स्थैतिक समय विश्लेषण: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
{{Short description|Simulation technique in computer hardware design}} | {{Short description|Simulation technique in computer hardware design}} | ||
स्टेटिक टाइमिंग एनालिसिस (एसटीए) पूर्ण | स्टेटिक टाइमिंग एनालिसिस (एसटीए) पूर्ण परिपथ के सिमुलेशन की आवश्यकता के बिना [[ तुल्यकालिक सर्किट |तुल्यकालिक परिपथ]] के अपेक्षित समय की गणना करने का सिमुलेशन विधि है। | ||
उच्च-निष्पादन वाले [[एकीकृत परिपथ]]ों को परंपरागत रूप से उस [[घड़ी की आवृत्ति]] द्वारा चित्रित किया गया है जिस पर वे काम करते हैं। निर्दिष्ट गति पर संचालित करने के लिए | उच्च-निष्पादन वाले [[एकीकृत परिपथ]]ों को परंपरागत रूप से उस [[घड़ी की आवृत्ति]] द्वारा चित्रित किया गया है जिस पर वे काम करते हैं। निर्दिष्ट गति पर संचालित करने के लिए परिपथ की क्षमता को मापने के लिए डिजाइन प्रक्रिया के समयकई चरणों में इसकी देरी को मापने की क्षमता की आवश्यकता होती है। इसके अतिरिक्त, [[देरी की गणना]] को डिजाइन के विभिन्न चरणों, जैसे [[तर्क संश्लेषण]], लेआउट ([[प्लेसमेंट (ईडीए)]] और रूटिंग (ईडीए)) पर टाइमिंग ऑप्टिमाइज़र के आंतरिक लूप में सम्मिलित किया जाना चाहिए, और इन-प्लेस ऑप्टिमाइज़ेशन को डिज़ाइन चक्र में देर से प्रदर्शित किया जाता है। . जबकि इस तरह के समय माप सैद्धांतिक रूप से कठोर [[SPICE]] का उपयोग करके किया जा सकता है, ऐसा दृष्टिकोण व्यावहारिक होने के लिए बहुत धीमा होने के लिए उत्तरदायी है। स्टेटिक टाइमिंग विश्लेषण परिपथ टाइमिंग के तेज और यथोचित सटीक माप को सुविधाजनक बनाने में महत्वपूर्ण भूमिका निभाता है। स्पीडअप सरलीकृत टाइमिंग मॉडल के उपयोग से और ज्यादातर परिपथ में तार्किक इंटरैक्शन की अनदेखी करके आता है। यह पिछले कुछ दशकों में डिजाइन का मुख्य आधार बन गया है। | ||
स्टैटिक टाइमिंग एप्रोच के | स्टैटिक टाइमिंग एप्रोच के प्रारंभिकुआती विवरणों में से 1966 में [[कार्यक्रम मूल्यांकन और समीक्षा तकनीक|कार्यक्रम मूल्यांकन और समीक्षा विधि]] (PERT) पर आधारित था।<ref>{{cite journal |title=PERT as an aid to logic design | ||
|author1=Kirkpatrick, TI |author2=Clark, NR | |author1=Kirkpatrick, TI |author2=Clark, NR | ||
|name-list-style=amp | journal=IBM Journal of Research and Development | |name-list-style=amp | journal=IBM Journal of Research and Development | ||
Line 15: | Line 15: | ||
|publisher=IBM Corp. | |publisher=IBM Corp. | ||
|url=http://dl.acm.org/citation.cfm?id=1662478 | |url=http://dl.acm.org/citation.cfm?id=1662478 | ||
| doi=10.1147/rd.102.0135}}</ref> 1980 के दशक की | | doi=10.1147/rd.102.0135}}</ref> 1980 के दशक की प्रारंभिकुआत में अधिक आधुनिक संस्करण और एल्गोरिदम सामने आए।<ref>{{cite conference | ||
|title=Verification of timing constraints on large digital systems | |title=Verification of timing constraints on large digital systems | ||
|author=McWilliams, T.M. | |author=McWilliams, T.M. | ||
Line 41: | Line 41: | ||
== उद्देश्य == | == उद्देश्य == | ||
सिंक्रोनस | सिंक्रोनस परिपथ में, डेटा को [[ घड़ी संकेत |घड़ी संकेत]] के प्रत्येक टिक पर चरण को आगे बढ़ाते हुए [[लॉकस्टेप (कंप्यूटिंग)]] में जाना चाहिए। यह [[फ्लिप-फ्लॉप (इलेक्ट्रॉनिक्स)]] | फ्लिप-फ्लॉप या [[ कुंडी (इलेक्ट्रॉनिक) |कुंडी (इलेक्ट्रॉनिक)]] जैसे तत्वों को सिंक्रनाइज़ करके प्रयुक्त किया जाता है, जो घड़ी द्वारा ऐसा करने का निर्देश दिए जाने पर उनके इनपुट को उनके आउटपुट में कॉपी करते हैं। ऐसी प्रणाली में केवल दो प्रकार की समय त्रुटियां संभव हैं: | ||
* अधिकतम समय का उल्लंघन, जब कोई सिग्नल बहुत देर से आता है, और उस समय को याद करता है जब उसे आगे बढ़ना चाहिए। इन्हें | * अधिकतम समय का उल्लंघन, जब कोई सिग्नल बहुत देर से आता है, और उस समय को याद करता है जब उसे आगे बढ़ना चाहिए। इन्हें सामान्यतः समुच्चयअप उल्लंघन/जांच के रूप में जाना जाता है जो वास्तव में सिंक्रोनस पथों पर चक्र परिवर्तन से जुड़े अधिकतम समय के उल्लंघन का उपसमूह है। | ||
* न्यूनतम समय उल्लंघन, जब घड़ी के सक्रिय संक्रमण के तुरंत बाद इनपुट सिग्नल बदल जाता है। इन्हें | * न्यूनतम समय उल्लंघन, जब घड़ी के सक्रिय संक्रमण के तुरंत बाद इनपुट सिग्नल बदल जाता है। इन्हें सामान्यतः होल्ड उल्लंघन/चेक के रूप में जाना जाता है जो वास्तव में सिंक्रोनस पथ में न्यूनतम समय के उल्लंघन का सबसमुच्चय हैं। | ||
सिग्नल आने का समय कई कारणों से भिन्न हो सकता है। इनपुट डेटा भिन्न हो सकता है, | सिग्नल आने का समय कई कारणों से भिन्न हो सकता है। इनपुट डेटा भिन्न हो सकता है, परिपथ अलग-अलग ऑपरेशन कर सकता है, तापमान और वोल्टेज बदल सकता है, और प्रत्येक भाग के सटीक निर्माण में विनिर्माण अंतर हैं। स्थैतिक समय विश्लेषण का मुख्य लक्ष्य यह सत्यापित करना है कि इन संभावित विविधताओं के बावजूद, सभी सिग्नल न तो बहुत जल्दी और न ही बहुत देर से पहुंचेंगे, और इसलिए उचित परिपथ संचालन का आश्वासन दिया जा सकता है। | ||
चूंकि एसटीए हर रास्ते को सत्यापित करने में सक्षम है, यह अन्य समस्याओं जैसे [[खामियों]], धीमी पथ और घड़ी के झुकाव का पता लगा सकता है। | चूंकि एसटीए हर रास्ते को सत्यापित करने में सक्षम है, यह अन्य समस्याओं जैसे [[खामियों]], धीमी पथ और घड़ी के झुकाव का पता लगा सकता है। | ||
== परिभाषाएँ == | == परिभाषाएँ == | ||
* महत्वपूर्ण पथ को इनपुट और आउटपुट के बीच के पथ के रूप में अधिकतम विलंब के साथ परिभाषित किया गया है। बार नीचे सूचीबद्ध | * महत्वपूर्ण पथ को इनपुट और आउटपुट के बीच के पथ के रूप में अधिकतम विलंब के साथ परिभाषित किया गया है। बार नीचे सूचीबद्ध विधि ों में से द्वारा परिपथ समय की गणना की गई है, ट्रेसबैक विधि का उपयोग करके महत्वपूर्ण पथ को आसानी से पाया जा सकता है। | ||
* किसी सिग्नल के [[आगमन का समय]] निश्चित बिंदु पर सिग्नल के आने के लिए बीता हुआ समय है। संदर्भ, या समय 0.0, | * किसी सिग्नल के [[आगमन का समय]] निश्चित बिंदु पर सिग्नल के आने के लिए बीता हुआ समय है। संदर्भ, या समय 0.0, अधिकांशतः घड़ी संकेत के आगमन समय के रूप में लिया जाता है। आगमन समय की गणना करने के लिए, पथ में सभी घटकों की विलंबित गणना की आवश्यकता होगी। आगमन के समय, और वास्तव में समय विश्लेषण में लगभग हर समय, सामान्य रूप से मूल्यों की जोड़ी के रूप में रखा जाता है - जल्द से जल्द संभव समय जिस पर संकेत बदल सकता है, और नवीनतम। | ||
* अन्य उपयोगी अवधारणा आवश्यक समय है। यह नवीनतम समय है जब घड़ी चक्र को वांछित से अधिक लंबा किए बिना सिग्नल पहुंच सकता है। आवश्यक समय की गणना निम्नानुसार होती है: प्रत्येक प्राथमिक आउटपुट पर, वृद्धि/गिरावट के लिए आवश्यक समय | * अन्य उपयोगी अवधारणा आवश्यक समय है। यह नवीनतम समय है जब घड़ी चक्र को वांछित से अधिक लंबा किए बिना सिग्नल पहुंच सकता है। आवश्यक समय की गणना निम्नानुसार होती है: प्रत्येक प्राथमिक आउटपुट पर, वृद्धि/गिरावट के लिए आवश्यक समय परिपथ को प्रदान किए गए विनिर्देशों के अनुसार निर्धारित किए जाते हैं। अगला, बैकवर्ड टोपोलॉजिकल ट्रैवर्सल किया जाता है, प्रत्येक गेट को संसाधित करते हुए जब उसके सभी फैनआउट्स पर आवश्यक समय ज्ञात हो। | ||
* प्रत्येक कनेक्शन से जुड़ा स्लैक आवश्यक समय और आगमन समय के बीच का अंतर है। कुछ नोड पर ''पॉजिटिव स्लैक'' का | * प्रत्येक कनेक्शन से जुड़ा स्लैक आवश्यक समय और आगमन समय के बीच का अंतर है। कुछ नोड पर ''पॉजिटिव स्लैक'' का कारणहै कि परिपथ के समग्र विलंब को प्रभावित किए बिना, उस नोड पर आगमन का समय एस द्वारा बढ़ाया जा सकता है। इसके विपरीत, ''नेगेटिव स्लैक'' का तात्पर्य है कि पथ बहुत धीमा है, और यदि पूरे परिपथ को वांछित गति से काम करना है तो पथ को तेज किया जाना चाहिए (या संदर्भ संकेत में देरी)। | ||
== कोनों और एसटीए == | == कोनों और एसटीए == | ||
अधिकांशतः , डिजाइनर कई स्थितियों में अपने डिजाइन को योग्य बनाना चाहते हैं। इलेक्ट्रॉनिक परिपथ का व्यवहार अधिकांशतः इसके वातावरण में तापमान या स्थानीय वोल्टेज भिन्नता जैसे विभिन्न कारकों पर निर्भर होता है। ऐसे मामले में या तो एसटीए को एक से अधिक शर्तों के समुच्चय के लिए निष्पादित करने की आवश्यकता होती है, या एसटीए को प्रत्येक घटक के लिए संभावित देरी की सीमा के साथ काम करने के लिए तैयार रहना चाहिए, जो कि एकल मान के विपरीत है। | |||
उचित | उचित विधि ों के साथ, स्थिति भिन्नताओं के पैटर्न की विशेषता होती है और उनके चरम को रिकॉर्ड किया जाता है। प्रत्येक चरम स्थिति को [[प्रक्रिया कोनों]] के रूप में कहा जा सकता है। सेल विशेषताओं में चरम को 'प्रक्रिया, वोल्टेज और तापमान (पीवीटी) कोनों' के रूप में माना जा सकता है और शुद्ध विशेषताओं में चरम को 'निष्कर्षण कोनों' के रूप में माना जा सकता है। फिर पीवीटी निष्कर्षण कोनों के प्रत्येक संयोजन पैटर्न को 'टाइमिंग कॉर्नर' के रूप में संदर्भित किया जाता है क्योंकि यह उस बिंदु का प्रतिनिधित्व करता है जहां समय चरम पर होगा। यदि डिजाइन प्रत्येक चरम स्थिति में काम करता है, तो [[मोनोटोनिक]] व्यवहार की धारणा के अनुसार , डिजाइन सभी मध्यवर्ती बिंदुओं के लिए भी योग्य है। | ||
स्थैतिक समय विश्लेषण में कोनों के उपयोग की कई सीमाएँ हैं। यह अत्यधिक आशावादी हो सकता है, क्योंकि यह सही ट्रैकिंग मानता है: यदि एक गेट तेज़ है, तो सभी गेट्स तेज़ माने जाते हैं, या यदि एक गेट के लिए वोल्टेज कम है, तो यह अन्य सभी के लिए भी कम है। कोने अत्यधिक निराशावादी भी हो सकते हैं, सबसे खराब स्थिति वाले कोने के लिए | स्थैतिक समय विश्लेषण में कोनों के उपयोग की कई सीमाएँ हैं। यह अत्यधिक आशावादी हो सकता है, क्योंकि यह सही ट्रैकिंग मानता है: यदि एक गेट तेज़ है, तो सभी गेट्स तेज़ माने जाते हैं, या यदि एक गेट के लिए वोल्टेज कम है, तो यह अन्य सभी के लिए भी कम है। कोने अत्यधिक निराशावादी भी हो सकते हैं, सबसे खराब स्थिति वाले कोने के लिए संभवतः ही कभी हो सकता है। आईसी में, उदाहरण के लिए, इसकी अनुमत सीमा के पतले या मोटे सिरे पर एक धातु की परत का होना दुर्लभ नहीं हो सकता है, किन्तुसभी 10 परतों का एक ही सीमा पर होना बहुत दुर्लभ होगा, क्योंकि वे स्वतंत्र रूप से निर्मित होती हैं। . सांख्यिकीय एसटीए, जो वितरण के साथ देरी की स्थान लेता है, और सहसंबंध के साथ ट्रैकिंग करता है, एक ही समस्या के लिए अधिक परिष्कृत दृष्टिकोण प्रदान करता है। | ||
== एसटीए == के लिए सबसे प्रमुख | == एसटीए == के लिए सबसे प्रमुख विधि ें | ||
स्थैतिक समय विश्लेषण में, स्थैतिक शब्द इस तथ्य को इंगित करता है कि यह समय विश्लेषण इनपुट-स्वतंत्र तरीके से किया जाता है, और सभी संभावित इनपुट संयोजनों पर | स्थैतिक समय विश्लेषण में, स्थैतिक शब्द इस तथ्य को इंगित करता है कि यह समय विश्लेषण इनपुट-स्वतंत्र तरीके से किया जाता है, और सभी संभावित इनपुट संयोजनों पर परिपथ की सबसे खराब स्थिति में देरी का पता लगाने का उद्देश्य है। इस तरह के दृष्टिकोण की कम्प्यूटेशनल दक्षता (ग्राफ़ में किनारों की संख्या में रैखिक) के परिणामस्वरूप इसका व्यापक उपयोग हुआ है, भले ही इसकी कुछ सीमाएँ हों। विधि जिसे सामान्यतः कार्यक्रम मूल्यांकन और समीक्षा विधि के रूप में संदर्भित किया जाता है, एसटीए में लोकप्रिय रूप से उपयोग की जाती है। चूँकि, PERT मिथ्या नाम है, और समय विश्लेषण पर अधिकांश साहित्य में चर्चा की गई तथाकथित PERT विधि महत्वपूर्ण पथ विधि (CPM) को संदर्भित करती है जो परियोजना प्रबंधन में व्यापक रूप से उपयोग की जाती है। जबकि सीपीएम-आधारित विधियां आज उपयोग में प्रमुख हैं, ट्रैवर्सिंग परिपथ ग्राफ़ के लिए अन्य तरीके, जैसे कि गहराई-प्रथम खोज, का उपयोग विभिन्न समय विश्लेषणकर्ताओं द्वारा किया गया है। | ||
== इंटरफ़ेस समय विश्लेषण == | == इंटरफ़ेस समय विश्लेषण == | ||
चिप डिजाइनिंग में कई आम समस्याएं डिजाइन के विभिन्न घटकों के बीच इंटरफेस टाइमिंग से संबंधित हैं। ये कई कारकों के कारण उत्पन्न हो सकते हैं जिनमें अपूर्ण सिमुलेशन मॉडल, इंटरफ़ेस समय को ठीक से सत्यापित करने के लिए परीक्षण | चिप डिजाइनिंग में कई आम समस्याएं डिजाइन के विभिन्न घटकों के बीच इंटरफेस टाइमिंग से संबंधित हैं। ये कई कारकों के कारण उत्पन्न हो सकते हैं जिनमें अपूर्ण सिमुलेशन मॉडल, इंटरफ़ेस समय को ठीक से सत्यापित करने के लिए परीक्षण स्थितियों की कमी, सिंक्रनाइज़ेशन के लिए आवश्यकताएं, गलत इंटरफ़ेस विनिर्देश और 'ब्लैक बॉक्स' के रूप में आपूर्ति किए गए घटक की डिज़ाइनर समझ की कमी सम्मिलित है। इंटरफ़ेस समय का विश्लेषण करने के लिए स्पष्ट रूप से डिज़ाइन किए गए विशेष CAD उपकरण हैं, जैसे विशिष्ट CAD उपकरण हैं जो यह सत्यापित करने के लिए हैं कि इंटरफ़ेस का कार्यान्वयन कार्यात्मक विनिर्देश (मॉडल जाँच जैसी विधि ों का उपयोग करके) के अनुरूप है। | ||
== सांख्यिकीय स्थैतिक समय विश्लेषण (एसएसटीए) == | == सांख्यिकीय स्थैतिक समय विश्लेषण (एसएसटीए) == | ||
Line 74: | Line 74: | ||
* [[गतिशील समय सत्यापन]] | * [[गतिशील समय सत्यापन]] | ||
* [[इलेक्ट्रॉनिक डिजाइन स्वचालन]] | * [[इलेक्ट्रॉनिक डिजाइन स्वचालन]] | ||
* [[एकीकृत सर्किट डिजाइन]] | * [[एकीकृत सर्किट डिजाइन|एकीकृत परिपथ डिजाइन]] | ||
* [[तर्क विश्लेषक]]-एसटीए के सत्यापन के लिए | * [[तर्क विश्लेषक]]-एसटीए के सत्यापन के लिए | ||
* [[तर्क अनुकरण]] | * [[तर्क अनुकरण]] |
Revision as of 15:15, 17 June 2023
स्टेटिक टाइमिंग एनालिसिस (एसटीए) पूर्ण परिपथ के सिमुलेशन की आवश्यकता के बिना तुल्यकालिक परिपथ के अपेक्षित समय की गणना करने का सिमुलेशन विधि है।
उच्च-निष्पादन वाले एकीकृत परिपथों को परंपरागत रूप से उस घड़ी की आवृत्ति द्वारा चित्रित किया गया है जिस पर वे काम करते हैं। निर्दिष्ट गति पर संचालित करने के लिए परिपथ की क्षमता को मापने के लिए डिजाइन प्रक्रिया के समयकई चरणों में इसकी देरी को मापने की क्षमता की आवश्यकता होती है। इसके अतिरिक्त, देरी की गणना को डिजाइन के विभिन्न चरणों, जैसे तर्क संश्लेषण, लेआउट (प्लेसमेंट (ईडीए) और रूटिंग (ईडीए)) पर टाइमिंग ऑप्टिमाइज़र के आंतरिक लूप में सम्मिलित किया जाना चाहिए, और इन-प्लेस ऑप्टिमाइज़ेशन को डिज़ाइन चक्र में देर से प्रदर्शित किया जाता है। . जबकि इस तरह के समय माप सैद्धांतिक रूप से कठोर SPICE का उपयोग करके किया जा सकता है, ऐसा दृष्टिकोण व्यावहारिक होने के लिए बहुत धीमा होने के लिए उत्तरदायी है। स्टेटिक टाइमिंग विश्लेषण परिपथ टाइमिंग के तेज और यथोचित सटीक माप को सुविधाजनक बनाने में महत्वपूर्ण भूमिका निभाता है। स्पीडअप सरलीकृत टाइमिंग मॉडल के उपयोग से और ज्यादातर परिपथ में तार्किक इंटरैक्शन की अनदेखी करके आता है। यह पिछले कुछ दशकों में डिजाइन का मुख्य आधार बन गया है।
स्टैटिक टाइमिंग एप्रोच के प्रारंभिकुआती विवरणों में से 1966 में कार्यक्रम मूल्यांकन और समीक्षा विधि (PERT) पर आधारित था।[1] 1980 के दशक की प्रारंभिकुआत में अधिक आधुनिक संस्करण और एल्गोरिदम सामने आए।[2][3][4]
उद्देश्य
सिंक्रोनस परिपथ में, डेटा को घड़ी संकेत के प्रत्येक टिक पर चरण को आगे बढ़ाते हुए लॉकस्टेप (कंप्यूटिंग) में जाना चाहिए। यह फ्लिप-फ्लॉप (इलेक्ट्रॉनिक्स) | फ्लिप-फ्लॉप या कुंडी (इलेक्ट्रॉनिक) जैसे तत्वों को सिंक्रनाइज़ करके प्रयुक्त किया जाता है, जो घड़ी द्वारा ऐसा करने का निर्देश दिए जाने पर उनके इनपुट को उनके आउटपुट में कॉपी करते हैं। ऐसी प्रणाली में केवल दो प्रकार की समय त्रुटियां संभव हैं:
- अधिकतम समय का उल्लंघन, जब कोई सिग्नल बहुत देर से आता है, और उस समय को याद करता है जब उसे आगे बढ़ना चाहिए। इन्हें सामान्यतः समुच्चयअप उल्लंघन/जांच के रूप में जाना जाता है जो वास्तव में सिंक्रोनस पथों पर चक्र परिवर्तन से जुड़े अधिकतम समय के उल्लंघन का उपसमूह है।
- न्यूनतम समय उल्लंघन, जब घड़ी के सक्रिय संक्रमण के तुरंत बाद इनपुट सिग्नल बदल जाता है। इन्हें सामान्यतः होल्ड उल्लंघन/चेक के रूप में जाना जाता है जो वास्तव में सिंक्रोनस पथ में न्यूनतम समय के उल्लंघन का सबसमुच्चय हैं।
सिग्नल आने का समय कई कारणों से भिन्न हो सकता है। इनपुट डेटा भिन्न हो सकता है, परिपथ अलग-अलग ऑपरेशन कर सकता है, तापमान और वोल्टेज बदल सकता है, और प्रत्येक भाग के सटीक निर्माण में विनिर्माण अंतर हैं। स्थैतिक समय विश्लेषण का मुख्य लक्ष्य यह सत्यापित करना है कि इन संभावित विविधताओं के बावजूद, सभी सिग्नल न तो बहुत जल्दी और न ही बहुत देर से पहुंचेंगे, और इसलिए उचित परिपथ संचालन का आश्वासन दिया जा सकता है।
चूंकि एसटीए हर रास्ते को सत्यापित करने में सक्षम है, यह अन्य समस्याओं जैसे खामियों, धीमी पथ और घड़ी के झुकाव का पता लगा सकता है।
परिभाषाएँ
- महत्वपूर्ण पथ को इनपुट और आउटपुट के बीच के पथ के रूप में अधिकतम विलंब के साथ परिभाषित किया गया है। बार नीचे सूचीबद्ध विधि ों में से द्वारा परिपथ समय की गणना की गई है, ट्रेसबैक विधि का उपयोग करके महत्वपूर्ण पथ को आसानी से पाया जा सकता है।
- किसी सिग्नल के आगमन का समय निश्चित बिंदु पर सिग्नल के आने के लिए बीता हुआ समय है। संदर्भ, या समय 0.0, अधिकांशतः घड़ी संकेत के आगमन समय के रूप में लिया जाता है। आगमन समय की गणना करने के लिए, पथ में सभी घटकों की विलंबित गणना की आवश्यकता होगी। आगमन के समय, और वास्तव में समय विश्लेषण में लगभग हर समय, सामान्य रूप से मूल्यों की जोड़ी के रूप में रखा जाता है - जल्द से जल्द संभव समय जिस पर संकेत बदल सकता है, और नवीनतम।
- अन्य उपयोगी अवधारणा आवश्यक समय है। यह नवीनतम समय है जब घड़ी चक्र को वांछित से अधिक लंबा किए बिना सिग्नल पहुंच सकता है। आवश्यक समय की गणना निम्नानुसार होती है: प्रत्येक प्राथमिक आउटपुट पर, वृद्धि/गिरावट के लिए आवश्यक समय परिपथ को प्रदान किए गए विनिर्देशों के अनुसार निर्धारित किए जाते हैं। अगला, बैकवर्ड टोपोलॉजिकल ट्रैवर्सल किया जाता है, प्रत्येक गेट को संसाधित करते हुए जब उसके सभी फैनआउट्स पर आवश्यक समय ज्ञात हो।
- प्रत्येक कनेक्शन से जुड़ा स्लैक आवश्यक समय और आगमन समय के बीच का अंतर है। कुछ नोड पर पॉजिटिव स्लैक का कारणहै कि परिपथ के समग्र विलंब को प्रभावित किए बिना, उस नोड पर आगमन का समय एस द्वारा बढ़ाया जा सकता है। इसके विपरीत, नेगेटिव स्लैक का तात्पर्य है कि पथ बहुत धीमा है, और यदि पूरे परिपथ को वांछित गति से काम करना है तो पथ को तेज किया जाना चाहिए (या संदर्भ संकेत में देरी)।
कोनों और एसटीए
अधिकांशतः , डिजाइनर कई स्थितियों में अपने डिजाइन को योग्य बनाना चाहते हैं। इलेक्ट्रॉनिक परिपथ का व्यवहार अधिकांशतः इसके वातावरण में तापमान या स्थानीय वोल्टेज भिन्नता जैसे विभिन्न कारकों पर निर्भर होता है। ऐसे मामले में या तो एसटीए को एक से अधिक शर्तों के समुच्चय के लिए निष्पादित करने की आवश्यकता होती है, या एसटीए को प्रत्येक घटक के लिए संभावित देरी की सीमा के साथ काम करने के लिए तैयार रहना चाहिए, जो कि एकल मान के विपरीत है।
उचित विधि ों के साथ, स्थिति भिन्नताओं के पैटर्न की विशेषता होती है और उनके चरम को रिकॉर्ड किया जाता है। प्रत्येक चरम स्थिति को प्रक्रिया कोनों के रूप में कहा जा सकता है। सेल विशेषताओं में चरम को 'प्रक्रिया, वोल्टेज और तापमान (पीवीटी) कोनों' के रूप में माना जा सकता है और शुद्ध विशेषताओं में चरम को 'निष्कर्षण कोनों' के रूप में माना जा सकता है। फिर पीवीटी निष्कर्षण कोनों के प्रत्येक संयोजन पैटर्न को 'टाइमिंग कॉर्नर' के रूप में संदर्भित किया जाता है क्योंकि यह उस बिंदु का प्रतिनिधित्व करता है जहां समय चरम पर होगा। यदि डिजाइन प्रत्येक चरम स्थिति में काम करता है, तो मोनोटोनिक व्यवहार की धारणा के अनुसार , डिजाइन सभी मध्यवर्ती बिंदुओं के लिए भी योग्य है।
स्थैतिक समय विश्लेषण में कोनों के उपयोग की कई सीमाएँ हैं। यह अत्यधिक आशावादी हो सकता है, क्योंकि यह सही ट्रैकिंग मानता है: यदि एक गेट तेज़ है, तो सभी गेट्स तेज़ माने जाते हैं, या यदि एक गेट के लिए वोल्टेज कम है, तो यह अन्य सभी के लिए भी कम है। कोने अत्यधिक निराशावादी भी हो सकते हैं, सबसे खराब स्थिति वाले कोने के लिए संभवतः ही कभी हो सकता है। आईसी में, उदाहरण के लिए, इसकी अनुमत सीमा के पतले या मोटे सिरे पर एक धातु की परत का होना दुर्लभ नहीं हो सकता है, किन्तुसभी 10 परतों का एक ही सीमा पर होना बहुत दुर्लभ होगा, क्योंकि वे स्वतंत्र रूप से निर्मित होती हैं। . सांख्यिकीय एसटीए, जो वितरण के साथ देरी की स्थान लेता है, और सहसंबंध के साथ ट्रैकिंग करता है, एक ही समस्या के लिए अधिक परिष्कृत दृष्टिकोण प्रदान करता है।
== एसटीए == के लिए सबसे प्रमुख विधि ें स्थैतिक समय विश्लेषण में, स्थैतिक शब्द इस तथ्य को इंगित करता है कि यह समय विश्लेषण इनपुट-स्वतंत्र तरीके से किया जाता है, और सभी संभावित इनपुट संयोजनों पर परिपथ की सबसे खराब स्थिति में देरी का पता लगाने का उद्देश्य है। इस तरह के दृष्टिकोण की कम्प्यूटेशनल दक्षता (ग्राफ़ में किनारों की संख्या में रैखिक) के परिणामस्वरूप इसका व्यापक उपयोग हुआ है, भले ही इसकी कुछ सीमाएँ हों। विधि जिसे सामान्यतः कार्यक्रम मूल्यांकन और समीक्षा विधि के रूप में संदर्भित किया जाता है, एसटीए में लोकप्रिय रूप से उपयोग की जाती है। चूँकि, PERT मिथ्या नाम है, और समय विश्लेषण पर अधिकांश साहित्य में चर्चा की गई तथाकथित PERT विधि महत्वपूर्ण पथ विधि (CPM) को संदर्भित करती है जो परियोजना प्रबंधन में व्यापक रूप से उपयोग की जाती है। जबकि सीपीएम-आधारित विधियां आज उपयोग में प्रमुख हैं, ट्रैवर्सिंग परिपथ ग्राफ़ के लिए अन्य तरीके, जैसे कि गहराई-प्रथम खोज, का उपयोग विभिन्न समय विश्लेषणकर्ताओं द्वारा किया गया है।
इंटरफ़ेस समय विश्लेषण
चिप डिजाइनिंग में कई आम समस्याएं डिजाइन के विभिन्न घटकों के बीच इंटरफेस टाइमिंग से संबंधित हैं। ये कई कारकों के कारण उत्पन्न हो सकते हैं जिनमें अपूर्ण सिमुलेशन मॉडल, इंटरफ़ेस समय को ठीक से सत्यापित करने के लिए परीक्षण स्थितियों की कमी, सिंक्रनाइज़ेशन के लिए आवश्यकताएं, गलत इंटरफ़ेस विनिर्देश और 'ब्लैक बॉक्स' के रूप में आपूर्ति किए गए घटक की डिज़ाइनर समझ की कमी सम्मिलित है। इंटरफ़ेस समय का विश्लेषण करने के लिए स्पष्ट रूप से डिज़ाइन किए गए विशेष CAD उपकरण हैं, जैसे विशिष्ट CAD उपकरण हैं जो यह सत्यापित करने के लिए हैं कि इंटरफ़ेस का कार्यान्वयन कार्यात्मक विनिर्देश (मॉडल जाँच जैसी विधि ों का उपयोग करके) के अनुरूप है।
सांख्यिकीय स्थैतिक समय विश्लेषण (एसएसटीए)
सांख्यिकीय स्थिर समय विश्लेषण (एसएसटीए) ऐसी प्रक्रिया है जो एकीकृत परिपथों में प्रक्रिया की जटिलताओं और पर्यावरणीय विविधताओं को संभालने के लिए तेजी से आवश्यक होती जा रही है।
यह भी देखें
- गतिशील समय सत्यापन
- इलेक्ट्रॉनिक डिजाइन स्वचालन
- एकीकृत परिपथ डिजाइन
- तर्क विश्लेषक-एसटीए के सत्यापन के लिए
- तर्क अनुकरण
- सिमुलेशन
- समय सीमा
- सबसे खराब स्थिति निष्पादन समय
- साइनऑफ़ (इलेक्ट्रॉनिक डिज़ाइन ऑटोमेशन)
टिप्पणियाँ
- ↑ Kirkpatrick, TI & Clark, NR (1966). "PERT as an aid to logic design". IBM Journal of Research and Development. IBM Corp. 10 (2): 135–141. doi:10.1147/rd.102.0135.
- ↑ McWilliams, T.M. (1980). "Verification of timing constraints on large digital systems" (PDF). Design Automation, 1980. 17th Conference on. IEEE. pp. 139–147.
- ↑ G. Martin; J. Berrie; T. Little; D. Mackay; J. McVean; D. Tomsett; L. Weston (1981). "An integrated LSI design aids system". Microelectronics Journal. 12 (4): 18–22. doi:10.1016/S0026-2692(81)80259-5.
- ↑ Hitchcock, R. and Smith, G.L. and Cheng, D.D. (1982). "Timing analysis of computer hardware". IBM Journal of Research and Development. IBM. 26 (1): 100–105. CiteSeerX 10.1.1.83.2093. doi:10.1147/rd.261.0100.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)
संदर्भ
- Electronic Design Automation For Integrated Circuits Handbook, by Lavagno, Martin, and Scheffer, ISBN 0-8493-3096-3 A survey of the field. This article was derived from Volume II, Chapter 8, 'Static Timing Analysis' by Sachin Sapatnekar, with permission.
- Static Timing Analysis for Nanometer Designs, by R. Chadha and J. Bhasker, ISBN 978-0-387-93819-6, Springer, 2009.