अणु भार: Difference between revisions

From Vigyanwiki
m (Deepak moved page दाढ़ जन to अणु भार without leaving a redirect)
No edit summary
Line 9: Line 9:
}}
}}


[[रसायन विज्ञान]] में, दाढ़ द्रव्यमान ({{mvar|M}}) एक [[रासायनिक यौगिक]] को उक्त यौगिक के किसी भी नमूने के [[द्रव्यमान]] और [[पदार्थ की मात्रा]] (मोल (इकाई) में मापा गया) के बीच के अनुपात के रूप में परिभाषित किया गया है।<ref name="GreenBook">{{GreenBookRef|page=41}}</ref> दाढ़ द्रव्यमान एक द्रव्यमान है, आणविक नहीं, किसी पदार्थ का भौतिक गुण। दाढ़ द्रव्यमान यौगिक के कई उदाहरणों का [[औसत]] है, जो अक्सर समस्थानिकों की उपस्थिति के कारण द्रव्यमान में भिन्न होता है। आमतौर पर, दाढ़ द्रव्यमान की गणना [[मानक परमाणु भार]] से की जाती है और इस प्रकार यह एक स्थलीय औसत है और पृथ्वी पर घटक परमाणुओं के समस्थानिकों की सापेक्ष बहुतायत का एक कार्य है। दाढ़ द्रव्यमान पदार्थ के द्रव्यमान और पदार्थ की मात्रा के बीच बड़ी मात्रा में परिवर्तित करने के लिए उपयुक्त है।
[[रसायन विज्ञान]] में, मोलर द्रव्यमान ({{mvar|M}}) एक [[रासायनिक यौगिक]] को उक्त यौगिक के किसी भी नमूने के [[द्रव्यमान]] और [[पदार्थ की मात्रा]] (मोल (इकाई) में मापा गया) के बीच के अनुपात के रूप में परिभाषित किया गया है।<ref name="GreenBook">{{GreenBookRef|page=41}}</ref> मोलर द्रव्यमान एक द्रव्यमान है, आणविक नहीं, किसी पदार्थ का भौतिक गुण। मोलर द्रव्यमान यौगिक के कई उदाहरणों का [[औसत]] है, जो प्रायः समस्थानिकों की उपस्थिति के कारण द्रव्यमान में भिन्न होता है। सामान्यतः, मोलर द्रव्यमान की गणना [[मानक परमाणु भार]] से की जाती है और इस प्रकार यह एक स्थलीय औसत है और पृथ्वी पर घटक परमाणुओं के समस्थानिकों की सापेक्ष बहुतायत का एक कार्य है। मोलर द्रव्यमान पदार्थ के द्रव्यमान और पदार्थ की मात्रा के बीच बड़ी मात्रा में परिवर्तित करने के लिए उपयुक्त है।
   
   
आणविक द्रव्यमान और सूत्र द्रव्यमान आमतौर पर दाढ़ द्रव्यमान के पर्याय के रूप में उपयोग किया जाता है, विशेष रूप से आणविक यौगिकों के लिए; हालाँकि, सबसे आधिकारिक स्रोत इसे अलग तरह से परिभाषित करते हैं। अंतर यह है कि आणविक द्रव्यमान एक विशिष्ट कण या अणु का द्रव्यमान होता है, जबकि मोलर द्रव्यमान कई कणों या अणुओं का औसत होता है।
आणविक द्रव्यमान और सूत्र द्रव्यमान सामान्यतः मोलर द्रव्यमान के पर्याय के रूप में उपयोग किया जाता है, विशेष रूप से आणविक यौगिकों के लिए; यद्यपि, सबसे आधिकारिक स्रोत इसे अलग तरह से परिभाषित करते हैं। अंतर यह है कि आणविक द्रव्यमान एक विशिष्ट कण या अणु का द्रव्यमान होता है, जबकि मोलर द्रव्यमान कई कणों या अणुओं का औसत होता है।
   
   
सूत्र भार दाढ़ द्रव्यमान का एक पर्याय है जो अक्सर गैर-आणविक यौगिकों, जैसे आयनिक लवण के लिए उपयोग किया जाता है।
सूत्र भार मोलर द्रव्यमान का एक पर्याय है जो प्रायः गैर-आणविक यौगिकों, जैसे आयनिक लवण के लिए उपयोग किया जाता है।
   
   
दाढ़ द्रव्यमान पदार्थ का एक गहन गुण है, जो नमूने के आकार पर निर्भर नहीं करता है। [[इकाइयों की अंतर्राष्ट्रीय प्रणाली]] (एसआई) में, दाढ़ द्रव्यमान की [[सुसंगत इकाई]] [[किलो[[ग्राम]]]] / तिल (इकाई) है। हालांकि, ऐतिहासिक कारणों से, दाढ़ द्रव्यमान लगभग हमेशा ग्राम/मोल में व्यक्त किया जाता है।
मोलर द्रव्यमान पदार्थ का एक गहन गुण है, जो नमूने के आकार पर निर्भर नहीं करता है। [[इकाइयों की अंतर्राष्ट्रीय प्रणाली]] (एसआई) में, मोलर द्रव्यमान की [[सुसंगत इकाई]] [[किलो[[ग्राम]]]] / मोल (इकाई) है। यद्यपि, ऐतिहासिक कारणों से, मोलर द्रव्यमान लगभग हमेशा ग्राम/मोल में व्यक्त किया जाता है।
   
   
तिल को इस तरह से परिभाषित किया गया था कि एक यौगिक का मोलर द्रव्यमान, g/mol में, संख्यात्मक रूप से [[ डाल्टन (इकाई) ]] में एक अणु के औसत द्रव्यमान के बराबर होता है। यह SI आधार इकाइयों#मोल की 2019 पुनर्परिभाषा से पहले बिल्कुल बराबर था, और अब केवल लगभग बराबर है, लेकिन सभी व्यावहारिक उद्देश्यों के लिए अंतर नगण्य है। इस प्रकार, उदाहरण के लिए, [[पानी के गुण]]ों के एक अणु का औसत द्रव्यमान लगभग 18.0153 डाल्टन होता है, और पानी का मोलर द्रव्यमान लगभग 18.0153 g/mol होता है।
मोल को इस तरह से परिभाषित किया गया था कि एक यौगिक का मोलर द्रव्यमान, ग्राम/मोल में, संख्यात्मक रूप से [[ डाल्टन (इकाई) ]] में एक अणु के औसत द्रव्यमान के बराबर होता है। यह मोल की 2019 पुनर्परिभाषा से पहले बिल्कुल बराबर था, और अब केवल लगभग बराबर है, लेकिन सभी व्यावहारिक उद्देश्यों के लिए अंतर नगण्य है। इस प्रकार, उदाहरण के लिए, [[पानी के गुण|पानी]] के एक अणु का औसत द्रव्यमान लगभग 18.0153 डाल्टन होता है, और पानी का मोलर द्रव्यमान लगभग 18.0153 ग्राम/मोल होता है।
   
   
[[कार्बन]] और धातुओं जैसे पृथक अणुओं के बिना रासायनिक तत्वों के लिए, दाढ़ द्रव्यमान को परमाणुओं के मोल्स की संख्या से विभाजित करके गणना की जाती है। इस प्रकार, उदाहरण के लिए, लोहे का मोलर द्रव्यमान लगभग 55.845 g/mol है।
[[कार्बन]] और धातुओं जैसे पृथक अणुओं के बिना रासायनिक तत्वों के लिए, मोलर द्रव्यमान को परमाणुओं के मोल की संख्या से विभाजित करके गणना की जाती है। इस प्रकार, उदाहरण के लिए, लोहे का मोलर द्रव्यमान लगभग 55.845 ग्राम/मोल है।
   
   
1971 से, SI ने पदार्थ की मात्रा को एक अलग [[आयामी विश्लेषण]] के रूप में परिभाषित किया। 2019 तक, मोल को पदार्थ की उस मात्रा के रूप में परिभाषित किया जाता था जिसमें उतने ही घटक कण होते हैं जितने कि 12 ग्राम [[कार्बन-12]] में परमाणु होते हैं। उस अवधि के दौरान, परिभाषा के अनुसार, कार्बन-12 का मोलर द्रव्यमान ठीक 12 g/mol था। 2019 के बाद से, किसी भी पदार्थ के एक मोल को SI आधार इकाइयों की 2019 पुनर्परिभाषित किया गया है, क्योंकि उस पदार्थ की मात्रा में कणों की सटीक परिभाषित संख्या होती है, {{physconst|NA|unit=no|ref=no}}. g/mol में यौगिक का दाढ़ द्रव्यमान ग्राम में यौगिक के अणुओं की संख्या के द्रव्यमान के बराबर होता है।
1971 से, SI ने पदार्थ की मात्रा को एक अलग [[आयामी विश्लेषण]] के रूप में परिभाषित किया। 2019 तक, मोल को पदार्थ की उस मात्रा के रूप में परिभाषित किया जाता था जिसमें उतने ही घटक कण होते हैं जितने कि 12 ग्राम [[कार्बन-12]] में परमाणु होते हैं। उस अवधि में, परिभाषा के अनुसार, कार्बन-12 का मोलर द्रव्यमान ठीक 12 ग्राम/मोल था। 2019 के बाद से, किसी भी पदार्थ के एक मोल को SI आधार इकाइयों की 2019 पुनर्परिभाषित किया गया है, क्योंकि उस पदार्थ की मात्रा में कणों की सटीक परिभाषित संख्या {{physconst|NA|unit=no|ref=no}} होती है,। ग्राम/मोल में यौगिक का मोलर द्रव्यमान ग्राम में यौगिक के अणुओं की संख्या के द्रव्यमान के बराबर होता है।


== तत्वों का मोलर द्रव्यमान ==
== तत्वों का मोलर द्रव्यमान ==
{{main|Relative atomic mass|Standard atomic weight}}
{{main|Relative atomic mass|Standard atomic weight}}


[[रासायनिक तत्व]] के परमाणुओं का दाढ़ द्रव्यमान तत्व के सापेक्ष परमाणु द्रव्यमान को दाढ़ द्रव्यमान स्थिरांक से गुणा करके दिया जाता है, {{physconst|Mu|symbol=yes|after=.}} विशिष्ट समस्थानिक संरचना के साथ पृथ्वी से सामान्य नमूनों के लिए, परमाणु भार को मानक परमाणु भार द्वारा अनुमानित किया जा सकता है<ref name="AtWt">{{AtWt 2005}}</ref> या पारंपरिक परमाणु भार।<!-- generates a named reference that can be reused as <ref name="CODATA2010" /> -->
[[रासायनिक तत्व]] के परमाणुओं का मोलर द्रव्यमान तत्व के सापेक्ष परमाणु द्रव्यमान को मोलर द्रव्यमान स्थिरांक से गुणा करके दिया जाता है, {{physconst|Mu|symbol=yes|after=.}} विशिष्ट समस्थानिक संरचना के साथ पृथ्वी से सामान्य नमूनों के लिए, परमाणु भार को मानक परमाणु भार या पारंपरिक परमाणु भार द्वारा अनुमानित किया जा सकता है<ref name="AtWt">{{AtWt 2005}}</ref> <!-- generates a named reference that can be reused as <ref name="CODATA2010" /> -->
:<math chem>\begin{array}{lll}
:<math chem>\begin{array}{lll}
M(\ce{H})  &= 1.00797(7) \times M_\mathrm{u} &= 1.00797(7) \text{ g/mol} \\
M(\ce{H})  &= 1.00797(7) \times M_\mathrm{u} &= 1.00797(7) \text{ g/mol} \\
Line 33: Line 33:
M(\ce{Fe}) &= 55.845(2) \times M_\mathrm{u}  &= 55.845(2) \text{ g/mol}
M(\ce{Fe}) &= 55.845(2) \times M_\mathrm{u}  &= 55.845(2) \text{ g/mol}
\end{array}</math>
\end{array}</math>
दाढ़ द्रव्यमान स्थिरांक से गुणा करने से यह सुनिश्चित होता है कि गणना विमीय रूप से सही है: मानक सापेक्ष परमाणु द्रव्यमान [[आयाम]] रहित मात्राएँ हैं (अर्थात, शुद्ध संख्याएँ) जबकि दाढ़ द्रव्यमान में इकाइयाँ होती हैं (इस मामले में, ग्राम प्रति मोल)।
मोलर द्रव्यमान स्थिरांक से गुणा करने से यह सुनिश्चित होता है कि गणना विमीय रूप से सही है: मानक सापेक्ष परमाणु द्रव्यमान [[आयाम]] रहित मात्राएँ हैं (अर्थात, शुद्ध संख्याएँ) जबकि मोलर द्रव्यमान में इकाइयाँ होती हैं (इस कारक में, ग्राम प्रति मोल)।


कुछ तत्व आमतौर पर [[अणु]]ओं के रूप में पाए जाते हैं, उदा। [[हाइड्रोजन]] ({{chem2|H2}}), [[ गंधक ]] ({{chem2|S8}}), [[क्लोरीन]] ({{chem2|Cl2}}). इन तत्वों के अणुओं का दाढ़ द्रव्यमान प्रत्येक अणु में परमाणुओं की संख्या से गुणा किए गए परमाणुओं का दाढ़ द्रव्यमान है:
कुछ तत्व सामान्यतः [[अणु]]ओं के रूप में पाए जाते हैं, उदा। [[हाइड्रोजन]] ({{chem2|H2}}), [[Index.php?title=सल्फर|सल्फर]] ({{chem2|S8}}), [[क्लोरीन]] ({{chem2|Cl2}})इन तत्वों के अणुओं का मोलर द्रव्यमान प्रत्येक अणु में परमाणुओं की संख्या से गुणा किए गए परमाणुओं का मोलर द्रव्यमान है:
:<math chem>\begin{array}{lll}
:<math chem>\begin{array}{lll}
M(\ce{H2})  &= 2\times 1.00797(7) \times M_\mathrm{u} &= 2.01588(14) \text{ g/mol} \\
M(\ce{H2})  &= 2\times 1.00797(7) \times M_\mathrm{u} &= 2.01588(14) \text{ g/mol} \\
Line 43: Line 43:




== यौगिकों के दाढ़ द्रव्यमान ==
== यौगिकों के मोलर द्रव्यमान ==
एक रासायनिक यौगिक का दाढ़ द्रव्यमान [[सापेक्ष परमाणु द्रव्यमान]] के योग द्वारा दिया जाता है {{math|''A''{{sub|r}}}} परमाणु जो यौगिक का निर्माण करते हैं, को दाढ़ द्रव्यमान स्थिरांक से गुणा करते हैं {{math|''M''{{sub|u}}}}:
एक रासायनिक यौगिक का मोलर द्रव्यमान [[सापेक्ष परमाणु द्रव्यमान]] {{math|''A''{{sub|r}}}} के योग द्वारा दिया जाता है जो मोलर द्रव्यमान स्थिरांक {{math|''M''{{sub|u}}}}से गुणा करके परमाणु यौगिक का निर्माण करते हैं, :


:<math>M = M_{\rm u} M_{\rm r} = M_{\rm u} \sum_i {A_{\rm r}}_i.</math>
:<math>M = M_{\rm u} M_{\rm r} = M_{\rm u} \sum_i {A_{\rm r}}_i.</math>
यहाँ, {{math|''M''{{sub|u}}}} सापेक्ष दाढ़ द्रव्यमान है, जिसे सूत्र भार भी कहा जाता है। विशिष्ट समस्थानिक संरचना वाले पृथ्वी से सामान्य नमूनों के लिए, मानक परमाणु भार या पारंपरिक परमाणु भार का उपयोग नमूने के सापेक्ष परमाणु द्रव्यमान के सन्निकटन के रूप में किया जा सकता है। उदाहरण हैं: <math chem display=block>\begin{array}{ll}
यहाँ, {{math|''M''{{sub|u}}}} सापेक्ष मोलर द्रव्यमान है, जिसे सूत्र भार भी कहा जाता है। विशिष्ट समस्थानिक संरचना वाले पृथ्वी से सामान्य नमूनों के लिए, मानक परमाणु भार या पारंपरिक परमाणु भार का उपयोग नमूने के सापेक्ष परमाणु द्रव्यमान के सन्निकटन के रूप में किया जा सकता है। उदाहरण हैं: <math chem display=block>\begin{array}{ll}
M(\ce{NaCl}) &= \bigl[22.98976928(2) + 35.453(2)\bigr] \times 1 \text{ g/mol} \\
M(\ce{NaCl}) &= \bigl[22.98976928(2) + 35.453(2)\bigr] \times 1 \text{ g/mol} \\
             &= 58.443(2) \text{ g/mol} \\[4pt]
             &= 58.443(2) \text{ g/mol} \\[4pt]
Line 53: Line 53:
                   &= 342.297(14) \text{ g/mol}
                   &= 342.297(14) \text{ g/mol}
\end{array}</math>
\end{array}</math>
यौगिकों के मिश्रण के लिए एक औसत दाढ़ द्रव्यमान परिभाषित किया जा सकता है।<ref name="GreenBook" />यह [[बहुलक विज्ञान]] में विशेष रूप से महत्वपूर्ण है, जहां विभिन्न बहुलक अणुओं में अलग-अलग संख्या में [[मोनोमर]] इकाइयां (गैर-समान पॉलिमर) हो सकती हैं।<ref>{{cite journal | title = इंटरनेशनल यूनियन ऑफ प्योर एंड एप्लाइड केमिस्ट्री, कमीशन ऑन मैक्रोमोलेक्यूलर नोमेनक्लेचर, नोट ऑन द टर्मिनोलॉजी फॉर मोलर मास इन पॉलीमर साइंस| year = 1984 | journal = Journal of Polymer Science: Polymer Letters Edition| volume = 22 | pages = 57 | issue=1 | doi=10.1002/pol.1984.130220116 |bibcode = 1984JPoSL..22...57.}}</ref><ref>{{cite book | last = Metanomski | first =  W. V. | title = मैक्रोमोलेक्युलर नामकरण का संग्रह| year = 1991 | publisher = [[Blackwell Science]] | location = Oxford | pages = 47–73 | isbn = 0-632-02847-5}}</ref>
एक औसत मोलर यौगिकों के मिश्रण के लिए द्रव्यमान परिभाषित किया जा सकता है।<ref name="GreenBook" />यह [[बहुलक विज्ञान]] में विशेष रूप से महत्वपूर्ण है, जहां विभिन्न बहुलक अणुओं में अलग-अलग संख्या में [[मोनोमर]] इकाइयां (गैर-समान बहुलक) हो सकती हैं।<ref>{{cite journal | title = इंटरनेशनल यूनियन ऑफ प्योर एंड एप्लाइड केमिस्ट्री, कमीशन ऑन मैक्रोमोलेक्यूलर नोमेनक्लेचर, नोट ऑन द टर्मिनोलॉजी फॉर मोलर मास इन पॉलीमर साइंस| year = 1984 | journal = Journal of Polymer Science: Polymer Letters Edition| volume = 22 | pages = 57 | issue=1 | doi=10.1002/pol.1984.130220116 |bibcode = 1984JPoSL..22...57.}}</ref><ref>{{cite book | last = Metanomski | first =  W. V. | title = मैक्रोमोलेक्युलर नामकरण का संग्रह| year = 1991 | publisher = [[Blackwell Science]] | location = Oxford | pages = 47–73 | isbn = 0-632-02847-5}}</ref>


An average molar mass may be defined for mixtures of compounds. This is particularly important in polymer science, where different polymer molecules may contain different numbers of monomer units (non-uniform polymers).
== मिश्रण का औसत मोलर द्रव्यमान ==


== मिश्रण का औसत दाढ़ द्रव्यमान ==
मिश्रण का औसत मोलर द्रव्यमान <math>\overline{M}</math> घटकों के मोल अंशों {{mvar|x{{sub|i}}}}और उनके मोलर द्रव्यमान {{mvar|M{{sub|i}}}} से गणना की जा सकती है  :
 
मिश्रण का औसत दाढ़ द्रव्यमान <math>\overline{M}</math> तिल अंशों से गणना की जा सकती है {{mvar|x{{sub|i}}}} घटकों और उनके दाढ़ जन की {{mvar|M{{sub|i}}}}:


:<math>\overline{M} = \sum_i x_i M_i.</math>
:<math>\overline{M} = \sum_i x_i M_i.</math>
इसकी गणना [[द्रव्यमान अंश (रसायन विज्ञान)]] से भी की जा सकती है {{mvar|w{{sub|i}}}} घटकों में से:
इसकी गणना घटकों के [[द्रव्यमान अंश (रसायन विज्ञान)]]{{mvar|w{{sub|i}}}} से भी की जा सकती है :


:<math>\frac{1}{\overline{M}} = \sum_i\frac{w_i}{M_i}.</math>
:<math>\frac{1}{\overline{M}} = \sum_i\frac{w_i}{M_i}.</math>
उदाहरण के तौर पर, शुष्क हवा का औसत मोलर द्रव्यमान 28.97 g/mol है।<ref>The Engineering ToolBox  [http://www.engineeringtoolbox.com/molecular-mass-air-d_679.html Molecular Mass of Air]</ref>
उदाहरण के लिए, शुष्क हवा का औसत मोलर द्रव्यमान 28.97 ग्राम/मोल है।<ref>The Engineering ToolBox  [http://www.engineeringtoolbox.com/molecular-mass-air-d_679.html Molecular Mass of Air]</ref>




== संबंधित मात्राएँ ==
== संबंधित मात्राएँ ==


दाढ़ द्रव्यमान सापेक्ष दाढ़ द्रव्यमान से निकटता से संबंधित है ({{math|''M''{{sub|r}}}}) एक यौगिक का, पुराने शब्द सूत्र भार (F.W.) के लिए, और इसके घटक तत्वों के परमाणु द्रव्यमान के लिए। हालांकि, इसे आणविक द्रव्यमान से अलग किया जाना चाहिए (जो भ्रामक रूप से "भी" है जिसे कभी-कभी आणविक भार के रूप में जाना जाता है), जो "एक" अणु (किसी भी "एकल" समस्थानिक संरचना का) का द्रव्यमान है और है सीधे परमाणु द्रव्यमान से संबंधित नहीं, '' एक '' परमाणु का द्रव्यमान (किसी '' एकल '' समस्थानिक का)। डाल्टन (यूनिट), प्रतीक दा, को कभी-कभी दाढ़ द्रव्यमान की एक इकाई के रूप में भी प्रयोग किया जाता है, विशेष रूप से जैव रसायन में, परिभाषा के साथ 1Da = 1 g/mol, इस तथ्य के बावजूद कि यह सख्ती से द्रव्यमान की एक इकाई है (1 Da = 1 यू = {{val|1.66053906660e−27|(50)|u=kg}}, 2018 के अनुसार CODATA अनुशंसित मान)।
मोलर द्रव्यमान एक यौगिक के सापेक्ष मोलर द्रव्यमान {{math|''M''{{sub|r}}}} से, पुराना शब्द सूत्र भार (F.W.) , और इसके घटक तत्वों के परमाणु द्रव्यमान से निकटता से संबंधित है। यद्यपि, इसे आणविक द्रव्यमान से अलग किया जाना चाहिए (जो भ्रामक रूप से "भी" है जिसे कभी-कभी आणविक भार के रूप में जाना जाता है), जो "एक" अणु (किसी भी "एकल" समस्थानिक संरचना का) का द्रव्यमान है और है सीधे परमाणु द्रव्यमान से संबंधित नहीं, '' एक '' परमाणु का द्रव्यमान (किसी '' एकल '' समस्थानिक का)। डाल्टन (यूनिट), प्रतीक दा, को कभी-कभी मोलर द्रव्यमान की एक इकाई के रूप में भी प्रयोग किया जाता है, विशेष रूप से जैव रसायन में, परिभाषा के साथ 1Da = 1 ग्राम/मोल, इस तथ्य के बावजूद कि यह सख्ती से द्रव्यमान की एक इकाई है (1 Da = 1 यू = {{val|1.66053906660e−27|(50)|u=kg}}, 2018 के अनुसार CODATA अनुशंसित मान)।
 
ग्राम परमाणु भार उस तत्व के परमाणुओं के एक मोल के ग्राम में, द्रव्यमान के लिए एक और शब्द है। ग्राम परमाणु मोल के लिए एक पूर्व शब्द है।
 
आणविक भार (M.W.) एक पुराना शब्द है जिसे अब अधिक सही ढंग से सापेक्ष मोलर द्रव्यमान कहा जाता है ({{math|''M''{{sub|r}}}}).<ref>{{GoldBookRef|title=relative molar mass|file=R05270}}</ref> यह एक आयाम रहित मात्रा है (अर्थात, एक शुद्ध संख्या, बिना इकाइयों के) मोलर द्रव्यमान स्थिरांक द्वारा विभाजित मोलर द्रव्यमान के बराबर है।<ref>The technical definition is that the relative molar mass is the molar mass measured on a scale where the molar mass of unbound [[carbon 12]] atoms, at rest and in their electronic ground state, is 12. The simpler definition given here is equivalent to the full definition because of the way the [[molar mass constant]] is itself defined.</ref>


ग्राम परमाणु भार उस तत्व के परमाणुओं के एक मोल के ग्राम में, द्रव्यमान के लिए एक और शब्द है। ग्राम परमाणु तिल के लिए एक पूर्व शब्द है।
Molar mass is closely related to the '''relative molar mass''' (''M''<sub>r</sub>) of a compound, to the older term '''formula weight''' (F.W.), and to the standard atomic masses of its constituent elements. However, it should be distinguished from the molecular mass (which is confusingly ''also'' sometimes known as molecular weight), which is the mass of ''one'' molecule (of any ''single'' isotopic composition) and is not directly related to the atomic mass, the mass of ''one'' atom (of any ''single'' isotope). The dalton, symbol Da, is also sometimes used as a unit of molar mass, especially in biochemistry, with the definition 1 Da = 1 g/mol, despite the fact that it is strictly a unit of mass (1 Da = 1 u = 1.66053906660(50)×10<sup>−27</sup> kg, as of 2018 CODATA recommended values).


आणविक भार (M.W.) एक पुराना शब्द है जिसे अब अधिक सही ढंग से सापेक्ष दाढ़ द्रव्यमान कहा जाता है ({{math|''M''{{sub|r}}}}).<ref>{{GoldBookRef|title=relative molar mass|file=R05270}}</ref> यह एक आयाम रहित मात्रा है (अर्थात, एक शुद्ध संख्या, बिना इकाइयों के) दाढ़ द्रव्यमान स्थिरांक द्वारा विभाजित दाढ़ द्रव्यमान के बराबर है।<ref>The technical definition is that the relative molar mass is the molar mass measured on a scale where the molar mass of unbound [[carbon 12]] atoms, at rest and in their electronic ground state, is 12. The simpler definition given here is equivalent to the full definition because of the way the [[molar mass constant]] is itself defined.</ref>
'''Gram atomic mass''' is another term for the mass, in grams, of one mole of atoms of that element. "Gram atom" is a former term for a mole.


'''Molecular weight''' (M.W.) is an older term for what is now more correctly called the '''relative molar mass''' (''M''<sub>r</sub>). This is a dimensionless quantity (i.e., a pure number, without units) equal to the molar mass divided by the molar mass constant.


=== आणविक द्रव्यमान ===
=== आणविक द्रव्यमान ===
{{main|Molecular mass}}
{{main|Molecular mass}}
आणविक द्रव्यमान ({{mvar|m}}) किसी दिए गए अणु का द्रव्यमान है: इसे आमतौर पर डाल्टन (यूनिट) एस (दा या यू) में मापा जाता है।<ref name="SI">{{SIbrochure8th|page=126}}</ref> एक ही यौगिक के विभिन्न अणुओं में अलग-अलग आणविक द्रव्यमान हो सकते हैं क्योंकि उनमें एक तत्व के अलग-अलग समस्थानिक होते हैं। यह अलग है लेकिन दाढ़ द्रव्यमान से संबंधित है, जो एक नमूने में सभी अणुओं के औसत आणविक द्रव्यमान का एक उपाय है और आमतौर पर किसी पदार्थ की मैक्रोस्कोपिक (वजन-सक्षम) मात्रा से निपटने के लिए अधिक उपयुक्त उपाय है।
आणविक द्रव्यमान ({{mvar|m}}) किसी दिए गए अणु का द्रव्यमान है: इसे सामान्यतः डाल्टन (यूनिट) एस (दा या यू) में मापा जाता है।<ref name="SI">{{SIbrochure8th|page=126}}</ref> एक ही यौगिक के विभिन्न अणुओं में अलग-अलग आणविक द्रव्यमान हो सकते हैं क्योंकि उनमें एक तत्व के अलग-अलग समस्थानिक होते हैं। यह अलग है लेकिन मोलर द्रव्यमान से संबंधित है, जो एक नमूने में सभी अणुओं के औसत आणविक द्रव्यमान का एक उपाय है और सामान्यतः किसी पदार्थ की मैक्रोस्कोपिक (वजन-सक्षम) मात्रा से निपटने के लिए अधिक उपयुक्त उपाय है।


आणविक द्रव्यमान की गणना प्रत्येक [[न्यूक्लाइड]] के परमाणु द्रव्यमान से की जाती है, जबकि मोलर द्रव्यमान की गणना मानक परमाणु भार से की जाती है।<ref>{{cite web | title = सभी तत्वों के लिए परमाणु भार और समस्थानिक रचनाएँ| url = http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl?ele=&all=all&ascii=html&isotype=some | publisher = [[NIST]] | access-date = 2007-10-14}}</ref> प्रत्येक रासायनिक तत्व की। मानक परमाणु भार किसी दिए गए नमूने में तत्व के आइसोटोप को ध्यान में रखता है (आमतौर पर सामान्य माना जाता है)। उदाहरण के लिए, [[पानी (अणु)]] का दाढ़ द्रव्यमान होता है {{val|18.0153|(3)|u=g/mol}}, लेकिन अलग-अलग पानी के अणुओं में आणविक द्रव्यमान होते हैं जो बीच में होते हैं {{val|18.0105646863|(15)|u=Da}} ({{chem2|^{1}H2^{16}O}}) और {{val|22.0277364|(9)|u=Da}} ({{chem2|^{2}H2^{18}O}}).
आणविक द्रव्यमान की गणना प्रत्येक [[न्यूक्लाइड]] के परमाणु द्रव्यमान से की जाती है, जबकि मोलर द्रव्यमान की गणना मानक परमाणु भार से की जाती है।<ref>{{cite web | title = सभी तत्वों के लिए परमाणु भार और समस्थानिक रचनाएँ| url = http://physics.nist.gov/cgi-bin/Compositions/stand_alone.pl?ele=&all=all&ascii=html&isotype=some | publisher = [[NIST]] | access-date = 2007-10-14}}</ref> प्रत्येक रासायनिक तत्व की। मानक परमाणु भार किसी दिए गए नमूने में तत्व के आइसोटोप को ध्यान में रखता है (सामान्यतः सामान्य माना जाता है)। उदाहरण के लिए, [[पानी (अणु)]] का मोलर द्रव्यमान होता है {{val|18.0153|(3)|u=g/mol}}, लेकिन अलग-अलग पानी के अणुओं में आणविक द्रव्यमान होते हैं जो बीच में होते हैं {{val|18.0105646863|(15)|u=Da}} ({{chem2|^{1}H2^{16}O}}) और {{val|22.0277364|(9)|u=Da}} ({{chem2|^{2}H2^{18}O}}).


दाढ़ द्रव्यमान और आणविक द्रव्यमान के बीच अंतर महत्वपूर्ण है क्योंकि सापेक्ष आणविक द्रव्यमान को [[मास स्पेक्ट्रोमेट्री]] द्वारा सीधे मापा जा सकता है, अक्सर कुछ [[भाग प्रति मिलियन]] की सटीकता के लिए। यह अणु के [[रासायनिक सूत्र]] को सीधे निर्धारित करने के लिए पर्याप्त सटीक है।<ref>{{cite web | title = Author Guidelines – Article Layout | url = http://www.rsc.org/Publishing/ReSourCe/AuthorGuidelines/ArticleLayout/sect3.asp | publisher = [[Royal Society of Chemistry|RSC Publishing]] | access-date = 2007-10-14}}</ref>
मोलर द्रव्यमान और आणविक द्रव्यमान के बीच अंतर महत्वपूर्ण है क्योंकि सापेक्ष आणविक द्रव्यमान को [[मास स्पेक्ट्रोमेट्री]] द्वारा सीधे मापा जा सकता है, प्रायः कुछ [[भाग प्रति मिलियन]] की सटीकता के लिए। यह अणु के [[रासायनिक सूत्र]] को सीधे निर्धारित करने के लिए पर्याप्त सटीक है।<ref>{{cite web | title = Author Guidelines – Article Layout | url = http://www.rsc.org/Publishing/ReSourCe/AuthorGuidelines/ArticleLayout/sect3.asp | publisher = [[Royal Society of Chemistry|RSC Publishing]] | access-date = 2007-10-14}}</ref>




Line 89: Line 94:


== सटीकता और अनिश्चितता ==
== सटीकता और अनिश्चितता ==
जिस सटीकता के लिए एक दाढ़ द्रव्यमान ज्ञात होता है, वह उस परमाणु द्रव्यमान की सटीकता पर निर्भर करता है जिससे इसकी गणना की गई थी, और दाढ़ द्रव्यमान स्थिरांक का मान। अधिकांश परमाणु द्रव्यमान दस हजार में कम से कम एक भाग की सटीकता के लिए जाने जाते हैं, अक्सर बहुत बेहतर<ref name="AtWt"/>([[लिथियम]] का परमाणु द्रव्यमान एक उल्लेखनीय और गंभीर है,<ref>{{Greenwood&Earnshaw|page=21}}</ref> अपवाद)। यह रसायन विज्ञान में लगभग सभी सामान्य उपयोगों के लिए पर्याप्त है: यह अधिकांश [[रासायनिक विश्लेषण]]ों की तुलना में अधिक सटीक है, और अधिकांश प्रयोगशाला अभिकर्मकों की शुद्धता से अधिक है।
जिस सटीकता के लिए एक मोलर द्रव्यमान ज्ञात होता है, वह उस परमाणु द्रव्यमान की सटीकता पर निर्भर करता है जिससे इसकी गणना की गई थी, और मोलर द्रव्यमान स्थिरांक का मान। अधिकांश परमाणु द्रव्यमान दस हजार में कम से कम एक भाग की सटीकता के लिए जाने जाते हैं, प्रायः बहुत बेहतर<ref name="AtWt"/>([[लिथियम]] का परमाणु द्रव्यमान एक उल्लेखनीय और गंभीर है,<ref>{{Greenwood&Earnshaw|page=21}}</ref> अपवाद)। यह रसायन विज्ञान में लगभग सभी सामान्य उपयोगों के लिए पर्याप्त है: यह अधिकांश [[रासायनिक विश्लेषण]]ों की तुलना में अधिक सटीक है, और अधिकांश प्रयोगशाला अभिकर्मकों की शुद्धता से अधिक है।


परमाणु द्रव्यमान की सटीकता, और इसलिए दाढ़ जन की, तत्व के समस्थानिक के ज्ञान से सीमित है। यदि दाढ़ द्रव्यमान का अधिक सटीक मूल्य आवश्यक है, तो प्रश्न में नमूने के समस्थानिक वितरण को निर्धारित करना आवश्यक है, जो मानक परमाणु द्रव्यमान की गणना के लिए उपयोग किए जाने वाले मानक वितरण से भिन्न हो सकता है। एक नमूने में विभिन्न तत्वों के समस्थानिक वितरण आवश्यक रूप से एक दूसरे से स्वतंत्र नहीं होते हैं: उदाहरण के लिए, एक नमूना जो [[आसवन]] किया गया है वह मौजूद सभी तत्वों के हल्के समस्थानिकों में [[समस्थानिक संवर्धन]] होगा। यह दाढ़ द्रव्यमान में [[मानक अनिश्चितता]] की गणना को जटिल बनाता है।
परमाणु द्रव्यमान की सटीकता, और इसलिए दाढ़ जन की, तत्व के समस्थानिक के ज्ञान से सीमित है। यदि मोलर द्रव्यमान का अधिक सटीक मूल्य आवश्यक है, तो प्रश्न में नमूने के समस्थानिक वितरण को निर्धारित करना आवश्यक है, जो मानक परमाणु द्रव्यमान की गणना के लिए उपयोग किए जाने वाले मानक वितरण से भिन्न हो सकता है। एक नमूने में विभिन्न तत्वों के समस्थानिक वितरण आवश्यक रूप से एक दूसरे से स्वतंत्र नहीं होते हैं: उदाहरण के लिए, एक नमूना जो [[आसवन]] किया गया है वह मौजूद सभी तत्वों के हल्के समस्थानिकों में [[समस्थानिक संवर्धन]] होगा। यह मोलर द्रव्यमान में [[मानक अनिश्चितता]] की गणना को जटिल बनाता है।


सामान्य प्रयोगशाला कार्य के लिए एक उपयोगी परिपाटी सभी गणनाओं के लिए दाढ़ द्रव्यमान को दो [[दशमलव स्थान]]ों तक उद्धृत करना है। यह आमतौर पर आवश्यक से अधिक सटीक है, लेकिन गणना के दौरान राउंडिंग त्रुटियों से बचा जाता है। जब दाढ़ द्रव्यमान 1000 g/mol से अधिक होता है, तो एक से अधिक दशमलव स्थान का उपयोग करना शायद ही कभी उचित होता है। मोलर द्रव्यमान के अधिकांश सारणीबद्ध मूल्यों में इन परिपाटियों का पालन किया जाता है।<ref>See, e.g., {{RubberBible53rd}}</ref><ref>{{cite journal
सामान्य प्रयोगशाला कार्य के लिए एक उपयोगी परिपाटी सभी गणनाओं के लिए मोलर द्रव्यमान को दो [[दशमलव स्थान]]ों तक उद्धृत करना है। यह सामान्यतः आवश्यक से अधिक सटीक है, लेकिन गणना के दौरान राउंडिंग त्रुटियों से बचा जाता है। जब मोलर द्रव्यमान 1000 ग्राम/मोल से अधिक होता है, तो एक से अधिक दशमलव स्थान का उपयोग करना शायद ही कभी उचित होता है। मोलर द्रव्यमान के अधिकांश सारणीबद्ध मूल्यों में इन परिपाटियों का पालन किया जाता है।<ref>See, e.g., {{RubberBible53rd}}</ref><ref>{{cite journal
  |title=Interpreting and propagating the uncertainty of the standard atomic weights (IUPAC Technical Report)
  |title=Interpreting and propagating the uncertainty of the standard atomic weights (IUPAC Technical Report)
  |journal=Pure and Applied Chemistry
  |journal=Pure and Applied Chemistry
Line 109: Line 114:


== माप ==
== माप ==
मोलर द्रव्यमान को लगभग कभी भी सीधे तौर पर नहीं मापा जाता है। उनकी गणना मानक परमाणु द्रव्यमान से की जा सकती है, और अक्सर रासायनिक कैटलॉग और सुरक्षा डेटा शीट्स (एसडीएस) में सूचीबद्ध होती हैं। मोलर द्रव्यमान आमतौर पर निम्न के बीच भिन्न होता है:
मोलर द्रव्यमान को लगभग कभी भी सीधे तौर पर नहीं मापा जाता है। उनकी गणना मानक परमाणु द्रव्यमान से की जा सकती है, और प्रायः रासायनिक कैटलॉग और सुरक्षा डेटा शीट्स (एसडीएस) में सूचीबद्ध होती हैं। मोलर द्रव्यमान सामान्यतः निम्न के बीच भिन्न होता है:
:1–238 g/mol प्राकृतिक रूप से पाए जाने वाले तत्वों के परमाणुओं के लिए;
:1–238 ग्राम/मोल प्राकृतिक रूप से पाए जाने वाले तत्वों के परमाणुओं के लिए;
:{{val|10|–|1000|u=g/mol}} छोटे अणु के लिए;
:{{val|10|–|1000|u=g/mol}} छोटे अणु के लिए;
:{{val|1000|–|5000000|u=g/mol}} [[ पॉलीमर ]], [[प्रोटीन]], [[डीएनए]] के टुकड़े आदि के लिए।
:{{val|1000|–|5000000|u=g/mol}} [[ पॉलीमर ]], [[प्रोटीन]], [[डीएनए]] के टुकड़े आदि के लिए।


जबकि दाढ़ द्रव्यमान लगभग हमेशा, व्यवहार में, परमाणु भार से गणना की जाती है, उन्हें कुछ मामलों में भी मापा जा सकता है। इस तरह के माप परमाणु भार और आणविक द्रव्यमान के आधुनिक मास स्पेक्ट्रोमेट्री माप से बहुत कम सटीक हैं, और ज्यादातर ऐतिहासिक रुचि के हैं। सभी प्रक्रियाएं [[संपार्श्विक संपत्ति]] पर निर्भर करती हैं, और यौगिक के किसी भी पृथक्करण (रसायन विज्ञान) को ध्यान में रखा जाना चाहिए।
जबकि मोलर द्रव्यमान लगभग हमेशा, व्यवहार में, परमाणु भार से गणना की जाती है, उन्हें कुछ मामलों में भी मापा जा सकता है। इस तरह के माप परमाणु भार और आणविक द्रव्यमान के आधुनिक मास स्पेक्ट्रोमेट्री माप से बहुत कम सटीक हैं, और ज्यादातर ऐतिहासिक रुचि के हैं। सभी प्रक्रियाएं [[संपार्श्विक संपत्ति]] पर निर्भर करती हैं, और यौगिक के किसी भी पृथक्करण (रसायन विज्ञान) को ध्यान में रखा जाना चाहिए।


=== वाष्प घनत्व ===
=== वाष्प घनत्व ===
{{main|Vapour density}}
{{main|Vapour density}}
वाष्प घनत्व द्वारा दाढ़ द्रव्यमान का माप सिद्धांत पर निर्भर करता है, जो पहले [[एमेडियो अवोगाद्रो]] द्वारा प्रतिपादित किया गया था, कि समान परिस्थितियों में समान मात्रा में गैसों में कणों की समान संख्या होती है। यह सिद्धांत [[आदर्श गैस समीकरण]] में शामिल है:
वाष्प घनत्व द्वारा मोलर द्रव्यमान का माप सिद्धांत पर निर्भर करता है, जो पहले [[एमेडियो अवोगाद्रो]] द्वारा प्रतिपादित किया गया था, कि समान परिस्थितियों में समान मात्रा में गैसों में कणों की समान संख्या होती है। यह सिद्धांत [[आदर्श गैस समीकरण]] में शामिल है:
:<math>pV = nRT ,</math>
:<math>pV = nRT ,</math>
कहाँ {{mvar|n}} पदार्थ की मात्रा है। वाष्प घनत्व ({{mvar|ρ}}) द्वारा दिया गया है
कहाँ {{mvar|n}} पदार्थ की मात्रा है। वाष्प घनत्व ({{mvar|ρ}}) द्वारा दिया गया है
:<math>\rho = {{nM}\over{V}} .</math>
:<math>\rho = {{nM}\over{V}} .</math>
ज्ञात [[दबाव]] और [[तापमान]] की स्थितियों के लिए वाष्प घनत्व के संदर्भ में इन दो समीकरणों का संयोजन दाढ़ द्रव्यमान के लिए एक अभिव्यक्ति देता है:
ज्ञात [[दबाव]] और [[तापमान]] की स्थितियों के लिए वाष्प घनत्व के संदर्भ में इन दो समीकरणों का संयोजन मोलर द्रव्यमान के लिए एक अभिव्यक्ति देता है:
:<math>M = {{RT\rho}\over{p}} .</math>
:<math>M = {{RT\rho}\over{p}} .</math>


Line 128: Line 133:
=== हिमांक-बिंदु अवसाद ===
=== हिमांक-बिंदु अवसाद ===
{{main|Freezing-point depression}}
{{main|Freezing-point depression}}
किसी विलयन (रसायन विज्ञान) का हिमांक शुद्ध [[विलायक]] की तुलना में कम होता है, और हिमांक बिंदु अवनमन ({{math|Δ''T''}}) तनु विलयनों के लिए मात्रा सांद्रण के सीधे आनुपातिक है। जब रचना को मोललता के रूप में व्यक्त किया जाता है, तो आनुपातिकता स्थिरांक [[क्रायोस्कोपिक स्थिरांक]] के रूप में जाना जाता है ({{math|''K''{{sub|f}}}}) और प्रत्येक विलायक के लिए विशेषता है। अगर {{mvar|w}} घोल में विलेय के द्रव्यमान अंश (रसायन विज्ञान) का प्रतिनिधित्व करता है, और विलेय के पृथक्करण को मानते हुए, दाढ़ द्रव्यमान द्वारा दिया जाता है
किसी विलयन (रसायन विज्ञान) का हिमांक शुद्ध [[विलायक]] की तुलना में कम होता है, और हिमांक बिंदु अवनमन ({{math|Δ''T''}}) तनु विलयनों के लिए मात्रा सांद्रण के सीधे आनुपातिक है। जब रचना को मोललता के रूप में व्यक्त किया जाता है, तो आनुपातिकता स्थिरांक [[क्रायोस्कोपिक स्थिरांक]] के रूप में जाना जाता है ({{math|''K''{{sub|f}}}}) और प्रत्येक विलायक के लिए विशेषता है। अगर {{mvar|w}} घोल में विलेय के द्रव्यमान अंश (रसायन विज्ञान) का प्रतिनिधित्व करता है, और विलेय के पृथक्करण को मानते हुए, मोलर द्रव्यमान द्वारा दिया जाता है
:<math>M = {{wK_\text{f}}\over{\Delta T}}.\ </math>
:<math>M = {{wK_\text{f}}\over{\Delta T}}.\ </math>


Line 134: Line 139:
=== क्वथनांक उन्नयन ===
=== क्वथनांक उन्नयन ===
{{main|Boiling-point elevation}}
{{main|Boiling-point elevation}}
अघुलनशील विलेय के विलयन (रसायन विज्ञान) का [[क्वथनांक]] शुद्ध विलायक के क्वथनांक से अधिक होता है, और क्वथनांक उन्नयन ({{math|Δ''T''}}) तनु विलयनों के लिए मात्रा सांद्रण के सीधे आनुपातिक है। जब रचना को मोललता के रूप में व्यक्त किया जाता है, तो आनुपातिकता स्थिरांक को [[एबुलियोस्कोपिक स्थिरांक]] के रूप में जाना जाता है ({{math|''K''{{sub|b}}}}) और प्रत्येक विलायक के लिए विशेषता है। अगर {{mvar|w}} घोल में विलेय के द्रव्यमान अंश (रसायन विज्ञान) का प्रतिनिधित्व करता है, और विलेय के पृथक्करण को मानते हुए, दाढ़ द्रव्यमान द्वारा दिया जाता है
अघुलनशील विलेय के विलयन (रसायन विज्ञान) का [[क्वथनांक]] शुद्ध विलायक के क्वथनांक से अधिक होता है, और क्वथनांक उन्नयन ({{math|Δ''T''}}) तनु विलयनों के लिए मात्रा सांद्रण के सीधे आनुपातिक है। जब रचना को मोललता के रूप में व्यक्त किया जाता है, तो आनुपातिकता स्थिरांक को [[एबुलियोस्कोपिक स्थिरांक]] के रूप में जाना जाता है ({{math|''K''{{sub|b}}}}) और प्रत्येक विलायक के लिए विशेषता है। अगर {{mvar|w}} घोल में विलेय के द्रव्यमान अंश (रसायन विज्ञान) का प्रतिनिधित्व करता है, और विलेय के पृथक्करण को मानते हुए, मोलर द्रव्यमान द्वारा दिया जाता है
:<math>M = {{wK_\text{b}}\over{\Delta T}}.\ </math>
:<math>M = {{wK_\text{b}}\over{\Delta T}}.\ </math>



Revision as of 22:20, 13 June 2023

Molar mass
सामान्य प्रतीक
M
Si   इकाईkg/mol
अन्य इकाइयां
g/mol

रसायन विज्ञान में, मोलर द्रव्यमान (M) एक रासायनिक यौगिक को उक्त यौगिक के किसी भी नमूने के द्रव्यमान और पदार्थ की मात्रा (मोल (इकाई) में मापा गया) के बीच के अनुपात के रूप में परिभाषित किया गया है।[1] मोलर द्रव्यमान एक द्रव्यमान है, आणविक नहीं, किसी पदार्थ का भौतिक गुण। मोलर द्रव्यमान यौगिक के कई उदाहरणों का औसत है, जो प्रायः समस्थानिकों की उपस्थिति के कारण द्रव्यमान में भिन्न होता है। सामान्यतः, मोलर द्रव्यमान की गणना मानक परमाणु भार से की जाती है और इस प्रकार यह एक स्थलीय औसत है और पृथ्वी पर घटक परमाणुओं के समस्थानिकों की सापेक्ष बहुतायत का एक कार्य है। मोलर द्रव्यमान पदार्थ के द्रव्यमान और पदार्थ की मात्रा के बीच बड़ी मात्रा में परिवर्तित करने के लिए उपयुक्त है।

आणविक द्रव्यमान और सूत्र द्रव्यमान सामान्यतः मोलर द्रव्यमान के पर्याय के रूप में उपयोग किया जाता है, विशेष रूप से आणविक यौगिकों के लिए; यद्यपि, सबसे आधिकारिक स्रोत इसे अलग तरह से परिभाषित करते हैं। अंतर यह है कि आणविक द्रव्यमान एक विशिष्ट कण या अणु का द्रव्यमान होता है, जबकि मोलर द्रव्यमान कई कणों या अणुओं का औसत होता है।

सूत्र भार मोलर द्रव्यमान का एक पर्याय है जो प्रायः गैर-आणविक यौगिकों, जैसे आयनिक लवण के लिए उपयोग किया जाता है।

मोलर द्रव्यमान पदार्थ का एक गहन गुण है, जो नमूने के आकार पर निर्भर नहीं करता है। इकाइयों की अंतर्राष्ट्रीय प्रणाली (एसआई) में, मोलर द्रव्यमान की सुसंगत इकाई [[किलोग्राम]] / मोल (इकाई) है। यद्यपि, ऐतिहासिक कारणों से, मोलर द्रव्यमान लगभग हमेशा ग्राम/मोल में व्यक्त किया जाता है।

मोल को इस तरह से परिभाषित किया गया था कि एक यौगिक का मोलर द्रव्यमान, ग्राम/मोल में, संख्यात्मक रूप से डाल्टन (इकाई) में एक अणु के औसत द्रव्यमान के बराबर होता है। यह मोल की 2019 पुनर्परिभाषा से पहले बिल्कुल बराबर था, और अब केवल लगभग बराबर है, लेकिन सभी व्यावहारिक उद्देश्यों के लिए अंतर नगण्य है। इस प्रकार, उदाहरण के लिए, पानी के एक अणु का औसत द्रव्यमान लगभग 18.0153 डाल्टन होता है, और पानी का मोलर द्रव्यमान लगभग 18.0153 ग्राम/मोल होता है।

कार्बन और धातुओं जैसे पृथक अणुओं के बिना रासायनिक तत्वों के लिए, मोलर द्रव्यमान को परमाणुओं के मोल की संख्या से विभाजित करके गणना की जाती है। इस प्रकार, उदाहरण के लिए, लोहे का मोलर द्रव्यमान लगभग 55.845 ग्राम/मोल है।

1971 से, SI ने पदार्थ की मात्रा को एक अलग आयामी विश्लेषण के रूप में परिभाषित किया। 2019 तक, मोल को पदार्थ की उस मात्रा के रूप में परिभाषित किया जाता था जिसमें उतने ही घटक कण होते हैं जितने कि 12 ग्राम कार्बन-12 में परमाणु होते हैं। उस अवधि में, परिभाषा के अनुसार, कार्बन-12 का मोलर द्रव्यमान ठीक 12 ग्राम/मोल था। 2019 के बाद से, किसी भी पदार्थ के एक मोल को SI आधार इकाइयों की 2019 पुनर्परिभाषित किया गया है, क्योंकि उस पदार्थ की मात्रा में कणों की सटीक परिभाषित संख्या 6.02214076×1023 होती है,। ग्राम/मोल में यौगिक का मोलर द्रव्यमान ग्राम में यौगिक के अणुओं की संख्या के द्रव्यमान के बराबर होता है।

तत्वों का मोलर द्रव्यमान

रासायनिक तत्व के परमाणुओं का मोलर द्रव्यमान तत्व के सापेक्ष परमाणु द्रव्यमान को मोलर द्रव्यमान स्थिरांक से गुणा करके दिया जाता है, Mu = 0.99999999965(30)×10−3 kg⋅mol−1.[2] विशिष्ट समस्थानिक संरचना के साथ पृथ्वी से सामान्य नमूनों के लिए, परमाणु भार को मानक परमाणु भार या पारंपरिक परमाणु भार द्वारा अनुमानित किया जा सकता है[3]

मोलर द्रव्यमान स्थिरांक से गुणा करने से यह सुनिश्चित होता है कि गणना विमीय रूप से सही है: मानक सापेक्ष परमाणु द्रव्यमान आयाम रहित मात्राएँ हैं (अर्थात, शुद्ध संख्याएँ) जबकि मोलर द्रव्यमान में इकाइयाँ होती हैं (इस कारक में, ग्राम प्रति मोल)।

कुछ तत्व सामान्यतः अणुओं के रूप में पाए जाते हैं, उदा। हाइड्रोजन (H2), सल्फर (S8), क्लोरीन (Cl2)। इन तत्वों के अणुओं का मोलर द्रव्यमान प्रत्येक अणु में परमाणुओं की संख्या से गुणा किए गए परमाणुओं का मोलर द्रव्यमान है:


यौगिकों के मोलर द्रव्यमान

एक रासायनिक यौगिक का मोलर द्रव्यमान सापेक्ष परमाणु द्रव्यमान Ar के योग द्वारा दिया जाता है जो मोलर द्रव्यमान स्थिरांक Muसे गुणा करके परमाणु यौगिक का निर्माण करते हैं, :

यहाँ, Mu सापेक्ष मोलर द्रव्यमान है, जिसे सूत्र भार भी कहा जाता है। विशिष्ट समस्थानिक संरचना वाले पृथ्वी से सामान्य नमूनों के लिए, मानक परमाणु भार या पारंपरिक परमाणु भार का उपयोग नमूने के सापेक्ष परमाणु द्रव्यमान के सन्निकटन के रूप में किया जा सकता है। उदाहरण हैं:

एक औसत मोलर यौगिकों के मिश्रण के लिए द्रव्यमान परिभाषित किया जा सकता है।[1]यह बहुलक विज्ञान में विशेष रूप से महत्वपूर्ण है, जहां विभिन्न बहुलक अणुओं में अलग-अलग संख्या में मोनोमर इकाइयां (गैर-समान बहुलक) हो सकती हैं।[4][5]

An average molar mass may be defined for mixtures of compounds. This is particularly important in polymer science, where different polymer molecules may contain different numbers of monomer units (non-uniform polymers).

मिश्रण का औसत मोलर द्रव्यमान

मिश्रण का औसत मोलर द्रव्यमान घटकों के मोल अंशों xiऔर उनके मोलर द्रव्यमान Mi से गणना की जा सकती है  :

इसकी गणना घटकों के द्रव्यमान अंश (रसायन विज्ञान)wi से भी की जा सकती है :

उदाहरण के लिए, शुष्क हवा का औसत मोलर द्रव्यमान 28.97 ग्राम/मोल है।[6]


संबंधित मात्राएँ

मोलर द्रव्यमान एक यौगिक के सापेक्ष मोलर द्रव्यमान Mr से, पुराना शब्द सूत्र भार (F.W.) , और इसके घटक तत्वों के परमाणु द्रव्यमान से निकटता से संबंधित है। यद्यपि, इसे आणविक द्रव्यमान से अलग किया जाना चाहिए (जो भ्रामक रूप से "भी" है जिसे कभी-कभी आणविक भार के रूप में जाना जाता है), जो "एक" अणु (किसी भी "एकल" समस्थानिक संरचना का) का द्रव्यमान है और है सीधे परमाणु द्रव्यमान से संबंधित नहीं, एक परमाणु का द्रव्यमान (किसी एकल समस्थानिक का)। डाल्टन (यूनिट), प्रतीक दा, को कभी-कभी मोलर द्रव्यमान की एक इकाई के रूप में भी प्रयोग किया जाता है, विशेष रूप से जैव रसायन में, परिभाषा के साथ 1Da = 1 ग्राम/मोल, इस तथ्य के बावजूद कि यह सख्ती से द्रव्यमान की एक इकाई है (1 Da = 1 यू = 1.66053906660(50)×10−27 kg, 2018 के अनुसार CODATA अनुशंसित मान)।

ग्राम परमाणु भार उस तत्व के परमाणुओं के एक मोल के ग्राम में, द्रव्यमान के लिए एक और शब्द है। ग्राम परमाणु मोल के लिए एक पूर्व शब्द है।

आणविक भार (M.W.) एक पुराना शब्द है जिसे अब अधिक सही ढंग से सापेक्ष मोलर द्रव्यमान कहा जाता है (Mr).[7] यह एक आयाम रहित मात्रा है (अर्थात, एक शुद्ध संख्या, बिना इकाइयों के) मोलर द्रव्यमान स्थिरांक द्वारा विभाजित मोलर द्रव्यमान के बराबर है।[8]

Molar mass is closely related to the relative molar mass (Mr) of a compound, to the older term formula weight (F.W.), and to the standard atomic masses of its constituent elements. However, it should be distinguished from the molecular mass (which is confusingly also sometimes known as molecular weight), which is the mass of one molecule (of any single isotopic composition) and is not directly related to the atomic mass, the mass of one atom (of any single isotope). The dalton, symbol Da, is also sometimes used as a unit of molar mass, especially in biochemistry, with the definition 1 Da = 1 g/mol, despite the fact that it is strictly a unit of mass (1 Da = 1 u = 1.66053906660(50)×10−27 kg, as of 2018 CODATA recommended values).

Gram atomic mass is another term for the mass, in grams, of one mole of atoms of that element. "Gram atom" is a former term for a mole.

Molecular weight (M.W.) is an older term for what is now more correctly called the relative molar mass (Mr). This is a dimensionless quantity (i.e., a pure number, without units) equal to the molar mass divided by the molar mass constant.

आणविक द्रव्यमान

आणविक द्रव्यमान (m) किसी दिए गए अणु का द्रव्यमान है: इसे सामान्यतः डाल्टन (यूनिट) एस (दा या यू) में मापा जाता है।[9] एक ही यौगिक के विभिन्न अणुओं में अलग-अलग आणविक द्रव्यमान हो सकते हैं क्योंकि उनमें एक तत्व के अलग-अलग समस्थानिक होते हैं। यह अलग है लेकिन मोलर द्रव्यमान से संबंधित है, जो एक नमूने में सभी अणुओं के औसत आणविक द्रव्यमान का एक उपाय है और सामान्यतः किसी पदार्थ की मैक्रोस्कोपिक (वजन-सक्षम) मात्रा से निपटने के लिए अधिक उपयुक्त उपाय है।

आणविक द्रव्यमान की गणना प्रत्येक न्यूक्लाइड के परमाणु द्रव्यमान से की जाती है, जबकि मोलर द्रव्यमान की गणना मानक परमाणु भार से की जाती है।[10] प्रत्येक रासायनिक तत्व की। मानक परमाणु भार किसी दिए गए नमूने में तत्व के आइसोटोप को ध्यान में रखता है (सामान्यतः सामान्य माना जाता है)। उदाहरण के लिए, पानी (अणु) का मोलर द्रव्यमान होता है 18.0153(3) g/mol, लेकिन अलग-अलग पानी के अणुओं में आणविक द्रव्यमान होते हैं जो बीच में होते हैं 18.0105646863(15) Da (1H216O) और 22.0277364(9) Da (2H218O).

मोलर द्रव्यमान और आणविक द्रव्यमान के बीच अंतर महत्वपूर्ण है क्योंकि सापेक्ष आणविक द्रव्यमान को मास स्पेक्ट्रोमेट्री द्वारा सीधे मापा जा सकता है, प्रायः कुछ भाग प्रति मिलियन की सटीकता के लिए। यह अणु के रासायनिक सूत्र को सीधे निर्धारित करने के लिए पर्याप्त सटीक है।[11]


डीएनए संश्लेषण उपयोग

डीएनए संश्लेषण के संदर्भ में उपयोग किए जाने पर शब्द सूत्र वजन का एक विशिष्ट अर्थ होता है: जबकि एक डीएनए बहुलक में जोड़े जाने वाले एक व्यक्तिगत फॉस्फोरामाइडाइट न्यूक्लियोबेस में समूहों की रक्षा होती है और इसके 'आणविक भार' को इन समूहों सहित उद्धृत किया जाता है, आणविक की मात्रा वजन जो अंततः इस न्यूक्लियोबेस द्वारा एक डीएनए पॉलीमर में जोड़ा जाता है, उसे न्यूक्लियोबेस के फॉर्मूला वेट (यानी, डीएनए पॉलीमर के भीतर इस न्यूक्लियोबेस का आणविक भार, माइनस प्रोटेक्टिंग ग्रुप) के रूप में संदर्भित किया जाता है।[citation needed]

सटीकता और अनिश्चितता

जिस सटीकता के लिए एक मोलर द्रव्यमान ज्ञात होता है, वह उस परमाणु द्रव्यमान की सटीकता पर निर्भर करता है जिससे इसकी गणना की गई थी, और मोलर द्रव्यमान स्थिरांक का मान। अधिकांश परमाणु द्रव्यमान दस हजार में कम से कम एक भाग की सटीकता के लिए जाने जाते हैं, प्रायः बहुत बेहतर[3](लिथियम का परमाणु द्रव्यमान एक उल्लेखनीय और गंभीर है,[12] अपवाद)। यह रसायन विज्ञान में लगभग सभी सामान्य उपयोगों के लिए पर्याप्त है: यह अधिकांश रासायनिक विश्लेषणों की तुलना में अधिक सटीक है, और अधिकांश प्रयोगशाला अभिकर्मकों की शुद्धता से अधिक है।

परमाणु द्रव्यमान की सटीकता, और इसलिए दाढ़ जन की, तत्व के समस्थानिक के ज्ञान से सीमित है। यदि मोलर द्रव्यमान का अधिक सटीक मूल्य आवश्यक है, तो प्रश्न में नमूने के समस्थानिक वितरण को निर्धारित करना आवश्यक है, जो मानक परमाणु द्रव्यमान की गणना के लिए उपयोग किए जाने वाले मानक वितरण से भिन्न हो सकता है। एक नमूने में विभिन्न तत्वों के समस्थानिक वितरण आवश्यक रूप से एक दूसरे से स्वतंत्र नहीं होते हैं: उदाहरण के लिए, एक नमूना जो आसवन किया गया है वह मौजूद सभी तत्वों के हल्के समस्थानिकों में समस्थानिक संवर्धन होगा। यह मोलर द्रव्यमान में मानक अनिश्चितता की गणना को जटिल बनाता है।

सामान्य प्रयोगशाला कार्य के लिए एक उपयोगी परिपाटी सभी गणनाओं के लिए मोलर द्रव्यमान को दो दशमलव स्थानों तक उद्धृत करना है। यह सामान्यतः आवश्यक से अधिक सटीक है, लेकिन गणना के दौरान राउंडिंग त्रुटियों से बचा जाता है। जब मोलर द्रव्यमान 1000 ग्राम/मोल से अधिक होता है, तो एक से अधिक दशमलव स्थान का उपयोग करना शायद ही कभी उचित होता है। मोलर द्रव्यमान के अधिकांश सारणीबद्ध मूल्यों में इन परिपाटियों का पालन किया जाता है।[13][14]


माप

मोलर द्रव्यमान को लगभग कभी भी सीधे तौर पर नहीं मापा जाता है। उनकी गणना मानक परमाणु द्रव्यमान से की जा सकती है, और प्रायः रासायनिक कैटलॉग और सुरक्षा डेटा शीट्स (एसडीएस) में सूचीबद्ध होती हैं। मोलर द्रव्यमान सामान्यतः निम्न के बीच भिन्न होता है:

1–238 ग्राम/मोल प्राकृतिक रूप से पाए जाने वाले तत्वों के परमाणुओं के लिए;
10–1000 g/mol छोटे अणु के लिए;
1000–5000000 g/mol पॉलीमर , प्रोटीन, डीएनए के टुकड़े आदि के लिए।

जबकि मोलर द्रव्यमान लगभग हमेशा, व्यवहार में, परमाणु भार से गणना की जाती है, उन्हें कुछ मामलों में भी मापा जा सकता है। इस तरह के माप परमाणु भार और आणविक द्रव्यमान के आधुनिक मास स्पेक्ट्रोमेट्री माप से बहुत कम सटीक हैं, और ज्यादातर ऐतिहासिक रुचि के हैं। सभी प्रक्रियाएं संपार्श्विक संपत्ति पर निर्भर करती हैं, और यौगिक के किसी भी पृथक्करण (रसायन विज्ञान) को ध्यान में रखा जाना चाहिए।

वाष्प घनत्व

वाष्प घनत्व द्वारा मोलर द्रव्यमान का माप सिद्धांत पर निर्भर करता है, जो पहले एमेडियो अवोगाद्रो द्वारा प्रतिपादित किया गया था, कि समान परिस्थितियों में समान मात्रा में गैसों में कणों की समान संख्या होती है। यह सिद्धांत आदर्श गैस समीकरण में शामिल है:

कहाँ n पदार्थ की मात्रा है। वाष्प घनत्व (ρ) द्वारा दिया गया है

ज्ञात दबाव और तापमान की स्थितियों के लिए वाष्प घनत्व के संदर्भ में इन दो समीकरणों का संयोजन मोलर द्रव्यमान के लिए एक अभिव्यक्ति देता है:


हिमांक-बिंदु अवसाद

किसी विलयन (रसायन विज्ञान) का हिमांक शुद्ध विलायक की तुलना में कम होता है, और हिमांक बिंदु अवनमन (ΔT) तनु विलयनों के लिए मात्रा सांद्रण के सीधे आनुपातिक है। जब रचना को मोललता के रूप में व्यक्त किया जाता है, तो आनुपातिकता स्थिरांक क्रायोस्कोपिक स्थिरांक के रूप में जाना जाता है (Kf) और प्रत्येक विलायक के लिए विशेषता है। अगर w घोल में विलेय के द्रव्यमान अंश (रसायन विज्ञान) का प्रतिनिधित्व करता है, और विलेय के पृथक्करण को मानते हुए, मोलर द्रव्यमान द्वारा दिया जाता है


क्वथनांक उन्नयन

अघुलनशील विलेय के विलयन (रसायन विज्ञान) का क्वथनांक शुद्ध विलायक के क्वथनांक से अधिक होता है, और क्वथनांक उन्नयन (ΔT) तनु विलयनों के लिए मात्रा सांद्रण के सीधे आनुपातिक है। जब रचना को मोललता के रूप में व्यक्त किया जाता है, तो आनुपातिकता स्थिरांक को एबुलियोस्कोपिक स्थिरांक के रूप में जाना जाता है (Kb) और प्रत्येक विलायक के लिए विशेषता है। अगर w घोल में विलेय के द्रव्यमान अंश (रसायन विज्ञान) का प्रतिनिधित्व करता है, और विलेय के पृथक्करण को मानते हुए, मोलर द्रव्यमान द्वारा दिया जाता है


यह भी देखें

  • मोल मैप (रसायन विज्ञान)

संदर्भ

  1. 1.0 1.1 International Union of Pure and Applied Chemistry (1993). Quantities, Units and Symbols in Physical Chemistry, 2nd edition, Oxford: Blackwell Science. ISBN 0-632-03583-8. p. 41. Electronic version.
  2. "2018 CODATA Value: molar mass constant". The NIST Reference on Constants, Units, and Uncertainty. NIST. 20 May 2019. Retrieved 2019-05-20.
  3. 3.0 3.1 Wieser, M. E. (2006), "Atomic Weights of the Elements 2005" (PDF), Pure and Applied Chemistry, 78 (11): 2051–66, doi:10.1351/pac200678112051
  4. "इंटरनेशनल यूनियन ऑफ प्योर एंड एप्लाइड केमिस्ट्री, कमीशन ऑन मैक्रोमोलेक्यूलर नोमेनक्लेचर, नोट ऑन द टर्मिनोलॉजी फॉर मोलर मास इन पॉलीमर साइंस". Journal of Polymer Science: Polymer Letters Edition. 22 (1): 57. 1984. Bibcode:1984JPoSL..22...57.. doi:10.1002/pol.1984.130220116.
  5. Metanomski, W. V. (1991). मैक्रोमोलेक्युलर नामकरण का संग्रह. Oxford: Blackwell Science. pp. 47–73. ISBN 0-632-02847-5.
  6. The Engineering ToolBox Molecular Mass of Air
  7. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "relative molar mass". doi:10.1351/goldbook.R05270
  8. The technical definition is that the relative molar mass is the molar mass measured on a scale where the molar mass of unbound carbon 12 atoms, at rest and in their electronic ground state, is 12. The simpler definition given here is equivalent to the full definition because of the way the molar mass constant is itself defined.
  9. International Bureau of Weights and Measures (2006), The International System of Units (SI) (PDF) (8th ed.), p. 126, ISBN 92-822-2213-6, archived (PDF) from the original on 2021-06-04, retrieved 2021-12-16
  10. "सभी तत्वों के लिए परमाणु भार और समस्थानिक रचनाएँ". NIST. Retrieved 2007-10-14.
  11. "Author Guidelines – Article Layout". RSC Publishing. Retrieved 2007-10-14.
  12. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 21. ISBN 978-0-08-037941-8.
  13. See, e.g., Weast, R. C., ed. (1972). Handbook of Chemistry and Physics (53rd ed.). Cleveland, OH: Chemical Rubber Co.
  14. Possolo, Antonio; van der Veen, Adriaan M. H.; Meija, Juris; Hibbert, D. Brynn (2018-01-04). "Interpreting and propagating the uncertainty of the standard atomic weights (IUPAC Technical Report)". Pure and Applied Chemistry. 90 (2): 395–424. doi:10.1515/pac-2016-0402. S2CID 145931362.


बाहरी संबंध