आवृत्ति चपलता: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
'''आवृत्ति चपलता''' एक [[राडार]] प्रणाली की क्षमता होती है, जो वायुमंडलीय प्रभावों, रडार अवरोध और धोखे, अनुकूल स्रोतों के साथ पारस्परिक हस्तक्षेप, या [[रेडियो दिशा खोज]] के माध्यम से रडार प्रसारणकर्ता का पता लगाने के लिए और इसे अधिक कठिन बनाने के लिए अपनी संक्रियात्मक आवृत्ति को जल्दी से स्थानांतरित कर सकती है। इस शब्द को अन्य क्षेत्रों में भी लागू किया जा सकता है, जिसमें [[आवृत्ति-विभाजन बहुसंकेतन]] का उपयोग करने वाले लेज़र या पारंपरिक रेडियो [[ट्रांसीवर]]सम्मलित हैं, किन्तु यह रडार क्षेत्र | '''आवृत्ति चपलता''' एक [[राडार]] प्रणाली की क्षमता होती है, जो वायुमंडलीय प्रभावों, रडार अवरोध और धोखे, अनुकूल स्रोतों के साथ पारस्परिक हस्तक्षेप, या [[रेडियो दिशा खोज]] के माध्यम से रडार प्रसारणकर्ता का पता लगाने के लिए और इसे अधिक कठिन बनाने के लिए अपनी संक्रियात्मक आवृत्ति को जल्दी से स्थानांतरित कर सकती है। इस शब्द को अन्य क्षेत्रों में भी लागू किया जा सकता है, जिसमें [[आवृत्ति-विभाजन बहुसंकेतन]] का उपयोग करने वाले लेज़र या पारंपरिक रेडियो [[ट्रांसीवर]] सम्मलित हैं, किन्तु यह रडार क्षेत्र में सबसे अधिक निकटता से जुड़ा हुआ है और ये अन्य भूमिकाएँ सामान्यतः अधिक सामान्य शब्द आवृत्ति हॉपिंग का उपयोग करती हैं। | ||
== विवरण == | == विवरण == | ||
=== जैमिंग === | === जैमिंग === | ||
रडार सिस्टम | रडार सिस्टम सामान्यतः [[रेडियो]] ऊर्जा के छोटे स्पंदों को बाहर भेजकर और फिर ब्रॉडकास्टर को बंद करके और विभिन्न वस्तुओं से लौटने वाली गूँज को सुनकर संचालित होता है। क्योंकि कुशल सिग्नल रिसेप्शन के लिए ट्रांसीवर में पूरे इलेक्ट्रॉनिक्स में सावधानीपूर्वक ट्यूनिंग की आवश्यकता होती है, प्रत्येक ऑपरेटिंग फ्रीक्वेंसी को एक समर्पित ट्रांसीवर की आवश्यकता होती है। ट्रांससीवर्स के निर्माण के लिए उपयोग किए जाने वाले ट्यूब-आधारित इलेक्ट्रॉनिक्स के आकार के कारण, प्रारंभिक रडार सिस्टम, जैसे कि [[द्वितीय विश्व युद्ध]] में तैनात किए गए थे, सामान्यतः एक ही आवृत्ति पर काम करने तक सीमित थे। इस ऑपरेटिंग फ्रीक्वेंसी को जानने से एक विरोधी को राडार के संचालन में हस्तक्षेप करने या आगे की खुफिया जानकारी इकट्ठा करने की जबरदस्त शक्ति मिलती है। | ||
ब्रिटिश ने वुर्जबर्ग राडार के बारे में आवृत्ति जानकारी का उपयोग [[ ऑपरेशन बिटिंग ]] में इकट्ठा किया था ताकि चाफ (रडार प्रत्युपाय) का उत्पादन किया जा सके, एल्यूमीनियम पन्नी स्ट्रिप्स वुर्जबर्ग की तरंग दैर्ध्य की लंबाई 1/2 तक कट जाती है, जिससे यह लगभग बेकार हो जाता है। उन्होंने जैमर यूनिट्स, कारपेट और शिवर्स का भी उत्पादन किया, जो वुर्जबर्ग की आवृत्ति पर संकेतों को प्रसारित करते हैं, भ्रमित करने वाले डिस्प्ले का उत्पादन करते हैं जो लक्ष्य के लिए बेकार थे।<ref>Alan Levine, "The Strategic Bombing of Germany", Greenwood Publishing Group, 1992, pg. 61</ref> युद्ध के बाद की गणनाओं का अनुमान है कि इन प्रयासों ने वुर्जबर्ग की लड़ाकू प्रभावशीलता को 75% तक कम कर दिया।<ref>[http://www.campevans.org/_CE/html/elec-1946-01-p92-rcm.html "Radar Countermeasures"], ''Electronics'', January 1946, pg. 92-97</ref> इन प्रतिवादों ने जर्मनों को विभिन्न आवृत्तियों पर काम करने के लिए क्षेत्र में हजारों इकाइयों को अपग्रेड करने के लिए मजबूर किया। | ब्रिटिश ने वुर्जबर्ग राडार के बारे में आवृत्ति जानकारी का उपयोग [[ ऑपरेशन बिटिंग ]] में इकट्ठा किया था ताकि चाफ (रडार प्रत्युपाय) का उत्पादन किया जा सके, एल्यूमीनियम पन्नी स्ट्रिप्स वुर्जबर्ग की तरंग दैर्ध्य की लंबाई 1/2 तक कट जाती है, जिससे यह लगभग बेकार हो जाता है। उन्होंने जैमर यूनिट्स, कारपेट और शिवर्स का भी उत्पादन किया, जो वुर्जबर्ग की आवृत्ति पर संकेतों को प्रसारित करते हैं, भ्रमित करने वाले डिस्प्ले का उत्पादन करते हैं जो लक्ष्य के लिए बेकार थे।<ref>Alan Levine, "The Strategic Bombing of Germany", Greenwood Publishing Group, 1992, pg. 61</ref> युद्ध के बाद की गणनाओं का अनुमान है कि इन प्रयासों ने वुर्जबर्ग की लड़ाकू प्रभावशीलता को 75% तक कम कर दिया।<ref>[http://www.campevans.org/_CE/html/elec-1946-01-p92-rcm.html "Radar Countermeasures"], ''Electronics'', January 1946, pg. 92-97</ref> इन प्रतिवादों ने जर्मनों को विभिन्न आवृत्तियों पर काम करने के लिए क्षेत्र में हजारों इकाइयों को अपग्रेड करने के लिए मजबूर किया। | ||
Line 19: | Line 19: | ||
=== इलेक्ट्रॉनिक्स में सुधार === | === इलेक्ट्रॉनिक्स में सुधार === | ||
प्रारंभिक राडार द्वारा एक से अधिक आवृत्ति का उपयोग नहीं करने के प्राथमिक कारणों में से एक उनके ट्यूब आधारित इलेक्ट्रॉनिक्स का आकार था। जैसा कि बेहतर निर्माण के माध्यम से उनका आकार कम किया गया था, यहां तक कि शुरुआती सिस्टम को अधिक आवृत्तियों की पेशकश करने के लिए अपग्रेड किया गया था। हालांकि, ये | प्रारंभिक राडार द्वारा एक से अधिक आवृत्ति का उपयोग नहीं करने के प्राथमिक कारणों में से एक उनके ट्यूब आधारित इलेक्ट्रॉनिक्स का आकार था। जैसा कि बेहतर निर्माण के माध्यम से उनका आकार कम किया गया था, यहां तक कि शुरुआती सिस्टम को अधिक आवृत्तियों की पेशकश करने के लिए अपग्रेड किया गया था। हालांकि, ये सामान्यतः इलेक्ट्रॉनिक्स के माध्यम से फ्लाई पर स्विच करने में सक्षम नहीं थे, किन्तु इन्हें मैन्युअल रूप से नियंत्रित किया गया था और इस प्रकार आधुनिक अर्थों में वास्तव में चुस्त नहीं थे। | ||
लाइन्समैन की तरह क्रूर बल आवृत्ति चपलता, बड़े प्रारंभिक चेतावनी वाले रडारों पर आम थी, किन्तु छोटी इकाइयों पर कम आम थी जहां क्लेस्ट्रॉन का आकार एक समस्या बना रहा। 1960 के दशक में [[ ठोस अवस्था (इलेक्ट्रॉनिक्स) ]] घटकों ने नाटकीय रूप से रिसीवर्स के आकार को कम कर दिया, जिससे कई सॉलिड-स्टेट रिसीवर्स को पहले एक ट्यूब-आधारित सिस्टम के कब्जे वाले स्थान में फिट होने की अनुमति मिली। यह स्थान अतिरिक्त प्रसारकों के लिए इस्तेमाल किया जा सकता है और छोटी इकाइयों पर भी कुछ चपलता प्रदान करता है। | लाइन्समैन की तरह क्रूर बल आवृत्ति चपलता, बड़े प्रारंभिक चेतावनी वाले रडारों पर आम थी, किन्तु छोटी इकाइयों पर कम आम थी जहां क्लेस्ट्रॉन का आकार एक समस्या बना रहा। 1960 के दशक में [[ ठोस अवस्था (इलेक्ट्रॉनिक्स) ]] घटकों ने नाटकीय रूप से रिसीवर्स के आकार को कम कर दिया, जिससे कई सॉलिड-स्टेट रिसीवर्स को पहले एक ट्यूब-आधारित सिस्टम के कब्जे वाले स्थान में फिट होने की अनुमति मिली। यह स्थान अतिरिक्त प्रसारकों के लिए इस्तेमाल किया जा सकता है और छोटी इकाइयों पर भी कुछ चपलता प्रदान करता है। |
Revision as of 00:19, 10 June 2023
आवृत्ति चपलता एक राडार प्रणाली की क्षमता होती है, जो वायुमंडलीय प्रभावों, रडार अवरोध और धोखे, अनुकूल स्रोतों के साथ पारस्परिक हस्तक्षेप, या रेडियो दिशा खोज के माध्यम से रडार प्रसारणकर्ता का पता लगाने के लिए और इसे अधिक कठिन बनाने के लिए अपनी संक्रियात्मक आवृत्ति को जल्दी से स्थानांतरित कर सकती है। इस शब्द को अन्य क्षेत्रों में भी लागू किया जा सकता है, जिसमें आवृत्ति-विभाजन बहुसंकेतन का उपयोग करने वाले लेज़र या पारंपरिक रेडियो ट्रांसीवर सम्मलित हैं, किन्तु यह रडार क्षेत्र में सबसे अधिक निकटता से जुड़ा हुआ है और ये अन्य भूमिकाएँ सामान्यतः अधिक सामान्य शब्द आवृत्ति हॉपिंग का उपयोग करती हैं।
विवरण
जैमिंग
रडार सिस्टम सामान्यतः रेडियो ऊर्जा के छोटे स्पंदों को बाहर भेजकर और फिर ब्रॉडकास्टर को बंद करके और विभिन्न वस्तुओं से लौटने वाली गूँज को सुनकर संचालित होता है। क्योंकि कुशल सिग्नल रिसेप्शन के लिए ट्रांसीवर में पूरे इलेक्ट्रॉनिक्स में सावधानीपूर्वक ट्यूनिंग की आवश्यकता होती है, प्रत्येक ऑपरेटिंग फ्रीक्वेंसी को एक समर्पित ट्रांसीवर की आवश्यकता होती है। ट्रांससीवर्स के निर्माण के लिए उपयोग किए जाने वाले ट्यूब-आधारित इलेक्ट्रॉनिक्स के आकार के कारण, प्रारंभिक रडार सिस्टम, जैसे कि द्वितीय विश्व युद्ध में तैनात किए गए थे, सामान्यतः एक ही आवृत्ति पर काम करने तक सीमित थे। इस ऑपरेटिंग फ्रीक्वेंसी को जानने से एक विरोधी को राडार के संचालन में हस्तक्षेप करने या आगे की खुफिया जानकारी इकट्ठा करने की जबरदस्त शक्ति मिलती है।
ब्रिटिश ने वुर्जबर्ग राडार के बारे में आवृत्ति जानकारी का उपयोग ऑपरेशन बिटिंग में इकट्ठा किया था ताकि चाफ (रडार प्रत्युपाय) का उत्पादन किया जा सके, एल्यूमीनियम पन्नी स्ट्रिप्स वुर्जबर्ग की तरंग दैर्ध्य की लंबाई 1/2 तक कट जाती है, जिससे यह लगभग बेकार हो जाता है। उन्होंने जैमर यूनिट्स, कारपेट और शिवर्स का भी उत्पादन किया, जो वुर्जबर्ग की आवृत्ति पर संकेतों को प्रसारित करते हैं, भ्रमित करने वाले डिस्प्ले का उत्पादन करते हैं जो लक्ष्य के लिए बेकार थे।[1] युद्ध के बाद की गणनाओं का अनुमान है कि इन प्रयासों ने वुर्जबर्ग की लड़ाकू प्रभावशीलता को 75% तक कम कर दिया।[2] इन प्रतिवादों ने जर्मनों को विभिन्न आवृत्तियों पर काम करने के लिए क्षेत्र में हजारों इकाइयों को अपग्रेड करने के लिए मजबूर किया।
वुर्जबर्ग की आवृत्ति को जानने से भी ब्रिटिशों को रेडियो दिशा खोजक का उपयोग करके सिस्टम का पता लगाने के अपने प्रयासों में मदद मिली, जिससे विमान को रडार के चारों ओर रूट किया जा सके, या कम से कम उनसे लंबी दूरी पर रखा जा सके। इसने नई संक्रियात्मक आवृत्ति यों को खोजने में भी मदद की, जब वे गायब हो गए और उन्हें आगे के अध्ययन के लिए अलग करने के लिए ज्ञात प्रतिष्ठानों के स्थान का चयन करके उन्हें पेश किया गया।
चंचल
एक रडार प्रणाली जो कई अलग-अलग आवृत्तियों पर काम कर सकती है, इन प्रत्युपायों को लागू करने में अधिक कठिन बनाती है। उदाहरण के लिए, यदि जैमर को ज्ञात आवृत्ति के विरुद्ध संचालित करने के लिए विकसित किया जाता है, तो कुछ इन-फील्ड सेटों में उस आवृत्ति को बदलने से जैमर उन इकाइयों के विरुद्ध अप्रभावी हो जाएगा। इसका मुकाबला करने के लिए, जैमर को दोनों आवृत्तियों पर सुनना पड़ता है, और उस पर प्रसारण करना पड़ता है जो विशेष रडार उपयोग कर रहा है।
इन प्रयासों को और विफल करने के लिए, एक रडार तेजी से दो आवृत्तियों के बीच स्विच कर सकता है। इससे कोई फर्क नहीं पड़ता कि जैमर कितनी जल्दी प्रतिक्रिया करता है, सक्रिय आवृत्ति पर स्विच और प्रसारण करने से पहले इसमें देरी होगी। इस अवधि के दौरान विमान का पता लगाया जाता है, जिससे पता लगाया जा सकता है।[3] अपने अंतिम अवतार में, प्रत्येक रडार पल्स को एक अलग आवृत्ति पर भेजा जाता है और इसलिए सिंगल-फ्रीक्वेंसी जैमिंग को लगभग असंभव बना देता है। इस मामले में जैमर को एक ही समय में हर संभव आवृत्ति पर प्रसारित करने के लिए मजबूर किया जाता है, जिससे किसी एक चैनल पर इसका आउटपुट बहुत कम हो जाता है। संभावित आवृत्तियों के विस्तृत चयन के साथ, जैमिंग को पूरी तरह से अप्रभावी बनाया जा सकता है।[3]
इसके अतिरिक्त, विभिन्न प्रकार की आवृत्तियों का होना ELINT को और अधिक कठिन बना देता है। यदि सामान्य ऑपरेशन में संभावित आवृत्तियों का केवल एक निश्चित उपसमुच्चय उपयोग किया जाता है, तो विरोधी को यह जानकारी देने से इनकार कर दिया जाता है कि युद्ध की स्थिति में किस आवृत्ति का उपयोग किया जा सकता है। यूनाइटेड किंगडम में लाइन्समैन/मध्यस्थ नेटवर्क में वायु मंत्रालय प्रायोगिक स्टेशन टाइप 85 रडार के पीछे यही विचार था। टाइप 85 में बारह क्लेस्ट्रॉन थे जिन्हें साठ आउटपुट आवृत्तियों का उत्पादन करने के लिए मिश्रित किया जा सकता था, किन्तु सोवियत संघ को युद्ध के दौरान कौन से सिग्नल का उपयोग किया जाएगा, इस बारे में किसी भी जानकारी से इनकार करने के लिए शांतिकाल में केवल चार क्लीस्ट्रॉन्स का उपयोग किया गया था।[4]
इलेक्ट्रॉनिक्स में सुधार
प्रारंभिक राडार द्वारा एक से अधिक आवृत्ति का उपयोग नहीं करने के प्राथमिक कारणों में से एक उनके ट्यूब आधारित इलेक्ट्रॉनिक्स का आकार था। जैसा कि बेहतर निर्माण के माध्यम से उनका आकार कम किया गया था, यहां तक कि शुरुआती सिस्टम को अधिक आवृत्तियों की पेशकश करने के लिए अपग्रेड किया गया था। हालांकि, ये सामान्यतः इलेक्ट्रॉनिक्स के माध्यम से फ्लाई पर स्विच करने में सक्षम नहीं थे, किन्तु इन्हें मैन्युअल रूप से नियंत्रित किया गया था और इस प्रकार आधुनिक अर्थों में वास्तव में चुस्त नहीं थे।
लाइन्समैन की तरह क्रूर बल आवृत्ति चपलता, बड़े प्रारंभिक चेतावनी वाले रडारों पर आम थी, किन्तु छोटी इकाइयों पर कम आम थी जहां क्लेस्ट्रॉन का आकार एक समस्या बना रहा। 1960 के दशक में ठोस अवस्था (इलेक्ट्रॉनिक्स) घटकों ने नाटकीय रूप से रिसीवर्स के आकार को कम कर दिया, जिससे कई सॉलिड-स्टेट रिसीवर्स को पहले एक ट्यूब-आधारित सिस्टम के कब्जे वाले स्थान में फिट होने की अनुमति मिली। यह स्थान अतिरिक्त प्रसारकों के लिए इस्तेमाल किया जा सकता है और छोटी इकाइयों पर भी कुछ चपलता प्रदान करता है।
1960 के दशक में शुरू किए गए निष्क्रिय इलेक्ट्रॉनिक स्कैन सरणी (PESA) रडार, बड़ी संख्या में एंटीना तत्वों (ऐरे) को चलाने के लिए एकल माइक्रोवेव स्रोत और देरी की एक श्रृंखला का उपयोग करते थे और देरी के समय को थोड़ा बदलकर रडार बीम को इलेक्ट्रॉनिक रूप से चलाते थे। सॉलिड-स्टेट माइक्रोवेव एम्पलीफायरों, JFETs और MESFETs के विकास ने सिंगल क्लेस्ट्रॉन को कई अलग-अलग एम्पलीफायरों द्वारा प्रतिस्थापित करने की अनुमति दी, प्रत्येक सरणी का एक सबसेट चला रहा था किन्तु फिर भी कुल शक्ति की समान मात्रा का उत्पादन कर रहा था। सॉलिड-स्टेट एम्पलीफायर एक क्लीस्ट्रॉन के विपरीत आवृत्तियों की एक विस्तृत श्रृंखला पर काम कर सकते हैं, इसलिए सॉलिड-स्टेट PESAs ने बहुत अधिक आवृत्ति चपलता की पेशकश की, और जैमिंग के लिए अधिक प्रतिरोधी थे।
सक्रिय इलेक्ट्रॉनिक स्कैन सरणी स्कैन किए गए सरणियों (AESAs) की शुरूआत ने इस प्रक्रिया को और विकसित किया। PESA में ब्रॉडकास्ट सिग्नल सिंगल फ्रीक्वेंसी होता है, हालांकि उस फ्रीक्वेंसी को पल्स से पल्स में आसानी से बदला जा सकता है। एईएसए में, प्रत्येक तत्व एक पल्स के भीतर भी एक अलग आवृत्ति (या कम से कम उनमें से एक विस्तृत चयन) पर संचालित होता है, इसलिए किसी भी आवृत्ति पर कोई उच्च-शक्ति संकेत नहीं होता है। राडार इकाई जानती है कि कौन सी आवृत्तियों को प्रसारित किया गया था, और केवल उन्हीं वापसी संकेतों को बढ़ाता और जोड़ता है, जिससे रिसेप्शन पर एक शक्तिशाली प्रतिध्वनि का पुनर्निर्माण होता है।[3]एक विरोधी, इस बात से अनभिज्ञ कि कौन सी आवृत्तियाँ सक्रिय हैं, के पास देखने के लिए कोई संकेत नहीं है, जिससे रडार चेतावनी रिसीवरों पर पता लगाना बेहद मुश्किल हो जाता है।
F-35 लाइटनिंग II|F-35 के AN/APG-81 जैसे आधुनिक रडार हजारों ब्रॉडकास्टर/रिसीवर मॉड्यूल का उपयोग करते हैं, प्रत्येक एंटीना तत्व के लिए एक।[5]
अन्य लाभ
एक ही स्थान पर एक ही समय में कई सेलफोन का उपयोग करने का कारण फ़्रीक्वेंसी होपिंग के उपयोग के कारण है। जब उपयोगकर्ता कॉल करना चाहता है, तो सेल फोन अपने परिचालन क्षेत्र में उपलब्ध कई आवृत्तियों के बीच अप्रयुक्त आवृत्तियों को खोजने के लिए एक बातचीत प्रक्रिया का उपयोग करता है। यह उपयोगकर्ताओं को विशेष सेल टावरों को ऑन-द-फ्लाई में सम्मलित होने और छोड़ने की अनुमति देता है, उनकी फ्रीक्वेंसी अन्य उपयोगकर्ताओं को दी जा रही है।[6] फ्रीक्वेंसी एजाइल रडार समान लाभ प्रदान कर सकते हैं। एक ही स्थान पर संचालित कई विमानों के मामले में, रडार उन आवृत्तियों का चयन कर सकते हैं जिनका उपयोग हस्तक्षेप से बचने के लिए नहीं किया जा रहा है। हालांकि, यह एक सेल फोन के मामले जितना आसान नहीं है, क्योंकि आदर्श रूप से रडार प्रत्येक पल्स के साथ अपनी संक्रियात्मक आवृत्ति यों को बदल देंगे। अगली पल्स के लिए आवृत्तियों के एक सेट का चयन करने के लिए एल्गोरिदम वास्तव में यादृच्छिक नहीं हो सकते हैं यदि कोई समान प्रणालियों के साथ सभी हस्तक्षेपों से बचना चाहता है, किन्तु एक कम-से-यादृच्छिक प्रणाली पैटर्न निर्धारित करने के लिए ELINT विधियों के अधीन है।
आवृत्ति चपलता को जोड़ने का एक अन्य कारण सैन्य उपयोग से कोई लेना देना नहीं है; मौसम राडार में अक्सर सीमित चपलता होती है ताकि वे बारिश को दृढ़ता से प्रतिबिंबित कर सकें, या वैकल्पिक रूप से इसके माध्यम से देख सकें। आवृत्तियों को आगे और पीछे स्विच करके, मौसम की एक समग्र छवि बनाई जा सकती है।
यह भी देखें
- चर-आवृत्ति थरथरानवाला
- फ़ीक्वेंसी हॉपिंग
- आवृत्ति विविधता
संदर्भ
फुटनोट्स
- ↑ Alan Levine, "The Strategic Bombing of Germany", Greenwood Publishing Group, 1992, pg. 61
- ↑ "Radar Countermeasures", Electronics, January 1946, pg. 92-97
- ↑ 3.0 3.1 3.2 Galati
- ↑ Dick Barrett, "Linesman/Mediator system, Radar Type 85", 4 April 2004
- ↑ Visual inspection of the antenna shows about 1600 elements.
- ↑ Marshall Brain, Jeff Tyson and Julia Layton, "How Cell Phones Work", howstuffworks.com
ग्रन्थसूची
- Ian Faulconbridge, "Radar Fundamentals", Argos Press, June 2002, ISBN 0-9580238-1-6
- Gaspare Galati, "Advanced radar techniques and systems", IET, 1993, ISBN 0-86341-172-X, pp. 481–503