बहुभिन्नरूपी टी-वितरण: Difference between revisions
No edit summary |
No edit summary |
||
Line 23: | Line 23: | ||
}} | }} | ||
सांख्यिकी में बहुभिन्नरूपी | सांख्यिकी में बहुभिन्नरूपी t -वितरण अथवा बहुभिन्नरूपी छात्र वितरण एक [[बहुभिन्नरूपी संभाव्यता]] वितरण है। यह विद्यार्थी के t-वितरण के यादृच्छिक सदिशों के लिए एक सामान्यीकरण रूप में होता है, जो एक ऐसा वितरण है जो अविभाजित यादृच्छिक चर पर प्रयुक्त होता है और इस प्रकार [[यादृच्छिक मैट्रिक्स|यादृच्छिक आव्यूह]] की स्थितियों को इस संरचना के भीतर माना जाता है जबकि आव्यूह t -वितरण भिन्न रूप में है और आव्यूह संरचना का विशेष उपयोग करता है। | ||
== परिभाषा == | == परिभाषा == | ||
बहुभिन्नरूपी | बहुभिन्नरूपी t -वितरण के निर्माण की एक सामान्य विधि की स्थितियों में <math>p</math> आयाम के अवलोकन पर आधारित होता है और इस प्रकार यदि <math>\mathbf y</math> और <math>u</math> स्वतंत्र रूप में वितरित होते है <math>N({\mathbf 0},{\boldsymbol\Sigma})</math> और <math>\chi^2_\nu</math> अर्थात [[बहुभिन्नरूपी सामान्य वितरण]] और [[ची-वर्ग वितरण]] क्रमशः, आव्यूह <math>\mathbf{\Sigma}\,</math> एक ''p'' × ''p'' आव्यूह के रूप में है और <math>{\boldsymbol\mu}</math> एक स्थिर सदिश के रूप में है फिर यादृच्छिक चर <math display="inline">{\mathbf x}={\mathbf y}/\sqrt{u/\nu} +{\boldsymbol\mu}</math> घनत्व है<ref>{{Cite web |last=Roth |first=Michael |date=17 April 2013 |title=बहुभिन्नरूपी टी वितरण पर|url=http://users.isy.liu.se/en/rt/roth/student.pdf |url-status=live |access-date=1 June 2022 |website=Automatic Control group. Linköpin University, Sweden |archive-date=31 July 2022 |archive-url=https://web.archive.org/web/20220731142649/http://users.isy.liu.se/en/rt/roth/student.pdf }}</ref> | ||
:<math> | :<math> | ||
\frac{\Gamma\left[(\nu+p)/2\right]}{\Gamma(\nu/2)\nu^{p/2}\pi^{p/2}\left|{\boldsymbol\Sigma}\right|^{1/2}}\left[1+\frac{1}{\nu}({\mathbf x}-{\boldsymbol\mu})^T{\boldsymbol\Sigma}^{-1}({\mathbf x}-{\boldsymbol\mu})\right]^{-(\nu+p)/2}</math> | \frac{\Gamma\left[(\nu+p)/2\right]}{\Gamma(\nu/2)\nu^{p/2}\pi^{p/2}\left|{\boldsymbol\Sigma}\right|^{1/2}}\left[1+\frac{1}{\nu}({\mathbf x}-{\boldsymbol\mu})^T{\boldsymbol\Sigma}^{-1}({\mathbf x}-{\boldsymbol\mu})\right]^{-(\nu+p)/2}</math> | ||
और इस प्रकार कहा जाता है कि इसे पैरामीटर के साथ बहुभिन्नरूपी | और इस प्रकार कहा जाता है कि इसे पैरामीटर के साथ बहुभिन्नरूपी t -वितरण के रूप में वितरित किया जाता है <math>{\boldsymbol\Sigma},{\boldsymbol\mu},\nu</math>. और ध्यान दें कि <math>\mathbf\Sigma</math> कोवेरीअन्स आव्यूह के रूप में नहीं है क्योंकि कोवेरीअन्स <math>\nu/(\nu-2)\mathbf\Sigma</math> (के लिए <math>\nu>2</math>).द्वारा दिया जाता है | ||
बहुभिन्नरूपी | बहुभिन्नरूपी t -वितरण की रचनात्मक परिभाषा के रूप में नमूना कलन विधि के रूप में कार्य करती है, | ||
# <math>u \sim \chi^2_\nu</math> और <math>\mathbf{y} \sim N(\mathbf{0}, \boldsymbol{\Sigma})</math>, स्वतंत्र रूप से बनाना । | # <math>u \sim \chi^2_\nu</math> और <math>\mathbf{y} \sim N(\mathbf{0}, \boldsymbol{\Sigma})</math>, स्वतंत्र रूप से बनाना । | ||
# गणना करें <math>\mathbf{x} \gets \sqrt{\nu/u}\mathbf{y}+ \boldsymbol{\mu}</math>. | # गणना करें <math>\mathbf{x} \gets \sqrt{\nu/u}\mathbf{y}+ \boldsymbol{\mu}</math>. | ||
यह फॉर्मूलेशन मानक के पैमाने-मिश्रण के रूप में बहुभिन्नरूपी | यह फॉर्मूलेशन मानक के पैमाने-मिश्रण के रूप में बहुभिन्नरूपी t -वितरण के पदानुक्रमित प्रतिनिधित्व को जन्म देता है और इस प्रकार <math>u \sim \mathrm{Ga}(\nu/2,\nu/2)</math> जहाँ <math>\mathrm{Ga}(a,b)</math>, <math>x^{a-1}e^{-bx}</math>, और <math>\mathbf{x}\mid u</math> के आनुपातिक घनत्व के साथ एक गामा वितरण को इंगित करता है जो सशर्त रूप से <math>N(\boldsymbol{\mu},u^{-1}\boldsymbol{\Sigma})</math> का अनुसरण करता है। | ||
विशेष स्थितियों में <math>\nu=1</math>, बहुभिन्नरूपी कौशी बंटन के रूप में कार्य करती है। | विशेष स्थितियों में <math>\nu=1</math>, बहुभिन्नरूपी कौशी बंटन के रूप में कार्य करती है। | ||
Line 40: | Line 40: | ||
== अवकलन == | == अवकलन == | ||
वास्तव में छात्र के | वास्तव में छात्र के t -वितरण के बहुभिन्नरूपी सामान्यीकरण के लिए कई उम्मीदवार हैं। कोट्ज़ और नादराजाह द्वारा 2004 में छात्र t -वितरण क्षेत्र का एक व्यापक सर्वेक्षण (2004) किया गया है। इसका अनिवार्य विषय अनेक चर के प्रायिकता घनत्व फलन को परिभाषित करता है जो यूनिवैरिएट केस के लिए सूत्र का उपयुक्त सामान्यीकरण है। एक आयाम में (<math>p=1</math>), साथ <math>t=x-\mu</math> और <math>\Sigma=1</math>, हमारे पास प्रायिकता घनत्व फलन के रूप में है, | ||
:<math>f(t) = \frac{\Gamma[(\nu+1)/2]}{\sqrt{\nu\pi\,}\,\Gamma[\nu/2]} (1+t^2/\nu)^{-(\nu+1)/2}</math> | :<math>f(t) = \frac{\Gamma[(\nu+1)/2]}{\sqrt{\nu\pi\,}\,\Gamma[\nu/2]} (1+t^2/\nu)^{-(\nu+1)/2}</math> | ||
Line 48: | Line 48: | ||
जो मानक है लेकिन एकमात्र विकल्प नहीं है। | जो मानक है लेकिन एकमात्र विकल्प नहीं है। | ||
एक महत्वपूर्ण विशेष स्थिति मानक द्विभाजित '' | एक महत्वपूर्ण विशेष स्थिति मानक द्विभाजित ''t'' -वितरण P= 2 के रूप में होता है, | ||
:<math>f(t_1,t_2) = \frac{\left|\mathbf{A}\right|^{1/2}}{2\pi} \left(1+\sum_{i,j=1}^{2,2} A_{ij} t_i t_j/\nu\right)^{-(\nu+2)/2}</math> | :<math>f(t_1,t_2) = \frac{\left|\mathbf{A}\right|^{1/2}}{2\pi} \left(1+\sum_{i,j=1}^{2,2} A_{ij} t_i t_j/\nu\right)^{-(\nu+2)/2}</math> | ||
Line 67: | Line 67: | ||
== सशर्त वितरण == | == सशर्त वितरण == | ||
यह मुइरहेड द्वारा प्रदर्शित किया गया था <ref>{{Cite book |last=Muirhead |first=Robb |title=बहुभिन्नरूपी सांख्यिकीय सिद्धांत के पहलू|publisher=Wiley |year=1982 |isbn=978-0-47 1-76985-9 |location=USA |pages=32-36 Theorem 1.5.4}}</ref> चूंकि पहले कोर्निश द्वारा उपरोक्त सरल अनुपात प्रतिनिधित्व का उपयोग करके व्युत्पन्न किया गया था।<ref>{{Cite journal |last=Cornish |first=E A |date=1954 |title=बहुभिन्नरूपी टी-वितरण सामान्य नमूना विचलन के एक सेट के साथ जुड़ा हुआ है।|url=https://www.publish.csiro.au/PH/pdf/PH540531 |journal=Australian Journal of Physics |volume=7 |pages=531–542 |doi=10.1071/PH550193|doi-access=free }}</ref> और इस प्रकार सदिश <math> X </math> बहुभिन्नरूपी | यह मुइरहेड द्वारा प्रदर्शित किया गया था <ref>{{Cite book |last=Muirhead |first=Robb |title=बहुभिन्नरूपी सांख्यिकीय सिद्धांत के पहलू|publisher=Wiley |year=1982 |isbn=978-0-47 1-76985-9 |location=USA |pages=32-36 Theorem 1.5.4}}</ref> चूंकि पहले कोर्निश द्वारा उपरोक्त सरल अनुपात प्रतिनिधित्व का उपयोग करके व्युत्पन्न किया गया था।<ref>{{Cite journal |last=Cornish |first=E A |date=1954 |title=बहुभिन्नरूपी टी-वितरण सामान्य नमूना विचलन के एक सेट के साथ जुड़ा हुआ है।|url=https://www.publish.csiro.au/PH/pdf/PH540531 |journal=Australian Journal of Physics |volume=7 |pages=531–542 |doi=10.1071/PH550193|doi-access=free }}</ref> और इस प्रकार सदिश <math> X </math> बहुभिन्नरूपी t वितरण का अनुसरण करते है और <math> p_1, p_2 </math> तत्व के दो उप-सदिश में विभाजन हो जाते है | ||
:<math> X_p = \begin{bmatrix} | :<math> X_p = \begin{bmatrix} | ||
X_1 \\ | X_1 \\ | ||
Line 86: | Line 86: | ||
देखना <ref>{{cite journal |last1=Ding |first1=Peng |title=बहुभिन्नरूपी टी वितरण के सशर्त वितरण पर|journal=The American Statistician |year=2016 |volume=70 |issue=3 |page=293-295 |doi=10.1080/00031305.2016.1164756 |arxiv=1604.00561 |s2cid=55842994 |url=https://www.tandfonline.com/doi/full/10.1080/00031305.2016.1164756}}</ref> उपरोक्त सशर्त वितरण के एक साधारण प्रमाण के लिए है। | देखना <ref>{{cite journal |last1=Ding |first1=Peng |title=बहुभिन्नरूपी टी वितरण के सशर्त वितरण पर|journal=The American Statistician |year=2016 |volume=70 |issue=3 |page=293-295 |doi=10.1080/00031305.2016.1164756 |arxiv=1604.00561 |s2cid=55842994 |url=https://www.tandfonline.com/doi/full/10.1080/00031305.2016.1164756}}</ref> उपरोक्त सशर्त वितरण के एक साधारण प्रमाण के लिए है। | ||
=== बहुभिन्नरूपी | === बहुभिन्नरूपी t पर आधारित कोपुलस === | ||
इस तरह के वितरण में [[गणितीय वित्त]] में अनुप्रयोगों के कारण नए सिरे से रुचि दिखाई देती है विशेष रूप से छात्र के | इस तरह के वितरण में [[गणितीय वित्त]] में अनुप्रयोगों के कारण नए सिरे से रुचि दिखाई देती है विशेष रूप से छात्र के t कोपुला (सांख्यिकी) के उपयोग के माध्यम से होती है।{{citation needed|date=April 2016}} | ||
== दीर्घवृत्ताकार प्रतिनिधित्व == | == दीर्घवृत्ताकार प्रतिनिधित्व == | ||
Line 133: | Line 133: | ||
== लीनियर कॉम्बिनेशन और एफ़िन ट्रांसफ़ॉर्मेशन == | == लीनियर कॉम्बिनेशन और एफ़िन ट्रांसफ़ॉर्मेशन == | ||
किबरिया एट.ए के खंड 3.3 के बाद मान लीजिए <math> Z </math> एक <math> p </math>-सदिश एक केंद्रीय गोलाकार बहुभिन्नरूपी | किबरिया एट.ए के खंड 3.3 के बाद मान लीजिए <math> Z </math> एक <math> p </math>-सदिश एक केंद्रीय गोलाकार बहुभिन्नरूपी t वितरण से नमूना लिया गया <math> \nu </math> स्वतंत्र की कोटियां: <math> Z_p \sim t_p(0, \operatorname{I}, \nu) </math>. <math> X </math> से लिया गया है <math> Z </math> एक रैखिक परिवर्तन के माध्यम से होता है, | ||
: <math> X = \mu + \Sigma^{1/2} Z </math> | : <math> X = \mu + \Sigma^{1/2} Z </math> | ||
Line 149: | Line 149: | ||
\operatorname{I_{s \times s}} & 0_{s \times (p-s) } \end{bmatrix} X_p </math> फिर पीडीएफ <math> Y_s </math> अग्रणी का सीमांत वितरण <math> s </math> घटक <math> X_p </math>.को संदर्भित करता है। | \operatorname{I_{s \times s}} & 0_{s \times (p-s) } \end{bmatrix} X_p </math> फिर पीडीएफ <math> Y_s </math> अग्रणी का सीमांत वितरण <math> s </math> घटक <math> X_p </math>.को संदर्भित करता है। | ||
उपरोक्त में, स्वतंत्र पैरामीटर की डिग्री <math> \nu </math> पूरे समय अपरिवर्तनीय रहता है और सभी सदिश अंततः एक प्रारंभिक आइसोट्रोपिक गोलाकार सदिश से प्राप्त होते हैं <math> Z </math> जिनके तत्व सांख्यिकीय रूप से स्वतंत्र नहीं होते हैं। स्वतंत्र ची-स्क्वेर्ड नमूनों और भिन्न -भिन्न के साथ उत्पन्न दो नमूना बहुभिन्नरूपी | उपरोक्त में, स्वतंत्र पैरामीटर की डिग्री <math> \nu </math> पूरे समय अपरिवर्तनीय रहता है और सभी सदिश अंततः एक प्रारंभिक आइसोट्रोपिक गोलाकार सदिश से प्राप्त होते हैं <math> Z </math> जिनके तत्व सांख्यिकीय रूप से स्वतंत्र नहीं होते हैं। स्वतंत्र ची-स्क्वेर्ड नमूनों और भिन्न -भिन्न के साथ उत्पन्न दो नमूना बहुभिन्नरूपी t सदिश <math> \nu </math> मूल्य: <math display="inline">{1}/\sqrt{u_1/\nu_1}, \; \; {1}/\sqrt{u_2/\nu_2}</math> के रूप में होते है , जैसा कि प्रमुख पैराग्राफ में परिभाषित किया गया है और इस प्रकार आंतरिक रूप से सुसंगत वितरण का उत्पादन नहीं करता है, चूंकि वे [[बेहरेंस-फिशर समस्या]] उत्पन्न करते है।<ref>{{Cite journal |last1=Giron |first1=Javier |last2=del Castilo |first2=Carmen |date=2010 |title=The multivariate Behrens–Fisher distribution |journal=Journal of Multivariate Analysis |volume=101 |issue=9 |pages=2091–2102 |doi=10.1016/j.jmva.2010.04.008 |doi-access=free }}</ref> | ||
== संबंधित अवधारणाएं == | == संबंधित अवधारणाएं == | ||
अविभाजित आंकड़ों में छात्र का | अविभाजित आंकड़ों में छात्र का t -परीक्षण छात्र के t -वितरण का उपयोग करता है| छात्र का t -वितरण हॉटलिंग का t -स्क्वेर्ड वितरण एक ऐसा वितरण है, जो बहुभिन्नरूपी सांख्यिकी में उत्पन्न होता है। आव्यूह t -वितरण एक आव्यूह संरचना में व्यवस्थित यादृच्छिक चर के लिए वितरण के रूप में होता है। | ||
{{no footnotes|date=May 2012}} | {{no footnotes|date=May 2012}} | ||
== यह भी देखें == | == यह भी देखें == | ||
* बहुभिन्नरूपी सामान्य वितरण, जो कि बहुभिन्नरूपी छात्र के | * बहुभिन्नरूपी सामान्य वितरण, जो कि बहुभिन्नरूपी छात्र के t -वितरण का सीमित स्थितियों है जब <math>\nu\uparrow\infty</math>.के रूप में होता है | ||
* [[ची वितरण]], छात्र के | * [[ची वितरण]], छात्र के t -वितरण के निर्माण में स्केलिंग कारक की प्रायिकता घनत्व फलन और सामान्य रूप से वितरित सदिश शून्य पर केंद्रित सामान्य गणित 2-मानदंड या [[यूक्लिडियन मानदंड]] के रूप में होते है | ||
**रैले वितरण विद्यार्थी का t, बहुभिन्नरूपी t-वितरण की यादृच्छिक सदिश लंबाई के रूप में होती है | **रैले वितरण विद्यार्थी का t, बहुभिन्नरूपी t-वितरण की यादृच्छिक सदिश लंबाई के रूप में होती है | ||
* महालनोबिस दूरी | * महालनोबिस दूरी |
Revision as of 23:40, 15 June 2023
Notation | |||
---|---|---|---|
Parameters |
location (real vector) scale matrix (positive-definite real matrix) is the degrees of freedom | ||
Support | |||
CDF | No analytic expression, but see text for approximations | ||
Mean | if ; else undefined | ||
Median | |||
Mode | |||
Variance | if ; else undefined | ||
Skewness | 0 |
सांख्यिकी में बहुभिन्नरूपी t -वितरण अथवा बहुभिन्नरूपी छात्र वितरण एक बहुभिन्नरूपी संभाव्यता वितरण है। यह विद्यार्थी के t-वितरण के यादृच्छिक सदिशों के लिए एक सामान्यीकरण रूप में होता है, जो एक ऐसा वितरण है जो अविभाजित यादृच्छिक चर पर प्रयुक्त होता है और इस प्रकार यादृच्छिक आव्यूह की स्थितियों को इस संरचना के भीतर माना जाता है जबकि आव्यूह t -वितरण भिन्न रूप में है और आव्यूह संरचना का विशेष उपयोग करता है।
परिभाषा
बहुभिन्नरूपी t -वितरण के निर्माण की एक सामान्य विधि की स्थितियों में आयाम के अवलोकन पर आधारित होता है और इस प्रकार यदि और स्वतंत्र रूप में वितरित होते है और अर्थात बहुभिन्नरूपी सामान्य वितरण और ची-वर्ग वितरण क्रमशः, आव्यूह एक p × p आव्यूह के रूप में है और एक स्थिर सदिश के रूप में है फिर यादृच्छिक चर घनत्व है[1]
और इस प्रकार कहा जाता है कि इसे पैरामीटर के साथ बहुभिन्नरूपी t -वितरण के रूप में वितरित किया जाता है . और ध्यान दें कि कोवेरीअन्स आव्यूह के रूप में नहीं है क्योंकि कोवेरीअन्स (के लिए ).द्वारा दिया जाता है
बहुभिन्नरूपी t -वितरण की रचनात्मक परिभाषा के रूप में नमूना कलन विधि के रूप में कार्य करती है,
- और , स्वतंत्र रूप से बनाना ।
- गणना करें .
यह फॉर्मूलेशन मानक के पैमाने-मिश्रण के रूप में बहुभिन्नरूपी t -वितरण के पदानुक्रमित प्रतिनिधित्व को जन्म देता है और इस प्रकार जहाँ , , और के आनुपातिक घनत्व के साथ एक गामा वितरण को इंगित करता है जो सशर्त रूप से का अनुसरण करता है।
विशेष स्थितियों में , बहुभिन्नरूपी कौशी बंटन के रूप में कार्य करती है।
अवकलन
वास्तव में छात्र के t -वितरण के बहुभिन्नरूपी सामान्यीकरण के लिए कई उम्मीदवार हैं। कोट्ज़ और नादराजाह द्वारा 2004 में छात्र t -वितरण क्षेत्र का एक व्यापक सर्वेक्षण (2004) किया गया है। इसका अनिवार्य विषय अनेक चर के प्रायिकता घनत्व फलन को परिभाषित करता है जो यूनिवैरिएट केस के लिए सूत्र का उपयुक्त सामान्यीकरण है। एक आयाम में (), साथ और , हमारे पास प्रायिकता घनत्व फलन के रूप में है,
और एक दृष्टिकोण के लिए कई चरों के संगत फलन के नीचे लिखने के लिए है। यह दीर्घवृत्तीय वितरण सिद्धांत का मूल विचार है, जहां कोई संबंधित चर के अनुरूप फलन लिखता है, जो कि को सभी . के द्विघात फलन द्वारा बदलता है, यह स्पष्ट है कि इस बात का कोई अर्थ नहीं है कि सीमांत सुविधाओं के वितरण में स्वतंत्र नमूनों की समान मात्रा (सांख्यिकी) होती है। जो . साथ , किसी बहुभिन्नरूपी घनत्व फलन का एक सरल विकल्प के रूप में होता है,
जो मानक है लेकिन एकमात्र विकल्प नहीं है।
एक महत्वपूर्ण विशेष स्थिति मानक द्विभाजित t -वितरण P= 2 के रूप में होता है,
ध्यान दें कि .
अब अगर इकाई आव्यूह घनत्व है
इस सूत्र द्वारा मानक प्रतिनिधित्व के साथ कठिनाई का पता चलता है, जो सीमांत एक आयामी वितरण के उत्पाद में कारक नहीं होता है। जहाँ विकर्ण है और मानक प्रतिनिधित्व को शून्य पियर्सन उत्पाद-आघूर्ण सहसंबंध गुणांक के रूप में दिखाया जा सकता है, लेकिन सीमांत वितरण सांख्यिकीय स्वतंत्र रूप से सहमत नहीं हैं।
संचयी वितरण फलन
एक आयाम में संचयी वितरण फलन (सीडीएफ) की परिभाषा को निम्नलिखित संभाव्यता को परिभाषित करके कई आयामों तक बढ़ाया जा सकता है, यहाँ एक वास्तविक सदिश के रूप में होता है
,के लिए कोई सरल सूत्र नहीं होता है, लेकिन यह मोंटे कार्लो एकीकरण के माध्यम से संख्यात्मक रूप से अनुमानित हो सकता है।[2][3]
सशर्त वितरण
यह मुइरहेड द्वारा प्रदर्शित किया गया था [4] चूंकि पहले कोर्निश द्वारा उपरोक्त सरल अनुपात प्रतिनिधित्व का उपयोग करके व्युत्पन्न किया गया था।[5] और इस प्रकार सदिश बहुभिन्नरूपी t वितरण का अनुसरण करते है और तत्व के दो उप-सदिश में विभाजन हो जाते है
जहाँ , ज्ञात माध्य सदिश है और स्केल आव्यूह है .
तब
जहाँ
- सशर्त का अर्थ है जहां यह उपस्थित है या अन्यथा माध्यिका है।
- का शूर पूरक के रूप में होता है
- की वर्ग महालनोबिस दूरी है से स्केल आव्यूह के साथ होता है
देखना [6] उपरोक्त सशर्त वितरण के एक साधारण प्रमाण के लिए है।
बहुभिन्नरूपी t पर आधारित कोपुलस
इस तरह के वितरण में गणितीय वित्त में अनुप्रयोगों के कारण नए सिरे से रुचि दिखाई देती है विशेष रूप से छात्र के t कोपुला (सांख्यिकी) के उपयोग के माध्यम से होती है।[citation needed]
दीर्घवृत्ताकार प्रतिनिधित्व
दीर्घवृत्ताकार वितरण के रूप में निर्मित[7] और गोलाकार समरूपता के साथ और बिना स्केलिंग के सबसे सरल केंद्रीकृत स्थिति में, , बहुभिन्नरूपी t PDF का रूप लेती है
जहाँ और = स्वतंत्रता की डिग्री है। मुइरहेड (धारा 1.5) इसे एक बहुभिन्नरूपी कॉची वितरण के रूप में संदर्भित करता है। का अपेक्षित कोवेरीअन्स है
उद्देश्य कार्टेशियन पीडीएफ को रेडियल पीडीएफ में बदलना है। किबरिया और जोर्डर,[8] एक ट्यूटोरियल-शैली के पेपर में रेडियल माप को परिभाषित करते है ऐसा है कि
जो अपेक्षित भिन्नता के बराबर है -तत्व सदिश एक अविभाज्य शून्य-माध्य यादृच्छिक अनुक्रम के रूप में माना जाता है। वे ध्यान दें कि फिशर-स्नेडेकोर वितरण या वितरण का अनुसरण करता है
माध्य मान के रूप में होता है .
यादृच्छिक चर के परिवर्तन से उपरोक्त समीकरण के रूप में बनाए रखता है -सदिश , अपने पास और संभाव्यता वितरण का अनुसरण करता है
जो एक नियमित बीटा-प्राइम वितरण है औसत मूल्य होना . का संचयी वितरण फलन इस प्रकार
के रूप में जाना जाता है
जहाँ अधूरा बीटा फलन है।
इन परिणामों को कार्तीय से गोलाकार में निर्देशांक के सीधे परिवर्तन द्वारा प्राप्त किया जा सकता है। एक स्थिर त्रिज्या सतह पर पीडीएफ के साथ एक आईएसओ-घनत्व सतह के रूप में होता है। इस घनत्व मान को देखते हुए क्षेत्रफल के सतह खोल में प्रायिकता की मात्रा और मोटाई पर है .
त्रिज्या का परिबद्ध गोला में आयामों में सतह क्षेत्र के रूप में होता है और में प्रतिस्थापन दिखाता है कि खोल में संभाव्यता का तत्व है . यह एक रेडियल घनत्व फलन के बराबर है
जो सरल करता है जहाँ बीटा फलन है।
रेडियल चर को में बदलना पिछला बीटा प्राइम वितरण लौटाता है रेडियल शेप फंक्शन को बदले बिना रेडियल वेरिएबल्स को स्केल करने के लिए, स्केल आव्यूह को परिभाषित करें , एक 3-पैरामीटर कार्टेशियन घनत्व फलन प्रदान करता है, अर्थात। संभावना मात्रा तत्व में है
या, अदिश रेडियल चर के संदर्भ में ,
सभी रेडियल चरों के क्षणों को बीटा प्राइम वितरण से प्राप्त किया जा सकता है। अगर तब , एक ज्ञात परिणाम। इस प्रकार, चर के लिए , के लिए आनुपातिक , अपने पास
के क्षण हैं
स्केल आव्यूह की शुरुआत करते हुए पैदावार
रेडियल चर से संबंधित क्षण सेटिंग करके पाए जाते हैं और के रूप में होते है
लीनियर कॉम्बिनेशन और एफ़िन ट्रांसफ़ॉर्मेशन
किबरिया एट.ए के खंड 3.3 के बाद मान लीजिए एक -सदिश एक केंद्रीय गोलाकार बहुभिन्नरूपी t वितरण से नमूना लिया गया स्वतंत्र की कोटियां: . से लिया गया है एक रैखिक परिवर्तन के माध्यम से होता है,
जहाँ पूर्ण रैंक है, तो
का कोवेरीअन्स है इसके अतिरिक्त अगर एक गैर-सिंगुलर आव्यूह है
अर्थ के साथ .कोवेरीअन्स के रूप में होते है
रोथ (नीचे संदर्भ) नोट करता है कि यदि एक स्क्वाट आव्यूह के साथ तब वितरण के रूप में है .
अगर रूप धारण कर लेता है फिर पीडीएफ अग्रणी का सीमांत वितरण घटक .को संदर्भित करता है।
उपरोक्त में, स्वतंत्र पैरामीटर की डिग्री पूरे समय अपरिवर्तनीय रहता है और सभी सदिश अंततः एक प्रारंभिक आइसोट्रोपिक गोलाकार सदिश से प्राप्त होते हैं जिनके तत्व सांख्यिकीय रूप से स्वतंत्र नहीं होते हैं। स्वतंत्र ची-स्क्वेर्ड नमूनों और भिन्न -भिन्न के साथ उत्पन्न दो नमूना बहुभिन्नरूपी t सदिश मूल्य: के रूप में होते है , जैसा कि प्रमुख पैराग्राफ में परिभाषित किया गया है और इस प्रकार आंतरिक रूप से सुसंगत वितरण का उत्पादन नहीं करता है, चूंकि वे बेहरेंस-फिशर समस्या उत्पन्न करते है।[9]
संबंधित अवधारणाएं
अविभाजित आंकड़ों में छात्र का t -परीक्षण छात्र के t -वितरण का उपयोग करता है| छात्र का t -वितरण हॉटलिंग का t -स्क्वेर्ड वितरण एक ऐसा वितरण है, जो बहुभिन्नरूपी सांख्यिकी में उत्पन्न होता है। आव्यूह t -वितरण एक आव्यूह संरचना में व्यवस्थित यादृच्छिक चर के लिए वितरण के रूप में होता है।
This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations. (May 2012) (Learn how and when to remove this template message) |
यह भी देखें
- बहुभिन्नरूपी सामान्य वितरण, जो कि बहुभिन्नरूपी छात्र के t -वितरण का सीमित स्थितियों है जब .के रूप में होता है
- ची वितरण, छात्र के t -वितरण के निर्माण में स्केलिंग कारक की प्रायिकता घनत्व फलन और सामान्य रूप से वितरित सदिश शून्य पर केंद्रित सामान्य गणित 2-मानदंड या यूक्लिडियन मानदंड के रूप में होते है
- रैले वितरण विद्यार्थी का t, बहुभिन्नरूपी t-वितरण की यादृच्छिक सदिश लंबाई के रूप में होती है
- महालनोबिस दूरी
संदर्भ
- ↑ Roth, Michael (17 April 2013). "बहुभिन्नरूपी टी वितरण पर" (PDF). Automatic Control group. Linköpin University, Sweden. Archived (PDF) from the original on 31 July 2022. Retrieved 1 June 2022.
- ↑ Botev, Z. I.; L'Ecuyer, P. (6 December 2015). "काटे गए बहुभिन्नरूपी छात्र-टी वितरण का कुशल संभाव्यता अनुमान और अनुकरण". 2015 Winter Simulation Conference (WSC). Huntington Beach, CA, USA: IEEE. pp. 380–391. doi:10.1109/WSC.2015.7408180.
- ↑ Genz, Alan (2009). बहुभिन्नरूपी सामान्य और टी संभावनाओं की गणना. Lecture Notes in Statistics. Vol. 195. Springer. doi:10.1007/978-3-642-01689-9. ISBN 978-3-642-01689-9. Archived from the original on 2022-08-27. Retrieved 2017-09-05.
- ↑ Muirhead, Robb (1982). बहुभिन्नरूपी सांख्यिकीय सिद्धांत के पहलू. USA: Wiley. pp. 32-36 Theorem 1.5.4. ISBN 978-0-47 1-76985-9.
- ↑ Cornish, E A (1954). "बहुभिन्नरूपी टी-वितरण सामान्य नमूना विचलन के एक सेट के साथ जुड़ा हुआ है।". Australian Journal of Physics. 7: 531–542. doi:10.1071/PH550193.
- ↑ Ding, Peng (2016). "बहुभिन्नरूपी टी वितरण के सशर्त वितरण पर". The American Statistician. 70 (3): 293-295. arXiv:1604.00561. doi:10.1080/00031305.2016.1164756. S2CID 55842994.
- ↑ Osiewalski, Jacek; Steele, Mark (1996). Bayesian Analysis in Statistics and Econometrics Ch(27): Posterior Moments of Scale Parameters in Elliptical Sampling Models. Wiley. pp. 323–335. ISBN 0-471-11856-7.
- ↑ Kibria, K M G; Joarder, A H (Jan 2006). "बहुभिन्नरूपी टी वितरण की संक्षिप्त समीक्षा" (PDF). Journal of Statistical Research. 40 (1): 59–72. doi:10.1007/s42979-021-00503-0. S2CID 232163198.
- ↑ Giron, Javier; del Castilo, Carmen (2010). "The multivariate Behrens–Fisher distribution". Journal of Multivariate Analysis. 101 (9): 2091–2102. doi:10.1016/j.jmva.2010.04.008.
साहित्य
- Kotz, Samuel; Nadarajah, Saralees (2004). बहुभिन्नरूपी टी वितरण और उनके अनुप्रयोग. Cambridge University Press. ISBN 978-0521826549.
- Cherubini, Umberto; Luciano, Elisa; Vecchiato, Walter (2004). वित्त में कोपुला तरीके. John Wiley & Sons. ISBN 978-0470863442.