फ़ंक्शन एप्लीकेशन: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (3 revisions imported from alpha:समारोह_आवेदन) |
(No difference)
|
Revision as of 11:27, 27 June 2023
गणित में, फलन अनुप्रयोग (फंक्शन एप्लिकेशन) किसी फलन (गणित) को उसके प्रक्षेत्र से किसी तर्क पर प्रयुक्त करने की क्रिया है जिससे कि उसकी सीमा से संगत मान प्राप्त किया जा सके। इस अर्थ में, फलन अनुप्रयोग को फलन (गणित) अमूर्तता के विपरीत माना जा सकता है।
प्रतिनिधित्व
फलन अनुप्रयोग को सामान्य रूप से कोष्ठकों में सम्मिलित तर्क के साथ फलन का प्रतिनिधित्व करने वाले चर को जोड़कर दर्शाया गया है। उदाहरण के लिए, निम्न अभिव्यक्ति फलन ƒ के तर्क x के अनुप्रयोग का प्रतिनिधित्व करती है।
कुछ उदाहरणों में, एक अलग संकेतन का उपयोग किया जाता है जहां कोष्ठकों की आवश्यकता नहीं होती है, और फलन अनुप्रयोग को केवल संयोग द्वारा व्यक्त किया जा सकता है। उदाहरण के लिए, निम्नलिखित अभिव्यक्ति को पूर्ववर्ती के समान माना जा सकता है:
परवर्ती अंकन विच्छेदन समरूपता के साथ संयोजन में विशेष रूप से उपयोगी है। फलन दिया गया है, इसके अनुप्रयोग को पूर्व संकेतन द्वारा के रूप में दर्शाया गया है और (या तर्क के साथ कम सामान्य कोण कोष्ठक के साथ लिखा गया है। हालाँकि, विच्छेदन रूप में फलन को के अतिरिक्त उनके तर्कों को जोड़कर प्रदर्शित किया जा सकता है। यह फलन अनुप्रयोग के बाएं-साहचर्य होने पर निर्भर करता है।
संक्रिया के रूप में
निम्नलिखित परिभाषा द्वारा फलन अनुप्रयोग को एक संक्रिया (गणित) के रूप में सामान्य रूप से परिभाषित किया जा सकता है, जिसे प्रयुक्त या कहा जाता है:
संक्रिया को बैकटिक (`) द्वारा भी दर्शाया जा सकता है।
यदि संक्रिया को कम पूर्ववर्तिता और दायाँ साहचर्य समझा जाता है, तो अनुप्रयोग संक्रिया का उपयोग किसी अभिव्यक्ति में आवश्यक कोष्ठकों की संख्या को कम करने के लिए किया जा सकता है। उदाहरण के लिए;
के रूप में पुनः लिखा जा सकता है:
हालाँकि, यह संभव्यता इसके अतिरिक्त फलन संघटन का उपयोग करके अधिक स्पष्ट रूप से व्यक्त किया गया है:
या और भी:
यदि कोई x को x प्रतिवर्त एक अचर फलन मानता है।
अन्य उदाहरण
लैम्ब्डा गणना में फलन अनुप्रयोग को β-कमी द्वारा व्यक्त किया जाता है।
करी-हावर्ड पत्राचार कार्यप्रणाली के अनुप्रयोग को मोडस पोनेन्स (एक वैध, सरल तर्क और निष्कर्ष के नियम के रूप) के तार्किक नियम से संबंधित करता है।
यह भी देखें
श्रेणी:कार्य और मानचित्रण