसार के नियम देखें।
डिफ्यूजन [[ समाई |समाई]] वह समाई है जो किसी उपकरण के दो टर्मिनलों के बीच आवेश वाहकों के परिवहन के कारण होता है उदाहरण के लिए [[अग्र अभिनति]] [[डायोड]] में एनोड से कैथोड तक या [[ट्रांजिस्टर]] के एमिटर से बेसफॉरवर्ड-बायस्ड [[पी-एन जंक्शन]] तक वाहक का प्रसार।<ref group="note">The "forward biased" in this context means that the diode/transistor allows the current to flow.</ref>{{Citation needed|date=May 2021}} एक [[अर्धचालक उपकरण]] में इसके माध्यम से बहने वाली धारा (उदाहरण के लिए [[प्रसार]] द्वारा आवेश का एक सतत परिवहन) एक विशेष क्षण में उपकरण के माध्यम से पारगमन की प्रक्रिया में आवश्यक रूप से कुछ आवेश होता है। यदि लागू वोल्टेज एक अलग मान में बदल जाता है और वर्तमान भी अलग मान में बदल जाता है तो नई परिस्थितियों में चार्ज की एक अलग मात्रा पारगमन में होगी। पारगमन चार्ज की मात्रा में परिवर्तन वोल्टेज में परिवर्तन से विभाजित होता है जिससे यह प्रसार क्षमता होती है। विशेषण प्रसार का उपयोग किया जाता है क्योंकि इस शब्द का मूल उपयोग जंक्शन डायोड के लिए था जहां चार्ज परिवहन प्रसार तंत्र के माध्यम से होता था। फिक के विसरण के नियम देखें।


इस धारणा को मात्रात्मक रूप से लागू करने के लिए किसी विशेष समय पर डिवाइस में वोल्टेज होने दें <math>V</math>. अब मान लें कि वोल्टेज समय के साथ धीरे-धीरे इतना बदलता है कि प्रत्येक क्षण करंट डीसी करंट के समान होता है जो उस वोल्टेज पर प्रवाहित होता है, कहते हैं <math>I=I(V)</math> (क्वासिस्टेटिक सन्निकटन)। आगे मान लीजिए कि डिवाइस को पार करने का समय 'फॉरवर्ड ट्रांजिट टाइम' है <math>{\tau}_F</math>. इस स्थितियों में इस विशेष क्षण में डिवाइस के माध्यम से ट्रांज़िट में चार्ज की मात्रा को दर्शाया गया है <math>Q</math>, द्वारा दिया गया है
इस धारणा को मात्रात्मक रूप से लागू करने के लिए किसी विशेष समय पर उपकरण में वोल्टेज होने दें <math>V</math><nowiki>. अब मान लें कि वोल्टेज समय के साथ धीरे-धीरे इतना बदलता है कि प्रत्येक क्षण करंट डीसी करंट के समान होता है जो उस वोल्टेज पर प्रवाहित होता है {\displaystyle I=I(V)} (क्वासिस्टेटिक सन्निकटन)। आगे मान लीजिए कि उपकरण को पार करने का समय 'फॉरवर्ड ट्रांजिट टाइम' है {\displaystyle {\tau}}}. इस स्थितियों में इस विशेष क्षण में उपकरण के माध्यम से पारगमन में चार्ज की मात्रा को दर्शाया गया है </nowiki><math>Q</math> द्वारा दिया गया है।


::<math>Q=I(V){\tau}_F </math>.
::<math>Q=I(V){\tau}_F </math>.


परिणाम स्वरुप , इसी प्रसार समाई:<math>C_{diff} </math>. है
नतीजतन  इसी प्रसार समाई:<math>C_{diff} </math>. है


::<math>C_{diff} =\begin{matrix}\frac{dQ}{dV}\end{matrix}=\begin{matrix}\frac{dI(V)}{dV}\end{matrix} {\tau}_F </math>.
::<math>C_{diff} =\begin{matrix}\frac{dQ}{dV}\end{matrix}=\begin{matrix}\frac{dI(V)}{dV}\end{matrix} {\tau}_F </math>.


घटना में अर्ध-स्थैतिक सन्निकटन धारण नहीं करता है, अर्थात बहुत तेज़ वोल्टेज परिवर्तन के लिए पारगमन समय से कम समय में होता है <math>{\tau}_F </math>, डिवाइस में समय-निर्भर परिवहन को नियंत्रित करने वाले समीकरणों को पारगमन में चार्ज खोजने के लिए हल किया जाना चाहिए, उदाहरण के लिए बोल्टज़मैन समीकरण। यह समस्या गैर-क्वासिस्टैटिक प्रभावों के विषय के तहत निरंतर शोध का विषय है। लियू देखें,<ref name=Liu>
<nowiki>घटना में अर्ध-स्थैतिक सन्निकटन धारण नहीं करता है अर्थात बहुत तेज़ वोल्टेज परिवर्तन के लिए पारगमन समय से कम समय में होता है {\displaystyle {\tau}}} उपकरण में समय-निर्भर परिवहन को नियंत्रित करने वाले समीकरणों को पारगमन में चार्ज खोजने के लिए हल किया जाना चाहिए उदाहरण के लिए बोल्टज़मैन समीकरण। यह समस्या गैर-क्वासिस्टैटिक प्रभावों के विषय के तहत निरंतर शोध का विषय है। लियू देखें,</nowiki><ref name=Liu>
{{cite book  
{{cite book  
|author=William Liu
|author=William Liu

Revision as of 12:36, 17 June 2023

डिफ्यूजन समाई वह समाई है जो किसी उपकरण के दो टर्मिनलों के बीच आवेश वाहकों के परिवहन के कारण होता है उदाहरण के लिए अग्र अभिनति डायोड में एनोड से कैथोड तक या ट्रांजिस्टर के एमिटर से बेसफॉरवर्ड-बायस्ड पी-एन जंक्शन तक वाहक का प्रसार।[note 1][citation needed] एक अर्धचालक उपकरण में इसके माध्यम से बहने वाली धारा (उदाहरण के लिए प्रसार द्वारा आवेश का एक सतत परिवहन) एक विशेष क्षण में उपकरण के माध्यम से पारगमन की प्रक्रिया में आवश्यक रूप से कुछ आवेश होता है। यदि लागू वोल्टेज एक अलग मान में बदल जाता है और वर्तमान भी अलग मान में बदल जाता है तो नई परिस्थितियों में चार्ज की एक अलग मात्रा पारगमन में होगी। पारगमन चार्ज की मात्रा में परिवर्तन वोल्टेज में परिवर्तन से विभाजित होता है जिससे यह प्रसार क्षमता होती है। विशेषण प्रसार का उपयोग किया जाता है क्योंकि इस शब्द का मूल उपयोग जंक्शन डायोड के लिए था जहां चार्ज परिवहन प्रसार तंत्र के माध्यम से होता था। फिक के विसरण के नियम देखें।

इस धारणा को मात्रात्मक रूप से लागू करने के लिए किसी विशेष समय पर उपकरण में वोल्टेज होने दें . अब मान लें कि वोल्टेज समय के साथ धीरे-धीरे इतना बदलता है कि प्रत्येक क्षण करंट डीसी करंट के समान होता है जो उस वोल्टेज पर प्रवाहित होता है {\displaystyle I=I(V)} (क्वासिस्टेटिक सन्निकटन)। आगे मान लीजिए कि उपकरण को पार करने का समय 'फॉरवर्ड ट्रांजिट टाइम' है {\displaystyle {\tau}}}. इस स्थितियों में इस विशेष क्षण में उपकरण के माध्यम से पारगमन में चार्ज की मात्रा को दर्शाया गया है द्वारा दिया गया है।

.

नतीजतन इसी प्रसार समाई:. है

.

घटना में अर्ध-स्थैतिक सन्निकटन धारण नहीं करता है अर्थात बहुत तेज़ वोल्टेज परिवर्तन के लिए पारगमन समय से कम समय में होता है {\displaystyle {\tau}}} उपकरण में समय-निर्भर परिवहन को नियंत्रित करने वाले समीकरणों को पारगमन में चार्ज खोजने के लिए हल किया जाना चाहिए उदाहरण के लिए बोल्टज़मैन समीकरण। यह समस्या गैर-क्वासिस्टैटिक प्रभावों के विषय के तहत निरंतर शोध का विषय है। लियू देखें,[1] और गिल्डनब्लैट एट अल।[2]


टिप्पणियाँ

  1. The "forward biased" in this context means that the diode/transistor allows the current to flow.


संदर्भ नोट्स

  1. William Liu (2001). MOSFET Models for Spice Simulation. New York: Wiley-Interscience. pp. 42–44. ISBN 0-471-39697-4.
  2. Hailing Wang, Ten-Lon Chen, and Gennady Gildenblat, Quasi-static and Nonquasi-static Compact MOSFET Models http://pspmodel.asu.edu/downloads/ted03.pdf Archived 2007-01-03 at the Wayback Machine


बाहरी संबंध