ऑप्टो-इलेक्ट्रॉनिक ऑसिलेटर: Difference between revisions
No edit summary |
No edit summary |
||
Line 17: | Line 17: | ||
== सिद्धांत == | == सिद्धांत == | ||
ओईओ का गुणवत्ता कारक (Q) अनुनादक की केंद्र आवृत्ति f से निर्धारित होता है<sub>0</sub> और [[समूह विलंब]] {{mvar|τ}} | |||
:<math>Q = { \omega_0 \tau \over 2 } = \pi f_0 { n L \over c_0 },</math> | :<math>Q = { \omega_0 \tau \over 2 } = \pi f_0 { n L \over c_0 },</math> |
Revision as of 17:35, 20 June 2023
एक ऑप्टो-इलेक्ट्रॉनिक थरथरानवाला (ओईओ) एक ऑप्टोइलेक्ट्रॉनिक विद्युत परिपथ होता है जो कि दोहराए जाने वाले इलेक्ट्रॉनिक साइन लहर और मॉड्यूलेटेड ऑप्टिकल कंटीन्यूअस वेव सिग्नल उत्पन्न करता रहता है।
एक ऑप्टो-इलेक्ट्रॉनिक ऑसिलेटर निरंतर प्रकाश ऊर्जा को पंप लेजर से आकाशवाणी आवृति (आरएफ) माइक्रोवेव या एमएम-वेव सिग्नल में परिवर्तित करने पर आधारित होता है। ओईओ की विशेषता बहुत उच्च गुणवत्ता वाले कारक (क्यू) और स्थिरता (गणित) साथ ही साथ अन्य कार्यात्मक विशेषताएं हैं जो इलेक्ट्रॉनिक ऑसिलेटर के साथ आसानी से प्राप्त नहीं की जा सकती हैं। इलेक्ट्रो-ऑप्टिकल (ई/ओ) और फोटोनिक घटकों के उपयोग से इसका अनूठा व्यवहार परिणाम होता है, जो सामान्यतः माइक्रोवेव फ्रीक्वेंसी शासन में उच्च दक्षता, उच्च गति और कम फैलाव (ऑप्टिक्स) की विशेषता होती है।
ओईओ में ऑसिलेटर का चरण ध्वनि आवृत्ति के साथ नहीं बढ़ता है जो कि इलेक्ट्रॉनिक ऑसिलेटर्स जैसे क्वार्ट्ज क्रिस्टल ऑसिलेटर्स, डाइइलेक्ट्रिक रेज़ोनेटर, नीलम रेज़ोनेटर या एयर-डाइइलेक्ट्रिक रेज़ोनेटर द्वारा अन्य कार्यान्वयन के अधीन होता है।
इतिहास
ओईओ को 1990 के दशक की प्रारंभ में प्रस्तुत किया गया था।[1]
तब से डिवाइस के प्रमुख गुणों में लगातार सुधार किया गया है।
ऑपरेशन
अधिकांश ओईओ प्रकाश ऊर्जा को स्थिर स्पेक्ट्रल शुद्धता आरएफ/माइक्रोवेव संदर्भ संकेतों में परिवर्तित करने के लिए एक फाइबर ऑप्टिक एनालॉग विलंब रेखा के साथ ऑप्टिकल न्यूनाधिक की संचरण विशेषताओं का उपयोग करते हैं। एक लेज़र से प्रकाश को इलेक्ट्रो-ऑप्टिक (E/O) मॉड्यूलेटर में प्रस्तुत किया जाता है जिसके आउटपुट को लंबे ऑप्टिकल फाइबर से गुजारा जाया जाता है और फोटोडेटेक्टर के साथ पता लगाया जाता है। फोटोडेटेक्टर का आउटपुट एम्पलीफायर है और फ़िल्टर किया जाता है और मॉड्यूलेटर के इलेक्ट्रिक पोर्ट पर वापस फीड किया जाता है। यह कॉन्फ़िगरेशन फाइबर विलंब लंबाई न्यूनाधिक की पूर्वाग्रह सेटिंग और फ़िल्टर के बंदपास छननी विशेषताओं द्वारा निर्धारित आवृत्ति पर स्व-निरंतर दोलनों का समर्थन करता है। यह इलेक्ट्रिक और ऑप्टिकल आउटपुट दोनों के लिए भी प्रदान करता है। आत्मनिर्भर दोलनों के लिए शर्तों में पाश लाभ चारों ओर आंशिक तरंगों का सुसंगत जोड़ सम्मिलित है और लूप में परिसंचारी तरंगों के लिए हानि से अधिक लूप लाभ है। पहली शर्त का अर्थ है कि सभी संकेत जो चरण (तरंगों) में मौलिक संकेत से 2π के कुछ गुणक से भिन्न होते हैं बनाए जा सकते हैं। इस प्रकार दोलन आवृत्ति केवल न्यूनाधिक की विशेषता आवृत्ति प्रतिक्रिया और फ़िल्टर की सेटिंग द्वारा सीमित होती है जो अन्य सभी स्थायी दोलनों को समाप्त कर देती है। दूसरी शर्त का अर्थ है कि, पर्याप्त प्रकाश इनपुट शक्ति के साथ लूप में आरएफ/माइक्रोवेव एम्पलीफायर की आवश्यकता के बिना आत्मनिर्भर दोलन प्राप्त किए जा सकते हैं।
चिप-स्केल ओईओविलंब रेखा के अतिरिक्त फुसफुसाते हुए गैलरी मोड ऑप्टिकल रेज़ोनेटर का उपयोग करते हैं। फुसफुसा गैलरी मोड ऑप्टिकल अनुनादक अक्षीय रूप से सममित ढांकता हुआ संरचनाएं होती हैं जिनका आकार दसियों माइक्रोमीटर से कुछ मिलीमीटर तक होता है और एक छोटी मात्रा में प्रकाश को फंसा सकता है। मोड मैक्सवेल के समीकरण के समाधान हैं और तरंगों का प्रतिनिधित्व करते हैं जो परिधि के साथ गुंजयमान संरचनाओं की सतह के करीब फैलते रहते हैं।[2]
सिद्धांत
ओईओ का गुणवत्ता कारक (Q) अनुनादक की केंद्र आवृत्ति f से निर्धारित होता है0 और समूह विलंब τ
जहां 𝑛 अपवर्तक सूचकांक है, 𝐿 ऑप्टिकल फाइबर की लंबाई और सी है0 निर्वात में प्रकाश की गति है।
उपयोग करता है
एक उच्च-प्रदर्शन ओईओ विभिन्न प्रकार के अनुप्रयोगों में एक प्रमुख तत्व है, जैसे
- आधुनिक रडार विधि ,
- अंतरिक्ष इंजिनीयरिंग,
- उपग्रह संचार लिंक,
- नेविगेशन सिस्टम,
- सटीक मेट्रोलॉजिकल समय और आवृत्ति माप,
- संदर्भ घड़ी वितरण,[3] और
- फाइबर विधि पर रेडियो सहित उच्च-बिटरेट, वैकल्पिक रूप से समर्थित, संचार वायरलेस लिंक।
यह भी देखें
संदर्भ
- ↑ R.T. Logan, L. Maleki, M. Shadaram, "Stabilization of oscillator phase using a fiber-optic delay-line", in Proc. 45th Annu. Symp. on Frequency Control, pp. 508-512, May 1991
- ↑ Ilchenko, V.S., Miniature oscillators based on optical whispering gallery mode resonators, Frequency Control Symposium, 2008 IEEE International, ISSN 1075-6787
- ↑ Jurij Tratnik, Primoz Lemut and Matjaz Vidmar, "Time-transfer and synchronization equipment for high-performance particle accelerators", Informacije MIDEM, Vol.42, no.2, pp. 115-122, 2012