स्पेक्ट्रोरेडियोमीटर: Difference between revisions

From Vigyanwiki
No edit summary
Line 1: Line 1:
स्पेक्ट्रोमीटर एक प्रकाश मापन उपकरण है जो प्रकाश स्रोत से उत्सर्जित तरंग दैर्घ्य और प्रकाश के आयामों को मापने में सक्षम है। स्पेक्ट्रोमीटर खोज सरणी पर प्रकाश विस्तार की स्थिति के आधार पर तरंगदैर्घ्य का समाधान करते हैं ताकि एकल अधिग्रहण के साथ पूर्ण स्पेक्ट्रम प्राप्त किया जा सके। अधिकांश स्पेक्ट्रोमीटर में एक आधार मापन होता है जो एक डिफरेंशियल रीडिंग होता है और इस प्रकार प्रत्येक तरंगदैर्घ्य पर डिटेक्टर की संवेदनशीलता को प्रभावित करता है। [[अंशांकन]] प्रयुक्त करने के द्वारा, स्पेक्ट्रोमीटर स्पेक्ट्रोमीटर स्पेक्ट्रोमीटर स्पेक्ट्रोमीटर स्पेक्ट्रोमीटर स्पेक्ट्रोमीटर विकिरण, वर्णक्रमीय विकिरण और / या वर्णक्रमीय प्रवाह को मापने में सक्षम है। इस डेटा का उपयोग तब अंतः स्थापित या पीसी सॉफ्टवेयर और कई कलन विधि (डब्ल्यू/सेमी2) के साथ पठन या प्रकाश प्रदान करने के लिए किया जाता है, प्रकाश (लक्स या एफसी), रेडियन (डब्ल्यू/एसआर), ल्यूमिनेंस (सीडी), और फ्लक्स (ल्यूमन या वाट) के साथ।
स्पेक्ट्रोमीटर एक प्रकाश मापन उपकरण है जो प्रकाश स्रोत से उत्सर्जित तरंग दैर्घ्य और प्रकाश के आयामों को मापने में सक्षम है। स्पेक्ट्रोमीटर खोज सरणी पर प्रकाश विस्तार की स्थिति के आधार पर तरंगदैर्घ्य का समाधान करते हैं ताकि एकल अधिग्रहण के साथ पूर्ण स्पेक्ट्रम प्राप्त किया जा सके। अधिकांश स्पेक्ट्रोमीटर में एक आधार मापन होता है जो एक डिफरेंशियल रीडिंग होता है और इस प्रकार प्रत्येक तरंगदैर्घ्य पर संसूचक की संवेदनशीलता को प्रभावित करता है। [[अंशांकन]] प्रयुक्त करने के द्वारा, स्पेक्ट्रोमीटर स्पेक्ट्रोमीटर स्पेक्ट्रोमीटर स्पेक्ट्रोमीटर स्पेक्ट्रोमीटर स्पेक्ट्रोमीटर विकिरण, वर्णक्रमीय विकिरण और / या वर्णक्रमीय प्रवाह को मापने में सक्षम है। इस डेटा का उपयोग तब अंतः स्थापित या पीसी सॉफ्टवेयर और कई कलन विधि (डब्ल्यू/सेमी2) के साथ पठन या प्रकाश प्रदान करने के लिए किया जाता है, प्रकाश (लक्स या एफसी), रेडियन (डब्ल्यू/एसआर), ल्यूमिनेंस (सीडी), और फ्लक्स (ल्यूमन या वाट) के साथ।


विविधता, रंग तापमान, चोटी और प्रमुख तरंगदैर्घ्य। कुछ और जटिल स्पेक्ट्रोमीटर सॉफ्टवेयर पैकेज भी गणना और सुविधाओं की अनुमति देते हैं जैसे कि पीएआर μएमओएल/एम<sup>2</sup>/एस, मेटामेरिज्म, और कैंडीला 2 और 20 डिग्री पर्यवेक्षक, बुनियादी ओवरले तुलना, संचरण और दूर के आधार पर प्रतिबिंब।
विविधता, रंग तापमान, चोटी और प्रमुख तरंगदैर्घ्य। कुछ और जटिल स्पेक्ट्रोमीटर सॉफ्टवेयर पैकेज भी गणना और सुविधाओं की अनुमति देते हैं जैसे कि पीएआर μएमओएल/एम<sup>2</sup>/एस, मेटामेरिज्म, और कैंडीला 2 और 20 डिग्री पर्यवेक्षक, बुनियादी ओवरले तुलना, संचरण और दूर के आधार पर प्रतिबिंब।


कई समूहों और आकारों में स्पेक्ट्रोमीटर उपलब्ध हैं जो कई [[तरंग दैर्ध्य]] को कवर करते हैं। स्पेक्ट्रोमीटर की प्रभावी तरंग दैर्घ्य सीमा न केवल स्क्रैट्स डिफ्यूजन क्षमता द्वारा बल्कि डिटेक्टरों की संवेदनशीलता सीमा द्वारा भी निर्धारित की जाती है। सिलिकॉन-आधारित डिटेक्टर लिमिटेड अर्धचालक बैंड अंतर द्वारा 200-1100 एनएम का उत्तर देता है, जबकि गैस-आधारित डिटेक्टर 900-1700 एनएम (या शीतलन के साथ 2500 एनएम तक) के लिए संवेदनशील है।
कई समूहों और आकारों में स्पेक्ट्रोमीटर उपलब्ध हैं जो कई [[तरंग दैर्ध्य]] को कवर करते हैं। स्पेक्ट्रोमीटर की प्रभावी तरंग दैर्घ्य सीमा न केवल स्क्रैट्स डिफ्यूजन क्षमता द्वारा बल्कि संसूचकों की संवेदनशीलता सीमा द्वारा भी निर्धारित की जाती है। सिलिकॉन-आधारित संसूचक लिमिटेड अर्धचालक बैंड अंतर द्वारा 200-1100 एनएम का उत्तर देता है, जबकि गैस-आधारित संसूचक 900-1700 एनएम (या शीतलन के साथ 2500 एनएम तक) के लिए संवेदनशील है।


प्रयोगशाला/शोध स्पेक्ट्रमीटर प्रायः यूवी से एनआईआर तक एक व्यापक वर्णक्रमीय सीमा को आवरणित करते हैं और एक पीसी की आवश्यकता होती है। आईआर स्पेक्ट्रोमीटर भी हैं जिन्हें शीतलन प्रणाली चलाने के लिए उच्च शक्ति की आवश्यकता होती है। कई स्पेक्ट्रोमीटर को एक विशिष्ट सीमा यानी यूवी, या विज़ के लिए अनुकूलित किया जा सकता है और अधिक सटीक माप, ब्रॉडबैंड प्रणाली में कुछ और सामान्य त्रुटियाँ जैसे प्रकाश और संवेदनशीलता की त्रुटि को अन्य प्रणाली में जोड़ा जा सकता है ताकि बेहतर समाधान की अनुमति दी जा सके।
प्रयोगशाला/शोध स्पेक्ट्रमीटर प्रायः यूवी से एनआईआर तक एक व्यापक वर्णक्रमीय सीमा को आवरणित करते हैं और एक पीसी की आवश्यकता होती है। आईआर स्पेक्ट्रोमीटर भी हैं जिन्हें शीतलन प्रणाली चलाने के लिए उच्च शक्ति की आवश्यकता होती है। कई स्पेक्ट्रोमीटर को एक विशिष्ट सीमा यानी यूवी, या विज़ के लिए अनुकूलित किया जा सकता है और अधिक सटीक माप, ब्रॉडबैंड प्रणाली में कुछ और सामान्य त्रुटियाँ जैसे प्रकाश और संवेदनशीलता की त्रुटि को अन्य प्रणाली में जोड़ा जा सकता है ताकि बेहतर समाधान की अनुमति दी जा सके।
Line 27: Line 27:


== त्रुटि के स्रोत ==
== त्रुटि के स्रोत ==
किसी दिए गए स्पेक्ट्रोरेडियोमेट्रिक प्रणाली की गुणवत्ता उसके इलेक्ट्रॉनिक्स, ऑप्टिकल घटकों, सॉफ्टवेयर, बिजली की आपूर्ति और अंशांकन का एक कार्य है। आदर्श प्रयोगशाला स्थितियों के तहत और उच्च प्रशिक्षित विशेषज्ञों के साथ माप में छोटी (कुछ दसवें से कुछ प्रतिशत) त्रुटियां प्राप्त करना संभव है। हालांकि, कई व्यावहारिक स्थितियों में, 10 प्रतिशत के क्रम में त्रुटियों की संभावना होती है <ref name=Kostkowski/> भौतिक माप लेते समय कई प्रकार की त्रुटियां होती हैं। माप की सटीकता के सीमित कारकों के रूप में नोट की गई त्रुटि के तीन मूल प्रकार यादृच्छिक, व्यवस्थित और आवधिक त्रुटियां हैं<ref name=Schnedier>Schnedier, William E., and Richard Young, Ph.D. Spectroradiometry Methods. Application Note (A14). N.p., 1998. Web. <http://biology.duke.edu/johnsenlab/pdfs/tech/spectmethods.pdf></ref>
प्रदत्त स्पेक्ट्रोरोमेट्रिक प्रणाली की गुणवत्ता इसके इलेक्ट्रॉनिक्स, ऑप्टिकल घटकों, सॉफ्टवेयर, बिजली आपूर्ति और अंशांकन का एक अधिनियम है। आदर्श प्रयोगशाला परिस्थितियों और उच्च प्रशिक्षित विशेषज्ञों के साथ, छोटे (कुछ 10 से कुछ प्रतिशत) त्रुटियों को प्राप्त करना संभव है। हालांकि, कई व्यावहारिक स्थितियों में, त्रुटियाँ 10 प्रतिशत के क्रम में होने की संभावना है।<ref name=Kostkowski/> माप सटीकता के सीमित कारकों के रूप में नोट की गई तीन बुनियादी प्रकार की त्रुटि यादृच्छिक, व्यवस्थित और आवधिक त्रुटियों हैं।<ref name=Schnedier>Schnedier, William E., and Richard Young, Ph.D. Spectroradiometry Methods. Application Note (A14). N.p., 1998. Web. <http://biology.duke.edu/johnsenlab/pdfs/tech/spectmethods.pdf></ref>


* यादृच्छिक त्रुटियाँ उस माध्य के बारे में विविधताएँ हैं। स्पेक्ट्रोरेडियोमेट्रिक माप के स्तिथि में, इसे संसूचक, आंतरिक इलेक्ट्रॉनिक्स, या प्रकाश स्रोत से शोर के रूप में सोचा जा सकता है। इस प्रकार की त्रुटियों को लंबे समय तक एकीकरण समय या एकाधिक स्कैन द्वारा मुकाबला किया जा सकता है।
* यादृच्छिक त्रुटियाँ उस माध्य के बारे में विविधताएँ हैं। स्पेक्ट्रोरेडियोमेट्रिक माप के स्तिथि में, इसे संसूचक, आंतरिक इलेक्ट्रॉनिक्स, या प्रकाश स्रोत से रव के रूप में सोचा जा सकता है। इस प्रकार की त्रुटियों को लंबे समय तक एकीकरण समय या एकाधिक स्कैन द्वारा मुकाबला किया जा सकता है।
* व्यवस्थित त्रुटियां अनुमानित "सही" मान के लिए ऑफ़सेट हैं। व्यवस्थित त्रुटियां सामान्यतः इन मापों के मानवीय घटक, स्वयं उपकरण या प्रयोग की स्थापना के कारण होती हैं। अंशांकन त्रुटियां, अवांछित प्रकाश और गलत सेटिंग्स जैसी चीजें, सभी संभावित मुद्दे हैं।
* व्यवस्थित त्रुटियां अनुमानित "सही" मान के लिए ऑफ़सेट हैं। व्यवस्थित त्रुटियां सामान्यतः इन मापों के मानवीय घटक, स्वयं उपकरण या प्रयोग की स्थापना के कारण होती हैं। अंशांकन त्रुटियां, अवांछित प्रकाश और गलत सेटिंग्स जैसी चीजें, सभी संभावित मुद्दे हैं।
* आवर्ती आवधिक या छद्म आवधिक घटनाओं से आवधिक त्रुटियां उत्पन्न होती हैं। तापमान, आर्द्रता, वायु-गति, या एसी हस्तक्षेप में बदलाव सभी को आवधिक त्रुटि के रूप में वर्गीकृत किया जा सकता है।<ref name="Schnedier" />
* आवर्ती आवधिक या छद्म आवधिक घटनाओं से आवधिक त्रुटियां उत्पन्न होती हैं। तापमान, आर्द्रता, वायु-गति, या एसी हस्तक्षेप में बदलाव सभी को आवधिक त्रुटि के रूप में वर्गीकृत किया जा सकता है।<ref name="Schnedier" />


त्रुटि के इन सामान्य स्रोतों के अलावा, स्पेक्ट्रोरेडियोमेट्री में त्रुटि के कुछ अधिक विशिष्ट कारणों में सम्मिलित हैं:
त्रुटि के इन सामान्य स्रोतों के अलावा, स्पेक्ट्राएडॉमी में कुछ और विशिष्ट कारण हैं:


* माप की बहुआयामीता। आउटपुट संकेत कई कारकों पर निर्भर है, जिसमें मापा प्रवाह की परिमाण, इसकी दिशा, इसका ध्रुवीकरण और इसकी तरंग दैर्ध्य वितरण सम्मिलित है।
* माप की बहुलता आउटपुट संकेत कई कारकों पर निर्भर करता है, जिसमें प्रवाह की तीव्रता, इसकी दिशा, इसके ध्रुवीकरण और इसके तरंगदैर्घ्य वितरण सम्मिलित हैं।
* मापने के उपकरणों की अशुद्धि, साथ ही उक्त उपकरणों को कैलिब्रेट करने के लिए उपयोग किए जाने वाले मानक, संपूर्ण माप प्रक्रिया के दौरान एक बड़ी त्रुटि बनाने के लिए कैस्केड किए गए, और
* मापक उपकरणों की अशुद्धि, साथ ही कथित उपकरणों को कैलिब्रेट करने के लिए प्रयुक्त मानक, संपूर्ण मापन प्रक्रिया के दौरान एक बड़ी त्रुटि पैदा करने के लिए कैस्केड थे, और
* बहुआयामी और उपकरण अस्थिरता त्रुटि को कम करने के लिए मालिकाना तकनीक।<ref name="Kostkowski" />
* युक्ति अस्थिरता त्रुटियों को कम करने के लिए बहुआयामी और स्वामित्व तकनीक।<ref name="Kostkowski" />


गामा-साइंटिफिक, कैलिफोर्निया स्थित प्रकाश माप उपकरणों का निर्माता, अपने स्पेक्ट्रोरेडियोमीटर की सटीकता और प्रदर्शन को प्रभावित करने वाले सात कारकों को सूचीबद्ध करता है, या तो प्रणाली अंशांकन, सॉफ्टवेयर और बिजली की आपूर्ति, प्रकाशिकी, या स्वयं मापन इंजन के कारण होता है।<ref>Gamma Scientific. "Seven Factors Affecting Spectroradiometer Accuracy and Performance." Gamma Scientific. N.p., n.d. Web. <http://www.gamma-sci.com/spectroradiometer-accuracy-performance/>.</ref>  
गामा-वैज्ञानिक, कैलिफोर्निया स्थित प्रकाश मापन उपकरण के निर्माता ने अपने स्पेक्ट्रोएडोमीटर की सटीकता और प्रदर्शन को प्रभावित करने वाले सात कारकों को सूचीबद्ध किया है, जो या तो सिस्टम अंशांकन, सॉफ्टवेयर और बिजली आपूर्ति, प्रकाशिकी या स्व-मापन इंजन के कारण हैं।<ref>Gamma Scientific. "Seven Factors Affecting Spectroradiometer Accuracy and Performance." Gamma Scientific. N.p., n.d. Web. <http://www.gamma-sci.com/spectroradiometer-accuracy-performance/>.</ref>  
== परिभाषाएँ ==
== परिभाषाएँ ==
{{main|अवांछित प्रकाश}}
{{main|अवांछित प्रकाश}}
Line 46: Line 46:
अवांछित प्रकाश अवांछित तरंग दैर्ध्य विकिरण है जो गलत संसूचक तत्व तक पहुंचता है। यह गलत इलेक्ट्रॉनिक गणना उत्पन्न करता है जो पिक्सेल या संसूचक सरणी के तत्व के लिए डिज़ाइन किए गए स्पेक्ट्रल संकेत से संबंधित नहीं है। यह प्रकाश प्रकीर्णन और अपूर्ण ऑप्टिकल तत्वों के प्रतिबिंब के साथ-साथ उच्च आदेश विवर्तन प्रभाव से आ सकता है। संसूचक से पहले क्रम वर्गीकरण निस्यंदक स्थापित करके, दूसरे ऑर्डर प्रभाव को हटाया जा सकता है या कम से कम नाटकीय रूप से कम किया जा सकता है।
अवांछित प्रकाश अवांछित तरंग दैर्ध्य विकिरण है जो गलत संसूचक तत्व तक पहुंचता है। यह गलत इलेक्ट्रॉनिक गणना उत्पन्न करता है जो पिक्सेल या संसूचक सरणी के तत्व के लिए डिज़ाइन किए गए स्पेक्ट्रल संकेत से संबंधित नहीं है। यह प्रकाश प्रकीर्णन और अपूर्ण ऑप्टिकल तत्वों के प्रतिबिंब के साथ-साथ उच्च आदेश विवर्तन प्रभाव से आ सकता है। संसूचक से पहले क्रम वर्गीकरण निस्यंदक स्थापित करके, दूसरे ऑर्डर प्रभाव को हटाया जा सकता है या कम से कम नाटकीय रूप से कम किया जा सकता है।


ए सी संसूचक दृश्यमान और एनआईआर के प्रति संवेदनशीलता यूवी सीमा की तुलना में लगभग परिमाण का एक क्रम है। इसका मतलब यह है कि यूवी वर्णक्रमीय स्थिति में पिक्सेल अपने स्वयं के डिज़ाइन किए गए वर्णक्रमीय संकेत की तुलना में दृश्य और एनआईआर में अवांछित प्रकाश का अधिक दृढ़ता से जवाब देते हैं। इसलिए, दृश्यमान और एनआईआर पिक्सेल की तुलना में यूवी क्षेत्र में अवांछित प्रकाश प्रभाव बहुत अधिक महत्वपूर्ण हैं। यह स्थिति तरंगदैर्घ्य जितनी कम होती जाती है, उतनी ही खराब होती जाती है।
एसी संसूचक, यूवी सीमा श्यानता और एनआईआर के प्रति संवेदनशीलता की तुलना में अनुमानित परिमाण का एक अनुक्रम है। इसका मतलब है कि यूवी वर्णक्रमीय स्थिति में, पिक्सेल अपने खुद के डिजाइन किए गए वर्णक्रमीय संकेत की तुलना में एनआईआर में दृश्य और अवांछित प्रकाश के प्रति अधिक दृढ़ता से प्रतिक्रिया देते हैं। इसलिए, यूवी क्षेत्र में अवांछित प्रकाश प्रभाव दृश्य और एनआईआर पिक्सेल की तुलना में बहुत महत्वपूर्ण हैं। तरंगदैर्घ्य के नीचे, स्थिति बदतर है।


जब यूवी संकेतों के छोटे अंश के साथ ब्रॉड बैंड प्रकाश को मापते हैं, तो कभी-कभी यूवी सीमा में अवांछित प्रकाश प्रभाव प्रभावी हो सकता है क्योंकि संसूचक पिक्सेल स्रोत से पर्याप्त यूवी संकेत प्राप्त करने के लिए पहले से ही संघर्ष कर रहे हैं। इस कारण से, क्यूटीएच मानक लैंप का उपयोग कर अंशांकन में 350 एनएम से नीचे भारी त्रुटियां (100% से अधिक) हो सकती हैं और इस क्षेत्र में अधिक सटीक अंशांकन के लिए ड्यूटेरियम मानक लैंप की आवश्यकता होती है। वास्तव में, यूवी क्षेत्र में पूर्ण प्रकाश मापन में सही अंशांकन के साथ भी बड़ी त्रुटियां हो सकती हैं, जब इन पिक्सेल में अधिकांश इलेक्ट्रॉनिक गणना अवांछित प्रकाश (वास्तविक यूवी प्रकाश के बजाय लंबी तरंग दैर्ध्य धर्षण) का परिणाम है।
जब यूवी संकेतों के छोटे अंश के साथ ब्रॉड बैंड प्रकाश को मापते हैं, तो कभी-कभी यूवी सीमा में अवांछित प्रकाश प्रभाव प्रभावी हो सकता है क्योंकि संसूचक पिक्सेल स्रोत से पर्याप्त यूवी संकेत प्राप्त करने के लिए पहले से ही संघर्ष कर रहे हैं। इस कारण से, क्यूटीएच मानक लैंप का उपयोग कर अंशांकन में 350 एनएम से नीचे भारी त्रुटियां (100% से अधिक) हो सकती हैं और इस क्षेत्र में अधिक सटीक अंशांकन के लिए ड्यूटेरियम मानक लैंप की आवश्यकता होती है। वास्तव में, यूवी क्षेत्र में पूर्ण प्रकाश मापन में सही अंशांकन के साथ भी बड़ी त्रुटियां हो सकती हैं, जब इन पिक्सेल में अधिकांश इलेक्ट्रॉनिक गणना अवांछित प्रकाश (वास्तविक यूवी प्रकाश के बजाय लंबी तरंग दैर्ध्य धर्षण) का परिणाम है।


=== अंशांकन त्रुटियां ===
=== अंशांकन त्रुटियां ===
कई कंपनियां हैं जो स्पेक्ट्रोमीटर के लिए अंशांकन की पेशकश करती हैं, लेकिन सभी समान नहीं हैं। अंशांकन करने के लिए पता लगाने योग्य, प्रमाणित प्रयोगशाला का पता लगाना महत्वपूर्ण है। अंशांकन प्रमाण पत्र में उपयोग किए जाने वाले प्रकाश स्रोत (उदाहरण: हलोजन, ड्यूटेरियम, क्सीनन, एलईडी) और प्रत्येक बैंड (यूवीसी, यूवीबी, विस..), एनएम में प्रत्येक तरंग दैर्ध्य या पूर्ण स्पेक्ट्रम मापे गए स्पेक्ट्रम के लिए अंशांकन की अनिश्चितता को वर्णित किया जाना चाहिए। इसे अंशांकन अनिश्चितता के लिए विश्वास स्तर को भी सूचीबद्ध करना चाहिए।
कई कंपनियां हैं जो स्पेक्ट्रोमीटर के लिए अंशांकन की प्रस्तुत करती हैं, लेकिन सभी समान नहीं हैं। अंशांकन के लिए एक संसूचित, प्रमाणित प्रयोगशाला खोजना महत्वपूर्ण है। अंशांकन प्रमाण पत्र में उपयोग किए जाने वाले प्रकाश स्रोत (उदाहरण: हलोजन, ड्यूटेरियम, क्सीनन, एलईडी) और प्रत्येक बैंड (यूवीसी, यूवीबी, विस..), एनएम में प्रत्येक तरंग दैर्ध्य या पूर्ण स्पेक्ट्रम मापे गए स्पेक्ट्रम के लिए अंशांकन की अनिश्चितता को वर्णित किया जाना चाहिए। इसे अंशांकन अनिश्चितता के लिए विश्वास स्तर भी सूचीबद्ध करना चाहिए।


=== गलत सेटिंग्स ===
=== गलत विन्यास ===
एक कैमरे की तरह, अधिकांश स्पेक्ट्रोमीटर उपयोगकर्ता को एकत्र किए जाने वाले नमूनों की एक्सपोज़र समय और मात्रा का चयन करने की अनुमति देते हैं। एकीकरण का समय और स्कैन की संख्या निर्धारित करना एक महत्वपूर्ण चरण है। बहुत लंबे समय तक एकीकरण का समय संतृप्ति का कारण बन सकता है। (कैमरा फोटो में यह एक बड़े सफेद धब्बे के रूप में दिखाई दे सकता है, जबकि स्पेक्ट्रोमीटर में यह डुबकी के रूप में दिखाई दे सकता है, या शिखर को काट सकता है) बहुत कम एकीकरण समय शोर के परिणाम उत्पन्न कर सकता है (कैमरा फोटो में यह एक अंधेरा होगा या धुंधला क्षेत्र, जहां एक स्पेक्ट्रोमीटर में यह स्पाइकी या अस्थिर रीडिंग दिखाई दे सकती है)।
एक कैमरा की तरह, अधिकांश स्पेक्ट्रोमीटर उपयोगकर्ता को एकत्र किए जाने वाले नमूनों के एक्सपोजर समय और मात्रा का चयन करने की अनुमति देते हैं। एकीकरण का समय और स्कैन की संख्या एक महत्वपूर्ण कदम है। बहुत लंबे समय तक एकीकरण का समय संतृप्ति का कारण बन सकता है। (कैमरा फोटो में इसे एक बड़े सफेद पैच के रूप में देखा जा सकता है, जबकि स्पेक्ट्रोमीटर में इसे एक डुबकी के रूप में देखा जा सकता है, या शिखर को काटा जा सकता है) बहुत कम एकीकरण समय रव परिणाम उत्पन्न कर सकता है (एक कैमरा फोटो में यह एक अंधेरे या धुंधला क्षेत्र होगा, जबकि एक स्पेक्ट्रोमीटर में यह स्पाइक्स या अस्थिर रीडिंग देखा जा सकता है)।


एक्सपोजर समय वह समय है जब माप के दौरान प्रकाश संवेदक पर पड़ता है। इस पैरामीटर को समायोजित करने से उपकरण की समग्र संवेदनशीलता बदल जाती है, जैसा कि कैमरे के लिए एक्सपोजर समय बदलने से होता है। न्यूनतम एकीकरण समय न्यूनतम .5 मिसे और अधिकतम 10 मिनट प्रति स्कैन के साथ अलग-अलग होता है। प्रकाश की तीव्रता के आधार पर एक व्यावहारिक सेटिंग 3 से 999 एमएस की सीमा में होती है।
एक्सपोजर समय वह समय होता है जब मापन के दौरान सेंसर पर प्रकाश गिरता है। इस पैरामीटर को समायोजित करने से डिवाइस की समग्र संवेदनशीलता बदल जाती है, क्योंकि कैमरा के लिए एक्सपोजर समय बदलता है। न्यूनतम एकीकरण समय न्यूनतम 5 मिमी और अधिकतम 10 मिनट प्रति स्कैन के साथ भिन्न होता है। प्रकाश की तीव्रता पर आधारित एक व्यावहारिक सेटिंग 3 से 999 की सीमा में होती है।


एकीकरण समय को एक संकेत के लिए समायोजित किया जाना चाहिए जो अधिकतम संख्या से अधिक नहीं है (16-बिट सीसीडी में 65,536, 14-बिट सीसीडी में 16,384 है)। संतृप्ति तब होती है जब एकीकरण का समय बहुत अधिक होता है। विशिष्ट रूप से, अधिकतम का लगभग 85% का शिखर संकेत एक अच्छा लक्ष्य है और एक अच्छा एस/एन अनुपात प्राप्त करता है। (उदा: क्रमशः 60K गणना या 16K गणना)
एकीकरण समय को एक संकेत के लिए समायोजित किया जाना चाहिए जो अधिकतम संख्या से अधिक नहीं है (16-बिट सीसीडी में 65,536, 14-बिट सीसीडी में 16,384 है)। संतृप्ति तब होती है जब एकीकरण का समय बहुत अधिक होता है। विशिष्ट रूप से, अधिकतम का लगभग 85% का शिखर संकेत एक अच्छा लक्ष्य है और एक अच्छा एस/एन अनुपात प्राप्त करता है। (उदा: क्रमशः 60K गणना या 16K गणना)


स्कैन की संख्या इंगित करती है कि कितने मापों का औसत निकाला जाएगा। अन्य चीजें समान होने पर, एकत्रित स्पेक्ट्रा का संकेत-टू-शोर अनुपात (एसएनआर) औसतन स्कैन की संख्या एन के वर्गमूल से बेहतर होता है। उदाहरण के लिए, यदि 16 स्पेक्ट्रल स्कैन औसत हैं, तो एसएनआर एक स्कैन के 4 गुना अधिक सुधार करता है।
स्कैन की संख्या इंगित करती है कि कितने माप औसत किए जाएंगे। जब अन्य चीजें समान होती हैं, तो औसत पर स्कैन की संख्या n के वर्गमूल से बेहतर होती है. उदाहरण के लिए, यदि 16 वर्णक्रमीय स्कैन औसत हैं, तो एसएनआर 4 गुना अधिक स्कैन करता है।


एस/एन अनुपात को इनपुट प्रकाश स्तर पर मापा जाता है जो स्पेक्ट्रोमीटर के पूर्ण पैमाने पर पहुंचता है। यह इस प्रकाश स्तर पर संकेत काउंट (सामान्यतः पूर्ण पैमाने पर) से आरएमएस (रूट मीन स्क्वायर) शोर का अनुपात है। इस शोर में डार्क नॉइज़ एनडी, शॉट नॉइज़ एनएस सम्मिलित है जो इनपुट प्रकाश द्वारा उत्पन्न काउंट से संबंधित है और शोर को पढ़ता है। यह प्रकाश मापन के लिए स्पेक्ट्रोमीटर से प्राप्त किया जा सकने वाला सर्वोत्तम S/N अनुपात है।
एस/एन अनुपात को इनपुट प्रकाश स्तर पर मापा जाता है जो स्पेक्ट्रोमीटर के पूर्ण पैमाने पर पहुंचता है। यह इस प्रकाश स्तर पर संकेत काउंट (सामान्यतः पूर्ण पैमाने पर) से आरएमएस (रूट मीन स्क्वायर) रव का अनुपात है। इस रव में डार्क नॉइज़ एनडी, शॉट नॉइज़ एनएस सम्मिलित है जो इनपुट प्रकाश द्वारा उत्पन्न काउंट से संबंधित है और रव को पढ़ता है। यह प्रकाश मापन के लिए स्पेक्ट्रोमीटर से प्राप्त किया जा सकने वाला सर्वोत्तम एस/एन अनुपात है।


== यह कैसे काम करता है ==
== यह कैसे काम करता है ==
Line 68: Line 68:
स्पेक्ट्रोरेडियोमेट्रिक प्रणाली के आवश्यक घटक निम्नानुसार हैं:
स्पेक्ट्रोरेडियोमेट्रिक प्रणाली के आवश्यक घटक निम्नानुसार हैं:


* इनपुट प्रकाशिकी जो स्रोत से विद्युत चुम्बकीय विकिरण एकत्र करते हैं (विसारक, लेंस, फाइबर ऑप्टिक प्रकाश गाइड)
* इनपुट प्रकाशिकी जो स्रोत से विद्युत चुम्बकीय विकिरण एकत्र करते हैं (विसारक, लेंस, फाइबर ऑप्टिक प्रकाश गाइड)
* एक प्रवेश द्वार भट्ठा, यह निर्धारित करता है कि स्पेक्ट्रोमीटर में कितना प्रकाश प्रवेश करेगा। एक छोटे स्लिट में अधिक रिज़ॉल्यूशन होता है, लेकिन समग्र संवेदनशीलता कम होती है
* एक प्रवेश द्वार भट्ठा, यह निर्धारित करता है कि स्पेक्ट्रोमीटर में कितना प्रकाश प्रवेश करेगा। एक छोटे स्लिट में अधिक रिज़ॉल्यूशन होता है, लेकिन समग्र संवेदनशीलता कम होती है।
* दूसरे क्रम के प्रभावों को कम करने के लिए ऑर्डर सॉर्टिंग निस्यंदक
* दूसरे क्रम के प्रभावों को कम करने के लिए ऑर्डर सॉर्टिंग निस्यंदक।
* कोलिमेटर प्रकाश को कर्कश या प्रिज्म की ओर निर्देशित करता है
* कोलिमेटर प्रकाश को कर्कश या प्रिज्म की ओर निर्देशित करता है।
* प्रकाश के विक्षेपण के लिए कर्कश या प्रिज्म
* प्रकाश के विक्षेपण के लिए कर्कश या प्रिज्म।
* प्रकाश को संसूचक पर संरेखित करने के लिए फोकसिंग प्रकाशिकी
* प्रकाश को संसूचक पर संरेखित करने के लिए फोकसिंग प्रकाशिकी।
* एक संसूचक, सीएमओएस संवेदक या सीसीडी सरणी
* एक संसूचक, सीएमओएस संवेदक या सीसीडी सरणी।
* डेटा को परिभाषित करने और इसे स्टोर करने के लिए एक नियंत्रण और लॉगिंग प्रणाली।<ref name="Bentham">Bentham Instruments Ltd. A Guide to Spectroradiometry: Instruments & Applications for the Ultraviolet. Guide. N.p., 1997. Web. <http://www.bentham.co.uk/pdf/UVGuide.pdf></ref><br />
* डेटा को परिभाषित करने और इसे स्टोर करने के लिए एक नियंत्रण और लॉगिंग प्रणाली।<ref name="Bentham">Bentham Instruments Ltd. A Guide to Spectroradiometry: Instruments & Applications for the Ultraviolet. Guide. N.p., 1997. Web. <http://www.bentham.co.uk/pdf/UVGuide.pdf></ref><br />


=== इनपुट प्रकाशिकी ===
=== इनपुट प्रकाशिकी ===


एक स्पेक्ट्रोरेडियोमीटर के फ्रंट-एंड प्रकाशिकी में लेंस, विसारक और निस्यंदक सम्मिलित होते हैं जो प्रकाश को संशोधित करते हैं क्योंकि यह पहली बार प्रणाली में प्रवेश करता है। रेडियंस के लिए एक संकीर्ण दृश्य क्षेत्र के साथ एक ऑप्टिक की आवश्यकता होती है। कुल प्रवाह के लिए एक एकीकृत क्षेत्र की आवश्यकता होती है। किरणन कोज्या संशोधन के लिए प्रकाशिकी की आवश्यकता होती है। इन तत्वों के लिए प्रयुक्त सामग्री यह निर्धारित करती है कि किस प्रकार का प्रकाश मापा जा सकता है। उदाहरण के लिए, यूवी माप लेने के लिए, सटीक यूवी माप सुनिश्चित करने के लिए ग्लास लेंस, ऑप्टिकल फाइबर, टेफ्लॉन डिफ्यूज़र, और बेरियम सल्फेट कोटेड इंटीग्रेटिंग स्फेयर के बजाय क्वार्ट्ज का उपयोग प्रायः किया जाता है।<ref name=Bentham/>
स्पेक्ट्रोमापी के फ्रंट-एंड ऑप्टिक्स में लेंस, डिफ्यूजर्स और फिल्टर सम्मिलित हैं जो पहली बार सिस्टम में प्रवेश करने के बाद प्रकाश को संशोधित करते हैं। रेडियंस को एक संकीर्ण दृश्य क्षेत्र के साथ एक ऑप्टिक की आवश्यकता होती है। कुल प्रवाह के लिए एक एकीकृत क्षेत्र की आवश्यकता होती है। विकिरण कोसाइन संशोधन के लिए प्रकाशिकी की आवश्यकता होती है। इन तत्वों के लिए प्रयुक्त सामग्री यह निर्धारित करती है कि किस प्रकार के प्रकाश को मापा जा सकता है। उदाहरण के लिए, यूवी माप लेने के लिए, क्वार्ट्ज का उपयोग अक्सर ग्लास लेंस, ऑप्टिकल फाइबर, टेफ्लॉन डिफसर्स और बेरियम सल्फेट युक्त एकीकृत पर्याप्तता के प्रति किया जाता है।<ref name=Bentham/>
=== एकवर्णक ===
=== एकवर्णक ===
{{main|एकवर्णक}}
{{main|एकवर्णक}}


[[Image:Czerny-Turner_Monochromator.svg|thumb|200px|ज़ेर्नी-टर्नर एकवर्णक का आरेख।]]किसी स्रोत का वर्णक्रमीय विश्लेषण करने के लिए, प्रत्येक तरंग दैर्ध्य पर एकवर्णी प्रकाश की आवश्यकता होगी ताकि प्रदीपक की एक स्पेक्ट्रम प्रतिक्रिया तैयार की जा सके। एक एकवर्णक का उपयोग स्रोत से तरंग दैर्ध्य का नमूना लेने के लिए किया जाता है और अनिवार्य रूप से एक एकवर्णी संकेत उत्पन्न करता है। यह अनिवार्य रूप से एक परिवर्तनशील फिल्टर है, जो मापा प्रकाश के पूर्ण स्पेक्ट्रम से एक विशिष्ट तरंग दैर्ध्य या तरंग दैर्ध्य के बैंड को चुनिंदा रूप से अलग और प्रसारित करता है और उस क्षेत्र के बाहर पड़ने वाले किसी भी प्रकाश को बाहर करता है।<ref name=AAS>American Astronomical Society. "Study Notes: AAS Monochromator." Study Notes: AAS Monochromator. N.p., n.d. Web. 2013. <{{cite web |url=http://toolboxes.flexiblelearning.net.au/demosites/series5/508/Laboratory/StudyNotes/snAASMonochrom.htm |title=Study Notes: AAS Monochromator |access-date=2013-12-11 |url-status=dead |archive-url=https://archive.today/20131211054338/http://toolboxes.flexiblelearning.net.au/demosites/series5/508/Laboratory/StudyNotes/snAASMonochrom.htm |archive-date=2013-12-11 }}>.</ref>
[[Image:Czerny-Turner_Monochromator.svg|thumb|200px|ज़ेर्नी-टर्नर एकवर्णक का आरेख।]]एक स्रोत का वर्णक्रमीय विश्लेषण करने के लिए, लैंप की एक स्पेक्ट्रम प्रतिक्रिया बनाने के लिए प्रत्येक तरंगदैर्घ्य पर ध्वनिक प्रकाश की आवश्यकता होगी। एक मोनोलिथिक का उपयोग स्रोत से तरंग दैर्ध्य का नमूना लेने के लिए किया जाता है और अनिवार्य रूप से एक ध्वनिक संकेत उत्पन्न करता है। यह अनिवार्य रूप से एक चर फिल्टर है जो एक विशिष्ट तरंग दैर्ध्य या तरंग दैर्ध्य के बैंड को मापी गई प्रकाश के पूर्ण स्पेक्ट्रम से अलग करता है और उस क्षेत्र के बाहर गिरने वाली किसी भी प्रकाश को बाहर निकालता है।<ref name=AAS>American Astronomical Society. "Study Notes: AAS Monochromator." Study Notes: AAS Monochromator. N.p., n.d. Web. 2013. <{{cite web |url=http://toolboxes.flexiblelearning.net.au/demosites/series5/508/Laboratory/StudyNotes/snAASMonochrom.htm |title=Study Notes: AAS Monochromator |access-date=2013-12-11 |url-status=dead |archive-url=https://archive.today/20131211054338/http://toolboxes.flexiblelearning.net.au/demosites/series5/508/Laboratory/StudyNotes/snAASMonochrom.htm |archive-date=2013-12-11 }}>.</ref>


एक विशिष्ट एकवर्णक इसे प्रवेश और निकास स्लिट्स, संधानिक और फोकस प्रकाशिकी, और एक विवर्तन कर्कश या प्रिज्म जैसे तरंग दैर्ध्य-फैलाने वाले तत्व के उपयोग के माध्यम से प्राप्त करता है।<ref name=Schnedier/> आधुनिक एकवर्णक्स विवर्तन कर्कश के साथ निर्मित होते हैं, और विवर्तन कर्कश का उपयोग लगभग विशेष रूप से स्पेक्ट्रोरेडियोमेट्रिक अनुप्रयोगों में किया जाता है। विवर्तन कर्कश उनकी बहुमुखी प्रतिभा, कम क्षीणन, व्यापक तरंग दैर्ध्य सीमा, कम लागत और अधिक निरंतर फैलाव के कारण बेहतर हैं।<ref name=AAS/> सिंगल या डबल एकवर्णक्स का उपयोग अनुप्रयोग के आधार पर किया जा सकता है, डबल एकवर्णक्स सामान्यतः कर्कश के बीच अतिरिक्त फैलाव और चकरा देने के कारण अधिक सटीकता प्रदान करते हैं।<ref name=Bentham/>
एक विशिष्ट ध्वनिक इसे एक तरंग दैर्ध्य-स्थिर तत्व के उपयोग के माध्यम से प्राप्त करता है जैसे प्रवेश और निकास स्लेट, संवैधानिक और फोकस ऑप्टिक्स, और एक विवर्तन डायाफ्राम या प्रिज्म।<ref name=Schnedier/> आधुनिक अकॉस्टिक्स टैनरीज़ के साथ बनते हैं, और टेक्टन डिसेंटरी का उपयोग लगभग विशेष रूप से स्पेक्ट्रोएडिम्रिक अनुप्रयोगों में किया जाता है। उनकी बहुमुखी प्रतिभा, कम आकलन, व्यापक तरंगदैर्घ्य रेंज, कम लागत और अधिक निरंतर प्रसार बेहतर हैं।<ref name=AAS/> एकल या डबल एसीओस्टिक्स का उपयोग एक अनुप्रयोग के आधार पर किया जा सकता है,दोहरी ध्वनिकी आमतौर पर अतिरिक्त फैलाव और करकैश के बीच स्केटिंग के कारण अधिक सटीकता प्रदान करते हैं।<ref name=Bentham/>


=== संसूचक ===
=== संसूचक ===
Line 114: Line 114:


== डीआईवाई निर्माण ==
== डीआईवाई निर्माण ==
तरंगदैर्घ्य को अंशांकित करने के लिए एक सीएफएल लैम्प का उपयोग करते हुए एक प्रकाशीय डिस्क कर्कश और एक बुनियादी वेब कैमरा का उपयोग करके एक बुनियादी ऑप्टिकल स्पेक्ट्रोमीटर का निर्माण संभव है।<ref>{{cite magazine |title=DIY स्पेक्ट्रोमीटर|url=https://www.wired.com/2012/07/diy-spectrometer/ |magazine=Wired |language=en-us}}</ref> ज्ञात स्पेक्ट्रम के स्रोत का उपयोग कर एक अंशांकन तब फोटो पिक्सेल की दीप्ति की व्याख्या करके स्पेक्ट्रोमीटर को स्पेक्ट्रोरेडियोमीटर में परिवर्तित हो सकता है।<ref>{{cite web |title=PLab 3 Gain Correction |url=https://publiclab.org/notes/stoft/03-06-2015/plab-3-gain-correction |website=[[Public Lab]]}}</ref> फोटो-टू-वैल्यू रूपांतरण में कुछ अतिरिक्त त्रुटि स्रोतों से एक डीआईवाई निर्माण प्रभावित होता है: सीसीडी-टू-फोटोग्राफ रूपांतरण में फोटोग्राफिक शोर (डार्क फ्रेम घटाव की आवश्यकता होती है) और गैर-रैखिकता (संभवतः एक कच्चे छवि प्रारूप द्वारा हल)।<ref>{{cite web |title=शोर में कमी|url=https://jethomson.wordpress.com/spectrometer-articles/noise-reduction/ |website=Jonathan Thomson's web journal |language=en |date=26 October 2010}}</ref>
तरंगदैर्घ्य को अंशांकित करने के लिए एक सीएफएल लैम्प का उपयोग करते हुए एक प्रकाशीय डिस्क कर्कश और एक बुनियादी वेब कैमरा का उपयोग करके एक बुनियादी ऑप्टिकल स्पेक्ट्रोमीटर का निर्माण संभव है।<ref>{{cite magazine |title=DIY स्पेक्ट्रोमीटर|url=https://www.wired.com/2012/07/diy-spectrometer/ |magazine=Wired |language=en-us}}</ref> ज्ञात स्पेक्ट्रम के स्रोत का उपयोग कर एक अंशांकन तब फोटो पिक्सेल की दीप्ति की व्याख्या करके स्पेक्ट्रोमीटर को स्पेक्ट्रोरेडियोमीटर में परिवर्तित हो सकता है।<ref>{{cite web |title=PLab 3 Gain Correction |url=https://publiclab.org/notes/stoft/03-06-2015/plab-3-gain-correction |website=[[Public Lab]]}}</ref> फोटो-टू-वैल्यू रूपांतरण में कुछ अतिरिक्त त्रुटि स्रोतों से एक डीआईवाई निर्माण प्रभावित होता है: सीसीडी-टू-फोटोग्राफ रूपांतरण में फोटोग्राफिक रव (डार्क फ्रेम घटाव की आवश्यकता होती है) और गैर-रैखिकता (संभवतः एक कच्चे छवि प्रारूप द्वारा हल)।<ref>{{cite web |title=शोर में कमी|url=https://jethomson.wordpress.com/spectrometer-articles/noise-reduction/ |website=Jonathan Thomson's web journal |language=en |date=26 October 2010}}</ref>
== यह भी देखें ==
== यह भी देखें ==
* [[रेडियोमीटर]]
* [[रेडियोमीटर]]

Revision as of 08:03, 20 June 2023

स्पेक्ट्रोमीटर एक प्रकाश मापन उपकरण है जो प्रकाश स्रोत से उत्सर्जित तरंग दैर्घ्य और प्रकाश के आयामों को मापने में सक्षम है। स्पेक्ट्रोमीटर खोज सरणी पर प्रकाश विस्तार की स्थिति के आधार पर तरंगदैर्घ्य का समाधान करते हैं ताकि एकल अधिग्रहण के साथ पूर्ण स्पेक्ट्रम प्राप्त किया जा सके। अधिकांश स्पेक्ट्रोमीटर में एक आधार मापन होता है जो एक डिफरेंशियल रीडिंग होता है और इस प्रकार प्रत्येक तरंगदैर्घ्य पर संसूचक की संवेदनशीलता को प्रभावित करता है। अंशांकन प्रयुक्त करने के द्वारा, स्पेक्ट्रोमीटर स्पेक्ट्रोमीटर स्पेक्ट्रोमीटर स्पेक्ट्रोमीटर स्पेक्ट्रोमीटर स्पेक्ट्रोमीटर विकिरण, वर्णक्रमीय विकिरण और / या वर्णक्रमीय प्रवाह को मापने में सक्षम है। इस डेटा का उपयोग तब अंतः स्थापित या पीसी सॉफ्टवेयर और कई कलन विधि (डब्ल्यू/सेमी2) के साथ पठन या प्रकाश प्रदान करने के लिए किया जाता है, प्रकाश (लक्स या एफसी), रेडियन (डब्ल्यू/एसआर), ल्यूमिनेंस (सीडी), और फ्लक्स (ल्यूमन या वाट) के साथ।

विविधता, रंग तापमान, चोटी और प्रमुख तरंगदैर्घ्य। कुछ और जटिल स्पेक्ट्रोमीटर सॉफ्टवेयर पैकेज भी गणना और सुविधाओं की अनुमति देते हैं जैसे कि पीएआर μएमओएल/एम2/एस, मेटामेरिज्म, और कैंडीला 2 और 20 डिग्री पर्यवेक्षक, बुनियादी ओवरले तुलना, संचरण और दूर के आधार पर प्रतिबिंब।

कई समूहों और आकारों में स्पेक्ट्रोमीटर उपलब्ध हैं जो कई तरंग दैर्ध्य को कवर करते हैं। स्पेक्ट्रोमीटर की प्रभावी तरंग दैर्घ्य सीमा न केवल स्क्रैट्स डिफ्यूजन क्षमता द्वारा बल्कि संसूचकों की संवेदनशीलता सीमा द्वारा भी निर्धारित की जाती है। सिलिकॉन-आधारित संसूचक लिमिटेड अर्धचालक बैंड अंतर द्वारा 200-1100 एनएम का उत्तर देता है, जबकि गैस-आधारित संसूचक 900-1700 एनएम (या शीतलन के साथ 2500 एनएम तक) के लिए संवेदनशील है।

प्रयोगशाला/शोध स्पेक्ट्रमीटर प्रायः यूवी से एनआईआर तक एक व्यापक वर्णक्रमीय सीमा को आवरणित करते हैं और एक पीसी की आवश्यकता होती है। आईआर स्पेक्ट्रोमीटर भी हैं जिन्हें शीतलन प्रणाली चलाने के लिए उच्च शक्ति की आवश्यकता होती है। कई स्पेक्ट्रोमीटर को एक विशिष्ट सीमा यानी यूवी, या विज़ के लिए अनुकूलित किया जा सकता है और अधिक सटीक माप, ब्रॉडबैंड प्रणाली में कुछ और सामान्य त्रुटियाँ जैसे प्रकाश और संवेदनशीलता की त्रुटि को अन्य प्रणाली में जोड़ा जा सकता है ताकि बेहतर समाधान की अनुमति दी जा सके।

संवहन उपकरण एनआईआर को यूवी आवरण करने वाली कई वर्णमाला श्रेणियों के लिए भी उपलब्ध है और कई विभिन्न संकुल शैलियों और आकार प्रस्तुत करता है।एकीकृत डिस्प्ले हैंडहेल्ड सिस्टम में सामान्यतः प्रकाशिकी और प्री-प्रोग्रामेड सॉफ्टवेयर के साथ ऑन-बोर्ड कंप्यूटर होते हैं। मिनी स्पेक्ट्रोमीटर का उपयोग हाथ या प्रयोगशाला में भी किया जा सकता है क्योंकि वे एक पीसी द्वारा संचालित और नियंत्रित होते हैं और एक यूएसबी केबल की आवश्यकता होती है। इनपुट प्रकाशिकी को सम्मिलित किया जा सकता है या सामान्यतः एक फाइबर ऑप्टिक प्रकाश गाइड द्वारा संलग्न किया जाता है। छोटे माइक्रो स्पेक्ट्रोमीटर भी होते हैं जिन्हें एक सिस्टम में एकीकृत किया जा सकता है, या अकेले उपयोग किया जा सकता है।

पृष्ठभूमि

स्पेक्ट्रोरेडियोमेट्री का क्षेत्र संकीर्ण तरंग दैर्ध्य अंतरालों में पूर्ण रेडियोमेट्रिक मात्राओं के मापन से संबंधित है।[1] संकीर्ण बैंडविड्थ और तरंग दैर्ध्य वृद्धि के साथ स्पेक्ट्रम का नमूना लेना उपयोगी होता है क्योंकि कई स्रोतों में रेखा संरचनाएं होती हैं [2] स्पेक्ट्रोरेडियोमेट्री में प्रायः, वर्णक्रमीय विकिरण वांछित माप होता है। अभ्यास में औसत वर्णक्रमीय विकिरण को मापा जाता है, जिसे गणितीय रूप से सन्निकटन के रूप में दिखाया जाता है:

जहाँ वर्णक्रमीय विकिरण है, स्रोत का दीप्तिमान प्रवाह है (एसआई इकाई: वाट, डब्ल्यू) तरंग दैर्ध्य अंतराल (एसआई इकाई: मीटर, एम) के भीतर, सतह क्षेत्र पर घटना, (एसआई इकाई: वर्ग मीटर, मी2)। स्पेक्ट्रल विकिरण के लिए एसआई इकाई डब्ल्यू/एम3 है। हालांकि यह प्रायः नैनोमीटर में सेंटीमीटर और तरंग दैर्ध्य के स्तिथि में क्षेत्र को मापने के लिए अधिक उपयोगी होता है, इस प्रकार वर्णक्रमीय विकिरण की एसआई इकाइयों के उप-गुणकों का उपयोग किया जाएगा, उदाहरण के लिए μW/cm2*nm[3]

वर्णक्रमीय विकिरण सामान्य रूप से सतह पर बिंदु से बिंदु तक भिन्न होता है। व्यवहार में, यह ध्यान रखना महत्वपूर्ण है कि रेडिएंट फ्लक्स किस तरह से दिशा के साथ बदलता है, सतह पर प्रत्येक बिंदु पर स्रोत द्वारा उपशीर्षित ठोस कोण का आकार और सतह के उन्मुखीकरण। इन विचारों को देखते हुए, इन निर्भरताओं [3] के हिसाब से समीकरण के अधिक दृढ़ रूप का उपयोग करना प्रायः अधिक विवेकपूर्ण होता है[3]

ध्यान दें कि उपसर्ग "स्पेक्ट्रल" को "वर्णक्रमीय एकाग्रता" वाक्यांश के संक्षिप्त नाम के रूप में समझा जाना है जिसे सीआईई द्वारा समझा और परिभाषित किया गया है। "श्रेणी द्वारा दी गई तरंगदैर्घ्य के दोनों ओर एक अतिसूक्ष्म श्रेणी में ली गई रेडियोमेट्रिक मात्रा का भाग"।[4]

वर्णक्रमीय विद्युत वितरण

एक स्रोत का वर्णक्रमीय विद्युत वितरण (एसपीडी) बताता है कि किसी विशेष तरंग दैर्ध्य और क्षेत्र में कितना प्रवाह संवेदक तक पहुंचता है। यह रेडियोमीट्रिक मात्रा को प्रभावी ढंग से मापा जा रहा प्रति दिन योगदान का प्रतिनिधित्व करता है। स्रोत का एसपीडी आमतौर पर एसपीडी वक्र के रूप में दिखाया जाता है। एसपीडी वक्र प्रकाश स्रोत की रंग विशेषताओं का एक दृश्य प्रतिनिधित्व प्रदान करता है, जो दृश्य स्पेक्ट्रम में विभिन्न तरंग दैर्ध्य पर स्रोत द्वारा उत्सर्जित उज्ज्वल प्रवाह को दिखाता है,[5] एक मीट्रिक भी है जिसके द्वारा हम प्रकाश स्रोत के रंगों को प्रस्तुत करने की क्षमता का मूल्यांकन कर सकते हैं, अर्थात्, क्या एक निश्चित रंग उत्तेजना को किसी दिए गए प्रकाश के तहत उचित रूप से प्रस्तुत किया जा सकता है।

तापदीप्त प्रकाश बल्ब (बाएं) और एक फ्लोरोसेंट लैंप (दाएं) के लिए विशेषता वर्णक्रमीय बिजली वितरण (एसपीडी)। क्षैतिज अक्ष नैनोमीटर में हैं और ऊर्ध्वाधर अक्ष मनमाना इकाइयों में सापेक्ष तीव्रता दिखाते हैं।

त्रुटि के स्रोत

प्रदत्त स्पेक्ट्रोरोमेट्रिक प्रणाली की गुणवत्ता इसके इलेक्ट्रॉनिक्स, ऑप्टिकल घटकों, सॉफ्टवेयर, बिजली आपूर्ति और अंशांकन का एक अधिनियम है। आदर्श प्रयोगशाला परिस्थितियों और उच्च प्रशिक्षित विशेषज्ञों के साथ, छोटे (कुछ 10 से कुछ प्रतिशत) त्रुटियों को प्राप्त करना संभव है। हालांकि, कई व्यावहारिक स्थितियों में, त्रुटियाँ 10 प्रतिशत के क्रम में होने की संभावना है।[3] माप सटीकता के सीमित कारकों के रूप में नोट की गई तीन बुनियादी प्रकार की त्रुटि यादृच्छिक, व्यवस्थित और आवधिक त्रुटियों हैं।[6]

  • यादृच्छिक त्रुटियाँ उस माध्य के बारे में विविधताएँ हैं। स्पेक्ट्रोरेडियोमेट्रिक माप के स्तिथि में, इसे संसूचक, आंतरिक इलेक्ट्रॉनिक्स, या प्रकाश स्रोत से रव के रूप में सोचा जा सकता है। इस प्रकार की त्रुटियों को लंबे समय तक एकीकरण समय या एकाधिक स्कैन द्वारा मुकाबला किया जा सकता है।
  • व्यवस्थित त्रुटियां अनुमानित "सही" मान के लिए ऑफ़सेट हैं। व्यवस्थित त्रुटियां सामान्यतः इन मापों के मानवीय घटक, स्वयं उपकरण या प्रयोग की स्थापना के कारण होती हैं। अंशांकन त्रुटियां, अवांछित प्रकाश और गलत सेटिंग्स जैसी चीजें, सभी संभावित मुद्दे हैं।
  • आवर्ती आवधिक या छद्म आवधिक घटनाओं से आवधिक त्रुटियां उत्पन्न होती हैं। तापमान, आर्द्रता, वायु-गति, या एसी हस्तक्षेप में बदलाव सभी को आवधिक त्रुटि के रूप में वर्गीकृत किया जा सकता है।[6]

त्रुटि के इन सामान्य स्रोतों के अलावा, स्पेक्ट्राएडॉमी में कुछ और विशिष्ट कारण हैं:

  • माप की बहुलता आउटपुट संकेत कई कारकों पर निर्भर करता है, जिसमें प्रवाह की तीव्रता, इसकी दिशा, इसके ध्रुवीकरण और इसके तरंगदैर्घ्य वितरण सम्मिलित हैं।
  • मापक उपकरणों की अशुद्धि, साथ ही कथित उपकरणों को कैलिब्रेट करने के लिए प्रयुक्त मानक, संपूर्ण मापन प्रक्रिया के दौरान एक बड़ी त्रुटि पैदा करने के लिए कैस्केड थे, और
  • युक्ति अस्थिरता त्रुटियों को कम करने के लिए बहुआयामी और स्वामित्व तकनीक।[3]

गामा-वैज्ञानिक, कैलिफोर्निया स्थित प्रकाश मापन उपकरण के निर्माता ने अपने स्पेक्ट्रोएडोमीटर की सटीकता और प्रदर्शन को प्रभावित करने वाले सात कारकों को सूचीबद्ध किया है, जो या तो सिस्टम अंशांकन, सॉफ्टवेयर और बिजली आपूर्ति, प्रकाशिकी या स्व-मापन इंजन के कारण हैं।[7]

परिभाषाएँ

अवांछित प्रकाश

अवांछित प्रकाश अवांछित तरंग दैर्ध्य विकिरण है जो गलत संसूचक तत्व तक पहुंचता है। यह गलत इलेक्ट्रॉनिक गणना उत्पन्न करता है जो पिक्सेल या संसूचक सरणी के तत्व के लिए डिज़ाइन किए गए स्पेक्ट्रल संकेत से संबंधित नहीं है। यह प्रकाश प्रकीर्णन और अपूर्ण ऑप्टिकल तत्वों के प्रतिबिंब के साथ-साथ उच्च आदेश विवर्तन प्रभाव से आ सकता है। संसूचक से पहले क्रम वर्गीकरण निस्यंदक स्थापित करके, दूसरे ऑर्डर प्रभाव को हटाया जा सकता है या कम से कम नाटकीय रूप से कम किया जा सकता है।

एसी संसूचक, यूवी सीमा श्यानता और एनआईआर के प्रति संवेदनशीलता की तुलना में अनुमानित परिमाण का एक अनुक्रम है। इसका मतलब है कि यूवी वर्णक्रमीय स्थिति में, पिक्सेल अपने खुद के डिजाइन किए गए वर्णक्रमीय संकेत की तुलना में एनआईआर में दृश्य और अवांछित प्रकाश के प्रति अधिक दृढ़ता से प्रतिक्रिया देते हैं। इसलिए, यूवी क्षेत्र में अवांछित प्रकाश प्रभाव दृश्य और एनआईआर पिक्सेल की तुलना में बहुत महत्वपूर्ण हैं। तरंगदैर्घ्य के नीचे, स्थिति बदतर है।

जब यूवी संकेतों के छोटे अंश के साथ ब्रॉड बैंड प्रकाश को मापते हैं, तो कभी-कभी यूवी सीमा में अवांछित प्रकाश प्रभाव प्रभावी हो सकता है क्योंकि संसूचक पिक्सेल स्रोत से पर्याप्त यूवी संकेत प्राप्त करने के लिए पहले से ही संघर्ष कर रहे हैं। इस कारण से, क्यूटीएच मानक लैंप का उपयोग कर अंशांकन में 350 एनएम से नीचे भारी त्रुटियां (100% से अधिक) हो सकती हैं और इस क्षेत्र में अधिक सटीक अंशांकन के लिए ड्यूटेरियम मानक लैंप की आवश्यकता होती है। वास्तव में, यूवी क्षेत्र में पूर्ण प्रकाश मापन में सही अंशांकन के साथ भी बड़ी त्रुटियां हो सकती हैं, जब इन पिक्सेल में अधिकांश इलेक्ट्रॉनिक गणना अवांछित प्रकाश (वास्तविक यूवी प्रकाश के बजाय लंबी तरंग दैर्ध्य धर्षण) का परिणाम है।

अंशांकन त्रुटियां

कई कंपनियां हैं जो स्पेक्ट्रोमीटर के लिए अंशांकन की प्रस्तुत करती हैं, लेकिन सभी समान नहीं हैं। अंशांकन के लिए एक संसूचित, प्रमाणित प्रयोगशाला खोजना महत्वपूर्ण है। अंशांकन प्रमाण पत्र में उपयोग किए जाने वाले प्रकाश स्रोत (उदाहरण: हलोजन, ड्यूटेरियम, क्सीनन, एलईडी) और प्रत्येक बैंड (यूवीसी, यूवीबी, विस..), एनएम में प्रत्येक तरंग दैर्ध्य या पूर्ण स्पेक्ट्रम मापे गए स्पेक्ट्रम के लिए अंशांकन की अनिश्चितता को वर्णित किया जाना चाहिए। इसे अंशांकन अनिश्चितता के लिए विश्वास स्तर भी सूचीबद्ध करना चाहिए।

गलत विन्यास

एक कैमरा की तरह, अधिकांश स्पेक्ट्रोमीटर उपयोगकर्ता को एकत्र किए जाने वाले नमूनों के एक्सपोजर समय और मात्रा का चयन करने की अनुमति देते हैं। एकीकरण का समय और स्कैन की संख्या एक महत्वपूर्ण कदम है। बहुत लंबे समय तक एकीकरण का समय संतृप्ति का कारण बन सकता है। (कैमरा फोटो में इसे एक बड़े सफेद पैच के रूप में देखा जा सकता है, जबकि स्पेक्ट्रोमीटर में इसे एक डुबकी के रूप में देखा जा सकता है, या शिखर को काटा जा सकता है) बहुत कम एकीकरण समय रव परिणाम उत्पन्न कर सकता है (एक कैमरा फोटो में यह एक अंधेरे या धुंधला क्षेत्र होगा, जबकि एक स्पेक्ट्रोमीटर में यह स्पाइक्स या अस्थिर रीडिंग देखा जा सकता है)।

एक्सपोजर समय वह समय होता है जब मापन के दौरान सेंसर पर प्रकाश गिरता है। इस पैरामीटर को समायोजित करने से डिवाइस की समग्र संवेदनशीलता बदल जाती है, क्योंकि कैमरा के लिए एक्सपोजर समय बदलता है। न्यूनतम एकीकरण समय न्यूनतम 5 मिमी और अधिकतम 10 मिनट प्रति स्कैन के साथ भिन्न होता है। प्रकाश की तीव्रता पर आधारित एक व्यावहारिक सेटिंग 3 से 999 की सीमा में होती है।

एकीकरण समय को एक संकेत के लिए समायोजित किया जाना चाहिए जो अधिकतम संख्या से अधिक नहीं है (16-बिट सीसीडी में 65,536, 14-बिट सीसीडी में 16,384 है)। संतृप्ति तब होती है जब एकीकरण का समय बहुत अधिक होता है। विशिष्ट रूप से, अधिकतम का लगभग 85% का शिखर संकेत एक अच्छा लक्ष्य है और एक अच्छा एस/एन अनुपात प्राप्त करता है। (उदा: क्रमशः 60K गणना या 16K गणना)

स्कैन की संख्या इंगित करती है कि कितने माप औसत किए जाएंगे। जब अन्य चीजें समान होती हैं, तो औसत पर स्कैन की संख्या n के वर्गमूल से बेहतर होती है. उदाहरण के लिए, यदि 16 वर्णक्रमीय स्कैन औसत हैं, तो एसएनआर 4 गुना अधिक स्कैन करता है।

एस/एन अनुपात को इनपुट प्रकाश स्तर पर मापा जाता है जो स्पेक्ट्रोमीटर के पूर्ण पैमाने पर पहुंचता है। यह इस प्रकाश स्तर पर संकेत काउंट (सामान्यतः पूर्ण पैमाने पर) से आरएमएस (रूट मीन स्क्वायर) रव का अनुपात है। इस रव में डार्क नॉइज़ एनडी, शॉट नॉइज़ एनएस सम्मिलित है जो इनपुट प्रकाश द्वारा उत्पन्न काउंट से संबंधित है और रव को पढ़ता है। यह प्रकाश मापन के लिए स्पेक्ट्रोमीटर से प्राप्त किया जा सकने वाला सर्वोत्तम एस/एन अनुपात है।

यह कैसे काम करता है

स्पेक्ट्रोरेडियोमेट्रिक प्रणाली के आवश्यक घटक निम्नानुसार हैं:

  • इनपुट प्रकाशिकी जो स्रोत से विद्युत चुम्बकीय विकिरण एकत्र करते हैं (विसारक, लेंस, फाइबर ऑप्टिक प्रकाश गाइड)।
  • एक प्रवेश द्वार भट्ठा, यह निर्धारित करता है कि स्पेक्ट्रोमीटर में कितना प्रकाश प्रवेश करेगा। एक छोटे स्लिट में अधिक रिज़ॉल्यूशन होता है, लेकिन समग्र संवेदनशीलता कम होती है।
  • दूसरे क्रम के प्रभावों को कम करने के लिए ऑर्डर सॉर्टिंग निस्यंदक।
  • कोलिमेटर प्रकाश को कर्कश या प्रिज्म की ओर निर्देशित करता है।
  • प्रकाश के विक्षेपण के लिए कर्कश या प्रिज्म।
  • प्रकाश को संसूचक पर संरेखित करने के लिए फोकसिंग प्रकाशिकी।
  • एक संसूचक, सीएमओएस संवेदक या सीसीडी सरणी।
  • डेटा को परिभाषित करने और इसे स्टोर करने के लिए एक नियंत्रण और लॉगिंग प्रणाली।[8]

इनपुट प्रकाशिकी

स्पेक्ट्रोमापी के फ्रंट-एंड ऑप्टिक्स में लेंस, डिफ्यूजर्स और फिल्टर सम्मिलित हैं जो पहली बार सिस्टम में प्रवेश करने के बाद प्रकाश को संशोधित करते हैं। रेडियंस को एक संकीर्ण दृश्य क्षेत्र के साथ एक ऑप्टिक की आवश्यकता होती है। कुल प्रवाह के लिए एक एकीकृत क्षेत्र की आवश्यकता होती है। विकिरण कोसाइन संशोधन के लिए प्रकाशिकी की आवश्यकता होती है। इन तत्वों के लिए प्रयुक्त सामग्री यह निर्धारित करती है कि किस प्रकार के प्रकाश को मापा जा सकता है। उदाहरण के लिए, यूवी माप लेने के लिए, क्वार्ट्ज का उपयोग अक्सर ग्लास लेंस, ऑप्टिकल फाइबर, टेफ्लॉन डिफसर्स और बेरियम सल्फेट युक्त एकीकृत पर्याप्तता के प्रति किया जाता है।[8]

एकवर्णक

ज़ेर्नी-टर्नर एकवर्णक का आरेख।

एक स्रोत का वर्णक्रमीय विश्लेषण करने के लिए, लैंप की एक स्पेक्ट्रम प्रतिक्रिया बनाने के लिए प्रत्येक तरंगदैर्घ्य पर ध्वनिक प्रकाश की आवश्यकता होगी। एक मोनोलिथिक का उपयोग स्रोत से तरंग दैर्ध्य का नमूना लेने के लिए किया जाता है और अनिवार्य रूप से एक ध्वनिक संकेत उत्पन्न करता है। यह अनिवार्य रूप से एक चर फिल्टर है जो एक विशिष्ट तरंग दैर्ध्य या तरंग दैर्ध्य के बैंड को मापी गई प्रकाश के पूर्ण स्पेक्ट्रम से अलग करता है और उस क्षेत्र के बाहर गिरने वाली किसी भी प्रकाश को बाहर निकालता है।[9]

एक विशिष्ट ध्वनिक इसे एक तरंग दैर्ध्य-स्थिर तत्व के उपयोग के माध्यम से प्राप्त करता है जैसे प्रवेश और निकास स्लेट, संवैधानिक और फोकस ऑप्टिक्स, और एक विवर्तन डायाफ्राम या प्रिज्म।[6] आधुनिक अकॉस्टिक्स टैनरीज़ के साथ बनते हैं, और टेक्टन डिसेंटरी का उपयोग लगभग विशेष रूप से स्पेक्ट्रोएडिम्रिक अनुप्रयोगों में किया जाता है। उनकी बहुमुखी प्रतिभा, कम आकलन, व्यापक तरंगदैर्घ्य रेंज, कम लागत और अधिक निरंतर प्रसार बेहतर हैं।[9] एकल या डबल एसीओस्टिक्स का उपयोग एक अनुप्रयोग के आधार पर किया जा सकता है,दोहरी ध्वनिकी आमतौर पर अतिरिक्त फैलाव और करकैश के बीच स्केटिंग के कारण अधिक सटीकता प्रदान करते हैं।[8]

संसूचक

फोटोमल्टीप्लायर

एक स्पेक्ट्रोराडीमीटर में उपयोग किया जाने वाला संसूचक तरंग दैर्ध्य द्वारा निर्धारित किया जाता है जिस पर प्रकाश को मापा जा रहा है, साथ ही साथ माप की आवश्यक गतिशील सीमा और संवेदनशीलता। मूल स्पेक्ट्रोमापी संसूचक प्रौद्योगिकी सामान्यतः तीन समूहों में से एक में आती है: फोटोमाइसेसिव संसूचक (जैसे फोटो एमिसिव संसूचक)। फोटोमल्टीप्लायर ट्यूब), अर्धचालक उपकरण (जैसे कि सिलिकॉन) या थर्मल संसूचक (जैसे कि थर्मल संसूचक) थर्मोपाइल।[10]

किसी दिए गए संसूचक की वर्णक्रमीय प्रतिक्रिया इसकी मूल सामग्री से निर्धारित होती है। उदाहरण के लिए, फोटोमल्टीप्लायर ट्यूबों में पाए जाने वाले फोटोकैथोड कुछ तत्वों से सौर-अंधे होने के लिए निर्मित किए जा सकते हैं - यूवी के प्रति संवेदनशील और दृश्य या आईआर में प्रकाश के प्रति गैर-प्रतिक्रियाशील।[11]

सीसीडी (आवेश युग्मित उपकरण) सरणियाँ सामान्यतः हजारों या लाखों अलग-अलग संसूचक तत्वों (पिक्सेल के रूप में भी जाना जाता है) और सीएमओएस संवेदक के एक आयामी (रैखिक) या दो आयामी (क्षेत्र) सरणियाँ हैं। इनमें एक सिलिकॉन या इंगास आधारित मल्टीचैनल ऐरे संसूचक सम्मिलित है जो यूवी, दृश्यमान और निकट-इन्फ्रा प्रकाश को मापने में सक्षम है।

सीएमओएस (पूरक धातु ऑक्साइड अर्धचालक) संवेदक एक सीसीडी से भिन्न होते हैं जिसमें वे प्रत्येक फोटोडायोड में एक प्रवर्धक जोड़ते हैं। इसे एक सक्रिय पिक्सेल संवेदक कहा जाता है क्योंकि प्रवर्धक पिक्सेल का हिस्सा है। ट्रांजिस्टर स्विच रीडआउट के समय प्रत्येक फोटोडायोड को इंट्रापिक्सल प्रवर्धक से जोड़ते हैं।

नियंत्रण और लॉगिंग प्रणाली

लॉगिंग प्रणाली प्रायः एक व्यक्तिगत कंप्यूटर होता है। प्रारंभिक संकेत प्रसंस्करण में, संकेत को प्रायः प्रवर्धन और नियंत्रण प्रणाली के साथ उपयोग के लिए परिवर्तित करने की आवश्यकता होती है। मोनोक्रोमेटर, संसूचक आउटपुट और कंप्यूटर के बीच संचार की लाइनों को अनुकूलित किया जाना चाहिए ताकि वांछित मीट्रिक और सुविधाओं का उपयोग सुनिश्चित किया जा रहा है।[8] व्यावसायिक रूप से उपलब्ध सॉफ्टवेयर में सम्मिलित स्पेक्ट्रोडायमेट्रिक प्रणाली प्रायः आगे के माप की गणना के लिए उपयोगी संदर्भ कार्यों के साथ संग्रहीत किया जाता है, जैसे सीआईई रंग मिलान फंक्शन

और V वक्र।[12]

अनुप्रयोग

स्पेक्ट्रोरेडियोमीटर का उपयोग कई अनुप्रयोगों में किया जाता है, और इसे विभिन्न प्रकार के विनिर्देशों को पूरा करने के लिए बनाया जा सकता है। उदाहरण अनुप्रयोगों में सम्मिलित हैं:

  • सौर यूवी और यूवीबी विकिरण
  • एलईडी माप
  • प्रदर्शन माप और अंशांकन
  • सीएफएल परीक्षण
  • ऑयल स्लिक्स का रिमोट डिटेक्शन [13]

संयंत्र अनुसंधान और विकास[14]

डीआईवाई निर्माण

तरंगदैर्घ्य को अंशांकित करने के लिए एक सीएफएल लैम्प का उपयोग करते हुए एक प्रकाशीय डिस्क कर्कश और एक बुनियादी वेब कैमरा का उपयोग करके एक बुनियादी ऑप्टिकल स्पेक्ट्रोमीटर का निर्माण संभव है।[15] ज्ञात स्पेक्ट्रम के स्रोत का उपयोग कर एक अंशांकन तब फोटो पिक्सेल की दीप्ति की व्याख्या करके स्पेक्ट्रोमीटर को स्पेक्ट्रोरेडियोमीटर में परिवर्तित हो सकता है।[16] फोटो-टू-वैल्यू रूपांतरण में कुछ अतिरिक्त त्रुटि स्रोतों से एक डीआईवाई निर्माण प्रभावित होता है: सीसीडी-टू-फोटोग्राफ रूपांतरण में फोटोग्राफिक रव (डार्क फ्रेम घटाव की आवश्यकता होती है) और गैर-रैखिकता (संभवतः एक कच्चे छवि प्रारूप द्वारा हल)।[17]

यह भी देखें

संदर्भ

  1. Leslie D. Stroebel and Richard D. Zakia (1993). Focal Encyclopedia of Photography (3rd ed. ed.). Focal Press. p. 115. ISBN 0-240-51417-3
  2. Berns, Roy S. "Precision and Accuracy Measurements." Billmeyer and Saltzman's Principles of Color Technology. 3rd ed. New York: John Wiley & Sons, 2000. 97-100. Print
  3. 3.0 3.1 3.2 3.3 3.4 Kostkowski, Henry J. Reliable Spectroradiometry. La Plata, MD: Spectroradiometry Consulting, 1997. Print.
  4. Sanders, Charles L., and R. Rotter. The Spectroradiometric Measurement of Light Sources. Paris, France: Bureau Central De La CIE, 1984. Print.
  5. GE Lighting. "Learn About Light: Spectral Power Distribution Curves: GE Commercial Lighting Products." Learn About Light: Spectral Power Distribution Curves: GE Commercial Lighting Products. N.p., n.d. Web. 10 Dec. 2013. <"Learn About Light: Spectral Power Distribution Curves: GE Commercial Lighting Products". Archived from the original on 2013-12-14. Retrieved 2013-12-11.>
  6. 6.0 6.1 6.2 Schnedier, William E., and Richard Young, Ph.D. Spectroradiometry Methods. Application Note (A14). N.p., 1998. Web. <http://biology.duke.edu/johnsenlab/pdfs/tech/spectmethods.pdf>
  7. Gamma Scientific. "Seven Factors Affecting Spectroradiometer Accuracy and Performance." Gamma Scientific. N.p., n.d. Web. <http://www.gamma-sci.com/spectroradiometer-accuracy-performance/>.
  8. 8.0 8.1 8.2 8.3 Bentham Instruments Ltd. A Guide to Spectroradiometry: Instruments & Applications for the Ultraviolet. Guide. N.p., 1997. Web. <http://www.bentham.co.uk/pdf/UVGuide.pdf>
  9. 9.0 9.1 American Astronomical Society. "Study Notes: AAS Monochromator." Study Notes: AAS Monochromator. N.p., n.d. Web. 2013. <"Study Notes: AAS Monochromator". Archived from the original on 2013-12-11. Retrieved 2013-12-11.>.
  10. Ready, Jack. "Optical Detectors and Human Vision." Fundamentals of Photonics (n.d.): n. pag. SPIE. Web. <http://spie.org/Documents/Publications/00%20STEP%20Module%2006.pdf>.
  11. J. W. Campbell, "Developmental Solar Blind Photomultipliers Suitable for Use in the 1450–2800-Å Region," Appl. Opt. 10, 1232-1240 (1971) http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-10-6-1232
  12. Apogee Instruments. Spectroradiometer PS-100 (350 - 1000 Nm), PS-200 (300 - 800 Nm), PS-300 (300 - 1000 Nm). N.p.: Apogee Instruments, n.d. Apogee Instruments Spectroradiometer Manual. Web. <http://www.apogeeinstruments.com/content/PS-100_200_300manual.pdf>.
  13. Mattson, James S., Harry B. Mark Jr., Arnold Prostak, and Clarence E. Schutt. Potential Application of an Infrared Spectroradiometer for Remote Detection and Identification of Oil Slicks on Water. Tech. 5th ed. Vol. 5. N.p.: n.p., 1971. Print. Retrieved from <http://pubs.acs.org/doi/pdf/10.1021/es60052a004>
  14. McFarland, M and Kaye, J (1992) Chlorofluorocarbons and Ozone. Photochem. Photobiol. 55 (6) 911-929.
  15. "DIY स्पेक्ट्रोमीटर". Wired (in English).
  16. "PLab 3 Gain Correction". Public Lab.
  17. "शोर में कमी". Jonathan Thomson's web journal (in English). 26 October 2010.


बाहरी संबंध