नमूने का वितरण: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 73: | Line 73: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 01/06/2023]] | [[Category:Created On 01/06/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 13:09, 21 June 2023
आँकड़ों में, एक नमूना वितरण या परिमित-नमूना वितरण एक दिए गए यादृच्छिक-नमूना-आधारित आँकड़ों का संभाव्यता वितरण है। यदि इच्छानुसार से बड़ी संख्या में नमूने जिनमें से प्रत्येक में कई अवलोकन (डेटा बिंदु) सम्मिलित हैं का उपयोग प्रत्येक नमूने के लिए एक आँकड़ा (जैसे, उदाहरण के लिए नमूना माध्य या नमूना प्रसरण) के एक मान की गणना करने के लिए अलग-अलग किया गया था तो नमूना वितरण उन मानों का प्रायिकता बंटन है जिन पर आँकड़ा लगता है। कई संदर्भों में केवल एक नमूना देखा जाता है किंतु नमूनाकरण वितरण सैद्धांतिक रूप से पाया जा सकता है।
प्रतिचयन वितरण आंकड़ों में महत्वपूर्ण हैं क्योंकि वे सांख्यिकीय अनुमान के मार्ग में एक प्रमुख सरलीकरण प्रदान करते हैं। अधिक विशेष रूप से वे सभी व्यक्तिगत नमूना मानो के संयुक्त संभाव्यता वितरण के बजाय विश्लेषणात्मक विचारों को एक आंकड़े के संभाव्यता वितरण पर आधारित होने की अनुमति देते हैं।
परिचय
एक आंकड़े का नमूनाकरण वितरण उस आंकड़े का संभाव्यता वितरण है जिसे एक यादृच्छिक चर के रूप में माना जाता है जब आकार के एक यादृच्छिक नमूने से प्राप्त किया जाता है। इसे दिए गए नमूना आकार की समान जनसंख्या से सभी संभावित नमूनों के लिए आंकड़ों के वितरण के रूप में माना जा सकता है। नमूनाकरण वितरण जनसंख्या के अंतर्निहित संभाव्यता वितरण पर निर्भर करता है आंकड़े पर विचार किया जा रहा है नमूनाकरण प्रक्रिया नियोजित है और नमूना आकार का उपयोग किया जाता है। अधिकांशतः इस बात में अधिक रुचि होती है कि क्या नमूनाकरण वितरण को एक स्पर्शोन्मुख वितरण द्वारा अनुमानित किया जा सकता है, जो सीमित स्थिति से मेल खाता है या तो परिमित आकार के यादृच्छिक नमूनों की संख्या के रूप में एक अनंत आबादी से लिया जाता है और वितरण का उत्पादन करने के लिए उपयोग किया जाता है अनंत की ओर जाता है या जब समान जनसंख्या का केवल एक समान-अनंत-आकार का नमूना लिया जाता है।
उदाहरण के लिए माध्य के साथ एक सामान्य वितरण जनसंख्या पर विचार करें और विचरण . मान लें कि हम बार-बार इस जनसंख्या से दिए गए आकार के नमूने लेते हैं और अंकगणितीय माध्य की गणना करते हैं प्रत्येक नमूने के लिए - इस आंकड़े को नमूना माध्य कहा जाता है। इन साधनों, या औसतों के वितरण को नमूना माध्य का नमूना वितरण कहा जाता है। यह वितरण सामान्य है (n नमूना आकार है) चूंकि अंतर्निहित जनसंख्या सामान्य है, चूँकि नमूना वितरण भी अधिकांशतः सामान्य के समीप हो सकता है, भले ही जनसंख्या वितरण न हो (केंद्रीय सीमा प्रमेय देखें)। नमूना माध्य का एक विकल्प नमूना माध्यिका है। जब एक ही जनसंख्या से गणना की जाती है, तो इसका अर्थ के लिए एक अलग नमूनाकरण वितरण होता है और सामान्यतः सामान्य नहीं होता है (किंतु यह बड़े नमूना आकारों के समीप हो सकता है)।
उदाहरण के लिए, माध्य और प्रसरण के साथ एक सामान्य जनसंख्या पर विचार करें। मान लें कि हम बार-बार इस आबादी से दिए गए आकार के नमूने लेते हैं और प्रत्येक नमूने के लिए अंकगणितीय माध्य की गणना करते हैं - इस आंकड़े को नमूना माध्य कहा जाता है। इन साधनों, या औसतों के वितरण को "नमूना माध्य का नमूना वितरण" कहा जाता है। यह वितरण सामान्य है (n नमूना आकार है) चूंकि अंतर्निहित जनसंख्या सामान्य है, चूँकि नमूना वितरण भी अधिकांशतः समीप हो सकता है सामान्य तब भी जब जनसंख्या वितरण नहीं है (केंद्रीय सीमा प्रमेय देखें)। नमूना माध्य का एक विकल्प नमूना माध्यिका है। जब एक ही जनसंख्या से गणना की जाती है, तो इसका अर्थ के लिए एक अलग नमूनाकरण वितरण होता है और सामान्यतः सामान्य नहीं होता है (किंतु यह बड़े नमूना आकारों के समीप हो सकता है)।
सामान्य वितरण वाली आबादी से नमूने का अर्थ सबसे सरल सांख्यिकीय आबादी में से एक से लिया गया एक साधारण आंकड़ा है। अन्य आँकड़ों और अन्य आबादी के लिए सूत्र अधिक जटिल होते हैं, और अधिकांशतः वे बंद रूप में उपस्थित नहीं होते हैं। ऐसे स्थितियों में नमूनाकरण वितरण को मोंटे-कार्लो सिमुलेशन,बूटस्ट्रैप विधियों, या एसिम्प्टोटिक वितरण सिद्धांत के माध्यम से अनुमानित किया जा सकता है।[1]
मानक त्रुटि
किसी सांख्यिकी के प्रतिचयन वितरण के मानक विचलन को कहा जाता है उस मात्रा की मानक त्रुटि (सांख्यिकी)। ऐसे स्थिति के लिए जहां आँकड़ा नमूना माध्य है, और नमूने असंबद्ध हैं, मानक त्रुटि है:
इस सूत्र का एक महत्वपूर्ण निहितार्थ यह है कि आधा (1/2) माप त्रुटि प्राप्त करने के लिए नमूना आकार को चौगुना (4 से गुणा) किया जाना चाहिए। सांख्यिकीय अध्ययनों को डिजाइन करते समय जहां निवेश एक कारक है, निवेश -लाभ व्यापार को समझने में इसकी भूमिका हो सकती है।
ऐसे स्थिति के लिए जहां आंकड़ा कुल नमूना है और नमूने असंबद्ध हैं, मानक त्रुटि है:
उदाहरण
जनसंख्या | सांख्यिकीय | नमूने का वितरण |
---|---|---|
सामान्य: | नमूना माध्य आकार n के नमूनों से | .
|
बरनौली: | "सफल परीक्षणों" का नमूना अनुपात | |
दो स्वतंत्र सामान्य आबादी: and |
नमूना साधनों के बीच अंतर, | |
घनत्व f के साथ कोई भी बिल्कुल निरंतर वितरण F | माध्य आकार n = 2k − 1 के नमूने से जहां नमूना से का आदेश दिया गया है। | |
वितरण कार्य F के साथ कोई भी वितरण | आकार n के यादृच्छिक नमूने से अधिकतम |
संदर्भ
- ↑ Mooney, Christopher Z. (1999). मोंटे कार्लो सिमुलेशन. Thousand Oaks, Calif.: Sage. p. 2. ISBN 9780803959439.
- Merberg, A. and S.J. Miller (2008). "The Sample Distribution of the Median". Course Notes for Math 162: Mathematical Statistics, pgs 1–9.