फ्रंट-साइड बस: Difference between revisions
m (Deepak moved page सामने की ओर बस to फ्रंट-साइड बस without leaving a redirect) |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Type of computer communication interface}} | {{Short description|Type of computer communication interface}} | ||
[[File:Dual Core Generic.svg|thumb|[[मल्टी-कोर प्रोसेसर]] के भीतर, बाहरी संचार के लिए फ्रंट-साइड बस के साथ, [[ पीछे की ओर बस ]] | [[File:Dual Core Generic.svg|thumb|[[मल्टी-कोर प्रोसेसर]] के भीतर, बाहरी संचार के लिए फ्रंट-साइड बस के साथ, [[ पीछे की ओर बस ]] अधिकांशतः आंतरिक होती है।]]फ्रंट-साइड बस (FSB) एक कंप्यूटर संचार इंटरफ़ेस ([[बस (कंप्यूटिंग)]]) है जो 1990 और 2000 के दशक के समय अधिकांशतः [[इंटेल]]-चिप-आधारित कंप्यूटरों में उपयोग किया जाता था। Alpha_21264#External_interface बस प्रतिस्पर्धी AMD CPU के लिए समान कार्य करती है। दोनों सामान्यतः [[सेंट्रल प्रोसेसिंग यूनिट]] (सीपीयू) और एक मेमोरी कंट्रोलर हब के बीच डेटा ले जाते हैं, जिसे [[नॉर्थब्रिज (कंप्यूटिंग)]] के रूप में जाना जाता है।<ref name="pcs">{{cite book |url=https://archive.org/details/upgradingrepair100muel |url-access=registration |title=पीसी का उन्नयन और मरम्मत|author=Scott Mueller |edition=15th |publisher=Que Publishing |year=2003 |isbn=978-0-7897-2974-3 |page=[https://archive.org/details/upgradingrepair100muel/page/314 314]}}</ref> | ||
कार्यान्वयन के आधार पर, कुछ कंप्यूटरों में एक बैक-साइड बस भी हो सकती है जो CPU को CPU कैश से जोड़ती है। यह बस और इससे जुड़ा कैश फ्रंट-साइड बस के माध्यम से सिस्टम मेमोरी (या रैम) तक पहुँचने की तुलना में तेज़ है। फ्रंट साइड बस की गति | कार्यान्वयन के आधार पर, कुछ कंप्यूटरों में एक बैक-साइड बस भी हो सकती है जो CPU को CPU कैश से जोड़ती है। यह बस और इससे जुड़ा कैश फ्रंट-साइड बस के माध्यम से सिस्टम मेमोरी (या रैम) तक पहुँचने की तुलना में तेज़ है। फ्रंट साइड बस की गति अधिकांशतः कंप्यूटर के प्रदर्शन के एक महत्वपूर्ण उपाय के रूप में उपयोग की जाती है। | ||
मूल फ्रंट-साइड बस आर्किटेक्चर को आधुनिक वॉल्यूम [[सीपीयू कैश]] [[हाइपर]]ट्रांसपोर्ट, [[इंटेल क्विकपाथ इंटरकनेक्ट]] या [[ डायरेक्ट मीडिया इंटरफ़ेस ]] द्वारा बदल दिया गया है। | मूल फ्रंट-साइड बस आर्किटेक्चर को आधुनिक वॉल्यूम [[सीपीयू कैश]] [[हाइपर]]ट्रांसपोर्ट, [[इंटेल क्विकपाथ इंटरकनेक्ट]] या [[ डायरेक्ट मीडिया इंटरफ़ेस ]] द्वारा बदल दिया गया है। | ||
Line 9: | Line 9: | ||
फ्रंट साइड प्रोसेसर से बाकी कंप्यूटर सिस्टम के बाहरी इंटरफ़ेस को संदर्भित करता है, जैसा कि बैक साइड के विपरीत होता है, जहां बैक-साइड बस कैश (और संभावित रूप से अन्य सीपीयू) को जोड़ती है।<ref name="intel">{{cite web |title= Introduction to Intel Architecture: The Basics |author= Todd Langley and Rob Kowalczyk |date= January 2009 |url= ftp://download.intel.com/design/intarch/PAPERS/321087.pdf |publisher= Intel Corporation |work= "White paper" |access-date= May 28, 2011 |url-status= dead |archive-url= https://web.archive.org/web/20110607114224/http://download.intel.com/design/intarch/papers/321087.pdf |archive-date= June 7, 2011 }}</ref> | फ्रंट साइड प्रोसेसर से बाकी कंप्यूटर सिस्टम के बाहरी इंटरफ़ेस को संदर्भित करता है, जैसा कि बैक साइड के विपरीत होता है, जहां बैक-साइड बस कैश (और संभावित रूप से अन्य सीपीयू) को जोड़ती है।<ref name="intel">{{cite web |title= Introduction to Intel Architecture: The Basics |author= Todd Langley and Rob Kowalczyk |date= January 2009 |url= ftp://download.intel.com/design/intarch/PAPERS/321087.pdf |publisher= Intel Corporation |work= "White paper" |access-date= May 28, 2011 |url-status= dead |archive-url= https://web.archive.org/web/20110607114224/http://download.intel.com/design/intarch/papers/321087.pdf |archive-date= June 7, 2011 }}</ref> | ||
एक फ्रंट-साइड बस (FSB) का उपयोग ज्यादातर पीसी से संबंधित [[मदरबोर्ड]] (पर्सनल कंप्यूटर और सर्वर सहित) पर किया जाता है। वे | एक फ्रंट-साइड बस (FSB) का उपयोग ज्यादातर पीसी से संबंधित [[मदरबोर्ड]] (पर्सनल कंप्यूटर और सर्वर सहित) पर किया जाता है। वे संभवतः ही कभी [[ अंतः स्थापित प्रणाली ]] या इसी तरह के छोटे कंप्यूटरों में उपयोग किए जाते हैं। एफएसबी डिजाइन पिछले दशकों के सिंगल [[सिस्टम बस]] डिजाइनों पर एक प्रदर्शन सु[[धार]] था, किन्तु इन फ्रंट-साइड बसों को कभी-कभी सिस्टम बस के रूप में संदर्भित किया जाता है। | ||
फ्रंट-साइड बसें | फ्रंट-साइड बसें सामान्यतः सीपीयू और बाकी हार्डवेयर को एक [[चिपसेट]] के माध्यम से जोड़ती हैं, जिसे इंटेल ने नॉर्थब्रिज (कंप्यूटिंग) और [[साउथब्रिज (कंप्यूटिंग)]] के रूप में लागू किया है। [[ पेरिफ़ेरल कंपोनेंट इंटरकनेक्ट ]] (पीसीआई), त्वरित ग्राफिक्स पोर्ट (एजीपी) और मेमोरी बस जैसी अन्य बसें सभी कनेक्टेड डिवाइसों के बीच डेटा प्रवाहित करने के लिए चिपसेट से जुड़ती हैं। ये माध्यमिक प्रणाली बसें सामान्यतः फ्रंट-साइड बस घड़ी से प्राप्त गति से चलती हैं, किन्तु आवश्यक नहीं कि इसके लिए सिंक्रनाइज़ेशन (कंप्यूटर विज्ञान) हो। | ||
[[ उन्नत लघु उपकरण ]]ेस की टोरेंज़ा पहल के | [[ उन्नत लघु उपकरण ]]ेस की टोरेंज़ा पहल के उत्तर में, इंटेल ने अपने एफएसबी सीपीयू सॉकेट को तीसरे पक्ष के उपकरणों के लिए खोल दिया।<ref>{{cite news |title= Intel opens up its front side bus to the world+dog: IDF Spring 007 Xilinx heralds the bombshell |url= http://www.theinquirer.net/inquirer/news/1044635/intel-bus-world-dog |archive-url= https://web.archive.org/web/20121007164914/http://www.theinquirer.net/inquirer/news/1044635/intel-bus-world-dog |url-status= unfit |archive-date= October 7, 2012 |author= Charlie Demerjian |date= April 17, 2007 |work= The Inquirer |access-date= May 28, 2011 }}</ref> | ||
[[बीजिंग]] में [[इंटेल डेवलपर फोरम]] में स्प्रिंग 2007 में की गई इस घोषणा से पहले, इंटेल ने बहुत ही बारीकी से पहरा दिया था, जिसकी एफएसबी तक पहुंच थी, केवल सीपीयू सॉकेट में इंटेल प्रोसेसर की अनुमति थी। पहला उदाहरण [[क्षेत्र में प्रोग्राम की जा सकने वाली द्वार श्रंखला]] (FPGA) सह-प्रोसेसर था, जो Intel-[[Xilinx]]-[[Nallatech]] के बीच सहयोग का परिणाम था।<ref>{{cite news |title= नल्लाटेक ने उद्योग के पहले एफएसबी-एफपीजीए मॉड्यूल के लिए अर्ली एक्सेस प्रोग्राम लॉन्च किया|date= September 18, 2007 |work= Business Wire news release |publisher= Nallatech |url= http://www.businesswire.com/news/home/20070918006506/en/Nallatech-TM-Launches-Early-Access-Program-Industrys |access-date= June 14, 2011 }}</ref> और Intel-[[Altera]]-XtremeData (जो 2008 में भेज दिया गया)।<ref>{{cite news |title= एक्सट्रीमडेटा स्ट्रैटिक्स III एफपीजीए-आधारित इंटेल एफएसबी मॉड्यूल की पेशकश करता है|date= September 18, 2007 |work= Business Wire news release |publisher= Chip Design magazine |url= http://chipdesignmag.com/display.php?articleId=2380 |access-date= June 14, 2011 |archive-url= https://web.archive.org/web/20110723190604/http://chipdesignmag.com/display.php?articleId=2380 |archive-date= July 23, 2011 |url-status= dead }}</ref><ref>{{cite news |title= उच्च फाइबर आहार एएमडी को मात देने के लिए आवश्यक इंटेल 'नियमितता' देता है|url= https://www.theregister.co.uk/2007/04/17/intel_idf_serverstuff/ |author= Ashlee Vance |date= April 17, 2007 |work= The Register |access-date= May 28, 2011 }}</ref><ref>{{cite news |title=XtremeData Begins Shipping 1066 MHz Altera Stratix III FPGA-Based Intel FSB Module |date= June 17, 2008 |work= Business Wire news release |publisher= XtremeData |url= http://www.businesswire.com/news/home/20080617005298/en/XtremeData-Begins-Shipping-1066-MHz-Altera-Stratix |access-date= June 14, 2011 }}</ref> | [[बीजिंग]] में [[इंटेल डेवलपर फोरम]] में स्प्रिंग 2007 में की गई इस घोषणा से पहले, इंटेल ने बहुत ही बारीकी से पहरा दिया था, जिसकी एफएसबी तक पहुंच थी, केवल सीपीयू सॉकेट में इंटेल प्रोसेसर की अनुमति थी। पहला उदाहरण [[क्षेत्र में प्रोग्राम की जा सकने वाली द्वार श्रंखला]] (FPGA) सह-प्रोसेसर था, जो Intel-[[Xilinx]]-[[Nallatech]] के बीच सहयोग का परिणाम था।<ref>{{cite news |title= नल्लाटेक ने उद्योग के पहले एफएसबी-एफपीजीए मॉड्यूल के लिए अर्ली एक्सेस प्रोग्राम लॉन्च किया|date= September 18, 2007 |work= Business Wire news release |publisher= Nallatech |url= http://www.businesswire.com/news/home/20070918006506/en/Nallatech-TM-Launches-Early-Access-Program-Industrys |access-date= June 14, 2011 }}</ref> और Intel-[[Altera]]-XtremeData (जो 2008 में भेज दिया गया)।<ref>{{cite news |title= एक्सट्रीमडेटा स्ट्रैटिक्स III एफपीजीए-आधारित इंटेल एफएसबी मॉड्यूल की पेशकश करता है|date= September 18, 2007 |work= Business Wire news release |publisher= Chip Design magazine |url= http://chipdesignmag.com/display.php?articleId=2380 |access-date= June 14, 2011 |archive-url= https://web.archive.org/web/20110723190604/http://chipdesignmag.com/display.php?articleId=2380 |archive-date= July 23, 2011 |url-status= dead }}</ref><ref>{{cite news |title= उच्च फाइबर आहार एएमडी को मात देने के लिए आवश्यक इंटेल 'नियमितता' देता है|url= https://www.theregister.co.uk/2007/04/17/intel_idf_serverstuff/ |author= Ashlee Vance |date= April 17, 2007 |work= The Register |access-date= May 28, 2011 }}</ref><ref>{{cite news |title=XtremeData Begins Shipping 1066 MHz Altera Stratix III FPGA-Based Intel FSB Module |date= June 17, 2008 |work= Business Wire news release |publisher= XtremeData |url= http://www.businesswire.com/news/home/20080617005298/en/XtremeData-Begins-Shipping-1066-MHz-Altera-Stratix |access-date= June 14, 2011 }}</ref> | ||
Line 23: | Line 23: | ||
=== सीपीयू === | === सीपीयू === | ||
[[आवृत्ति]] जिस पर एक प्रोसेसर (सीपीयू) संचालित होता है, कुछ | [[आवृत्ति]] जिस पर एक प्रोसेसर (सीपीयू) संचालित होता है, कुछ स्थितियोंमें फ्रंट-साइड बस (एफएसबी) की गति के लिए घड़ी गुणक को लागू करके निर्धारित किया जाता है। उदाहरण के लिए, 3200 [[मेगाहर्ट्ज़]] पर चलने वाला प्रोसेसर 400 मेगाहर्ट्ज़ एफएसबी का उपयोग कर सकता है। इसका मतलब है कि 8 की एक आंतरिक [[सीपीयू गुणक]] सेटिंग (जिसे बस/कोर अनुपात भी कहा जाता है) है। अर्थात, सीपीयू को फ्रंट-साइड बस की 8 गुना आवृत्ति पर चलाने के लिए सेट किया गया है: 400 मेगाहर्ट्ज × 8 = 3200 मेगाहर्ट्ज। अलग-अलग सीपीयू गति या तो एफएसबी आवृत्ति या सीपीयू गुणक को अलग-अलग करके प्राप्त की जाती हैं, इसे [[ overclocking ]] या [[अंडरक्लॉकिंग]] कहा जाता है। | ||
=== मेमोरी === | === मेमोरी === | ||
Line 29: | Line 29: | ||
{{see also | Memory divider}} | {{see also | Memory divider}} | ||
FSB स्पीड सेट करना सीधे तौर पर मेमोरी के स्पीड ग्रेड से संबंधित होता है जिसे सिस्टम को | FSB स्पीड सेट करना सीधे तौर पर मेमोरी के स्पीड ग्रेड से संबंधित होता है जिसे सिस्टम को उपयोग करना चाहिए। मेमोरी बस नॉर्थब्रिज और रैम को जोड़ती है, जैसे फ्रंट-साइड बस सीपीयू और नॉर्थब्रिज को जोड़ती है। अधिकांशतः, इन दोनों बसों को एक ही फ्रीक्वेंसी पर चलना चाहिए। अधिकांश स्थितियोंमें फ़्रंट-साइड बस को 450 मेगाहर्ट्ज़ तक बढ़ाने का मतलब मेमोरी को 450 मेगाहर्ट्ज़ पर चलाना भी है। | ||
नए सिस्टम में, 4:5 और इसी तरह के मेमोरी अनुपात को देखना संभव है। इस स्थिति में मेमोरी एफएसबी की तुलना में 5/4 गुना तेजी से चलेगी, जिसका अर्थ है कि 400 मेगाहर्ट्ज बस 500 मेगाहर्ट्ज पर मेमोरी के साथ चल सकती है। इसे | नए सिस्टम में, 4:5 और इसी तरह के मेमोरी अनुपात को देखना संभव है। इस स्थिति में मेमोरी एफएसबी की तुलना में 5/4 गुना तेजी से चलेगी, जिसका अर्थ है कि 400 मेगाहर्ट्ज बस 500 मेगाहर्ट्ज पर मेमोरी के साथ चल सकती है। इसे अधिकांशतः 'अतुल्यकालिक' प्रणाली के रूप में जाना जाता है। सीपीयू और सिस्टम आर्किटेक्चर में अंतर के कारण, विभिन्न एफएसबी-टू-मेमोरी अनुपात के साथ समग्र सिस्टम प्रदर्शन अप्रत्याशित तरीके से भिन्न हो सकता है। | ||
[[ छवि ]], [[ध्वनि रिकॉर्डिंग और प्रजनन]], [[ गति ग्राफिक्स ]], [[वीडियो गेम]], फील्ड-प्रोग्रामेबल गेट एरे सिंथेसिस और वैज्ञानिक एप्लिकेशन जो बड़े [[डेटा सेट]] के प्रत्येक तत्व पर कम मात्रा में काम करते हैं, FSB गति एक प्रमुख प्रदर्शन मुद्दा बन जाता है। धीमी FSB के कारण CPU को [[ रैंडम एक्सेस मेमोरी ]] से डेटा के आने की प्रतीक्षा में महत्वपूर्ण समय व्यतीत करना पड़ेगा। | [[ छवि ]], [[ध्वनि रिकॉर्डिंग और प्रजनन]], [[ गति ग्राफिक्स ]], [[वीडियो गेम]], फील्ड-प्रोग्रामेबल गेट एरे सिंथेसिस और वैज्ञानिक एप्लिकेशन जो बड़े [[डेटा सेट]] के प्रत्येक तत्व पर कम मात्रा में काम करते हैं, FSB गति एक प्रमुख प्रदर्शन मुद्दा बन जाता है। धीमी FSB के कारण CPU को [[ रैंडम एक्सेस मेमोरी ]] से डेटा के आने की प्रतीक्षा में महत्वपूर्ण समय व्यतीत करना पड़ेगा। चूँकि, यदि प्रत्येक तत्व से जुड़ी संगणनाएँ अधिक जटिल हैं, तो प्रोसेसर इनका प्रदर्शन करने में अधिक समय व्यतीत करेगा; इसलिए, FSB गति बनाए रखने में सक्षम होगा क्योंकि जिस दर पर मेमोरी एक्सेस की जाती है वह कम हो जाती है। | ||
===परिधीय बसें=== | ===परिधीय बसें=== | ||
मेमोरी बस की तरह, PCI और AGP बसों को भी फ्रंट-साइड बस से अतुल्यकालिक रूप से चलाया जा सकता है। पुराने सिस्टम में, इन बसों को फ्रंट-साइड बस फ्रीक्वेंसी के एक निर्धारित अंश पर संचालित किया जाता है। यह अंश [[BIOS]] द्वारा निर्धारित किया गया था। नई प्रणालियों में, पीसीआई, एजीपी, और [[पीसीआई एक्सप्रेस]] परिधीय बसें | मेमोरी बस की तरह, PCI और AGP बसों को भी फ्रंट-साइड बस से अतुल्यकालिक रूप से चलाया जा सकता है। पुराने सिस्टम में, इन बसों को फ्रंट-साइड बस फ्रीक्वेंसी के एक निर्धारित अंश पर संचालित किया जाता है। यह अंश [[BIOS]] द्वारा निर्धारित किया गया था। नई प्रणालियों में, पीसीआई, एजीपी, और [[पीसीआई एक्सप्रेस]] परिधीय बसें अधिकांशतः अपने स्वयं के [[ घड़ी का संकेत ]] प्राप्त करती हैं, जो समय के लिए फ्रंट-साइड बस पर उनकी निर्भरता को समाप्त कर देती हैं। | ||
=== ओवरक्लॉकिंग === | === ओवरक्लॉकिंग === | ||
Line 47: | Line 47: | ||
कई मदरबोर्ड उपयोगकर्ता को जम्पर (कंप्यूटिंग) या BIOS सेटिंग्स को बदलकर क्लॉक मल्टीप्लायर और एफएसबी सेटिंग्स को मैन्युअल रूप से सेट करने की अनुमति देते हैं। लगभग सभी सीपीयू निर्माता अब चिप में प्रीसेट मल्टीप्लायर सेटिंग को लॉक कर देते हैं। कुछ बंद सीपीयू को अनलॉक करना संभव है; उदाहरण के लिए, कुछ AMD [[Athlon]] प्रोसेसर को CPU की सतह पर बिंदुओं पर [[विद्युत संपर्क]]ों को जोड़कर अनलॉक किया जा सकता है। एएमडी और इंटेल के कुछ अन्य प्रोसेसर कारखाने से अनलॉक किए गए हैं और इस सुविधा के कारण अंतिम उपयोगकर्ताओं और खुदरा विक्रेताओं द्वारा उत्साही-ग्रेड प्रोसेसर के रूप में लेबल किए गए हैं। सभी प्रोसेसरों के लिए, सीपीयू और नॉर्थब्रिज के बीच [[विलंबता (इंजीनियरिंग)]] को कम करके प्रसंस्करण गति को बढ़ाने के लिए एफएसबी की गति को बढ़ाया जा सकता है। | कई मदरबोर्ड उपयोगकर्ता को जम्पर (कंप्यूटिंग) या BIOS सेटिंग्स को बदलकर क्लॉक मल्टीप्लायर और एफएसबी सेटिंग्स को मैन्युअल रूप से सेट करने की अनुमति देते हैं। लगभग सभी सीपीयू निर्माता अब चिप में प्रीसेट मल्टीप्लायर सेटिंग को लॉक कर देते हैं। कुछ बंद सीपीयू को अनलॉक करना संभव है; उदाहरण के लिए, कुछ AMD [[Athlon]] प्रोसेसर को CPU की सतह पर बिंदुओं पर [[विद्युत संपर्क]]ों को जोड़कर अनलॉक किया जा सकता है। एएमडी और इंटेल के कुछ अन्य प्रोसेसर कारखाने से अनलॉक किए गए हैं और इस सुविधा के कारण अंतिम उपयोगकर्ताओं और खुदरा विक्रेताओं द्वारा उत्साही-ग्रेड प्रोसेसर के रूप में लेबल किए गए हैं। सभी प्रोसेसरों के लिए, सीपीयू और नॉर्थब्रिज के बीच [[विलंबता (इंजीनियरिंग)]] को कम करके प्रसंस्करण गति को बढ़ाने के लिए एफएसबी की गति को बढ़ाया जा सकता है। | ||
यह अभ्यास घटकों को उनके विनिर्देशों से परे धकेलता है और अनियमित व्यवहार, अति ताप या समय से पहले विफलता का कारण बन सकता है। | यह अभ्यास घटकों को उनके विनिर्देशों से परे धकेलता है और अनियमित व्यवहार, अति ताप या समय से पहले विफलता का कारण बन सकता है। यदि कंप्यूटर सामान्य रूप से चलता हुआ दिखाई देता है, भारी लोड के अनुसार समस्याएं दिखाई दे सकती हैं। [[ हेवलेट पैकर्ड ]] या [[ गड्ढा ]] जैसे खुदरा विक्रेताओं या निर्माताओं से खरीदे गए अधिकांश [[ निजी कंप्यूटर ]] उपयोगकर्ता को अनियमित व्यवहार या विफलता की संभावना के कारण गुणक या एफएसबी सेटिंग्स को बदलने की अनुमति नहीं देते हैं। कस्टम मशीन बनाने के लिए अलग से खरीदे गए मदरबोर्ड से उपयोगकर्ता को पीसी के BIOS में मल्टीप्लायर और एफएसबी सेटिंग्स को संपादित करने की अनुमति मिलती है। | ||
== विकास == | == विकास == | ||
पहली बार डिजाइन किए जाने पर फ्रंट-साइड बस में उच्च लचीलेपन और कम लागत का लाभ था। साधारण [[सममित मल्टीप्रोसेसर]] एक साझा एफएसबी पर कई सीपीयू लगाते हैं, | पहली बार डिजाइन किए जाने पर फ्रंट-साइड बस में उच्च लचीलेपन और कम लागत का लाभ था। साधारण [[सममित मल्टीप्रोसेसर]] एक साझा एफएसबी पर कई सीपीयू लगाते हैं, चूंकि बैंडविड्थ विकट: अड़चन के कारण प्रदर्शन को रैखिक रूप से स्केल नहीं किया जा सकता है। | ||
लगभग 2008 तक सभी [[Intel Atom]], [[Celeron]], Intel P5 (माइक्रोआर्किटेक्चर), [[Core 2]], और [[Xeon]] प्रोसेसर मॉडल में फ्रंट-साइड बस का उपयोग किया गया था। मूल रूप से, यह बस सभी सिस्टम उपकरणों और CPU के लिए एक केंद्रीय कनेक्टिंग पॉइंट थी। | लगभग 2008 तक सभी [[Intel Atom]], [[Celeron]], Intel P5 (माइक्रोआर्किटेक्चर), [[Core 2]], और [[Xeon]] प्रोसेसर मॉडल में फ्रंट-साइड बस का उपयोग किया गया था। मूल रूप से, यह बस सभी सिस्टम उपकरणों और CPU के लिए एक केंद्रीय कनेक्टिंग पॉइंट थी। | ||
Line 57: | Line 57: | ||
एक तेज सीपीयू की क्षमता बर्बाद हो जाती है यदि यह निर्देशों और डेटा को उतनी जल्दी प्राप्त नहीं कर सकता है जितनी जल्दी यह उन्हें निष्पादित कर सकता है। सीपीयू मुख्य मेमोरी में डेटा को पढ़ने या लिखने के लिए प्रतीक्षा करते समय महत्वपूर्ण समय निष्क्रिय कर सकता है, और उच्च-प्रदर्शन प्रोसेसर को उच्च बैंडविड्थ और कम विलंबता मेमोरी की आवश्यकता होती है। [[एएमडी]] द्वारा फ्रंट-साइड बस की एक पुरानी और धीमी तकनीक के रूप में आलोचना की गई थी जो सिस्टम प्रदर्शन को सीमित करती है।<ref>{{cite web |title= AMD HyperTransport Bus: Transport Your Application to Hyper Performance |date= September 29, 2003 |author= Allan McNaughton |publisher= AMD |url= http://developer.amd.com/documentation/articles/Pages/929200370.aspx |access-date= June 14, 2011 |archive-url= https://web.archive.org/web/20120325070619/http://developer.amd.com/documentation/articles/Pages/929200370.aspx |archive-date= March 25, 2012 |url-status= dead }}</ref> | एक तेज सीपीयू की क्षमता बर्बाद हो जाती है यदि यह निर्देशों और डेटा को उतनी जल्दी प्राप्त नहीं कर सकता है जितनी जल्दी यह उन्हें निष्पादित कर सकता है। सीपीयू मुख्य मेमोरी में डेटा को पढ़ने या लिखने के लिए प्रतीक्षा करते समय महत्वपूर्ण समय निष्क्रिय कर सकता है, और उच्च-प्रदर्शन प्रोसेसर को उच्च बैंडविड्थ और कम विलंबता मेमोरी की आवश्यकता होती है। [[एएमडी]] द्वारा फ्रंट-साइड बस की एक पुरानी और धीमी तकनीक के रूप में आलोचना की गई थी जो सिस्टम प्रदर्शन को सीमित करती है।<ref>{{cite web |title= AMD HyperTransport Bus: Transport Your Application to Hyper Performance |date= September 29, 2003 |author= Allan McNaughton |publisher= AMD |url= http://developer.amd.com/documentation/articles/Pages/929200370.aspx |access-date= June 14, 2011 |archive-url= https://web.archive.org/web/20120325070619/http://developer.amd.com/documentation/articles/Pages/929200370.aspx |archive-date= March 25, 2012 |url-status= dead }}</ref> | ||
अधिक आधुनिक डिज़ाइन एएमडी के हाइपरट्रांसपोर्ट और इंटेल के डायरेक्ट मीडिया इंटरफेस | डीएमआई 2.0 या इंटेल क्विकपाथ इंटरकनेक्ट (क्यूपीआई) जैसे पॉइंट-टू-पॉइंट और सीरियल कनेक्शन का उपयोग करते हैं। ये कार्यान्वयन सीपीयू से [[ प्लेटफार्म नियंत्रक हब ]], साउथब्रिज (कंप्यूटिंग) या आई/ओ कंट्रोलर के सीधे लिंक के पक्ष में पारंपरिक नॉर्थब्रिज (कंप्यूटिंग) को हटा देते हैं।<ref name="QPI">{{cite web |title= इंटेल क्विकपाथ इंटरकनेक्ट का एक परिचय|date= January 30, 2009 |publisher= Intel Corporation |url= http://www.intel.com/technology/quickpath/introduction.pdf |access-date= June 14, 2011 }}</ref> | अधिक आधुनिक डिज़ाइन एएमडी के हाइपरट्रांसपोर्ट और इंटेल के डायरेक्ट मीडिया इंटरफेस | डीएमआई 2.0 या इंटेल क्विकपाथ इंटरकनेक्ट (क्यूपीआई) जैसे पॉइंट-टू-पॉइंट और सीरियल कनेक्शन का उपयोग करते हैं। ये कार्यान्वयन सीपीयू से [[ प्लेटफार्म नियंत्रक हब ]], साउथब्रिज (कंप्यूटिंग) या आई/ओ कंट्रोलर के सीधे लिंक के पक्ष में पारंपरिक नॉर्थब्रिज (कंप्यूटिंग) को हटा देते हैं।<ref name="QPI">{{cite web |title= इंटेल क्विकपाथ इंटरकनेक्ट का एक परिचय|date= January 30, 2009 |publisher= Intel Corporation |url= http://www.intel.com/technology/quickpath/introduction.pdf |access-date= June 14, 2011 }}</ref> | ||
एक पारंपरिक वास्तुकला में, फ्रंट-साइड बस मुख्य मेमोरी सहित सिस्टम में सीपीयू और अन्य सभी उपकरणों के बीच तत्काल डेटा लिंक के रूप में कार्य करती है। हाइपरट्रांसपोर्ट- और क्यूपीआई-आधारित सिस्टम में, सिस्टम मेमोरी को सीपीयू में एकीकृत [[ स्मृति नियंत्रक ]] के माध्यम से स्वतंत्र रूप से एक्सेस किया जाता है, बैंडविड्थ को अन्य उपयोगों के लिए हाइपरट्रांसपोर्ट या क्यूपीआई लिंक पर छोड़ दिया जाता है। यह सीपीयू डिजाइन की जटिलता को बढ़ाता है | एक पारंपरिक वास्तुकला में, फ्रंट-साइड बस मुख्य मेमोरी सहित सिस्टम में सीपीयू और अन्य सभी उपकरणों के बीच तत्काल डेटा लिंक के रूप में कार्य करती है। हाइपरट्रांसपोर्ट- और क्यूपीआई-आधारित सिस्टम में, सिस्टम मेमोरी को सीपीयू में एकीकृत [[ स्मृति नियंत्रक ]] के माध्यम से स्वतंत्र रूप से एक्सेस किया जाता है, बैंडविड्थ को अन्य उपयोगों के लिए हाइपरट्रांसपोर्ट या क्यूपीआई लिंक पर छोड़ दिया जाता है। यह सीपीयू डिजाइन की जटिलता को बढ़ाता है किन्तु मल्टीप्रोसेसर सिस्टम में उत्तम थ्रूपुट के साथ-साथ उत्तम स्केलिंग भी प्रदान करता है। | ||
== स्थानांतरण दरें == | == स्थानांतरण दरें == | ||
Line 67: | Line 67: | ||
प्रति चक्र प्रति निर्देश स्थानान्तरण की संख्या प्रयुक्त तकनीक पर निर्भर करती है। उदाहरण के लिए, [[GTL+]] 1 स्थानांतरण/चक्र, Alpha_21264#External_interface 2 स्थानांतरण/चक्र, और [[AGTL+]] 4 स्थानांतरण/चक्र करता है। इंटेल प्रति चक्र चार स्थानान्तरण की तकनीक को [[क्वाड डेटा दर]] कहता है। | प्रति चक्र प्रति निर्देश स्थानान्तरण की संख्या प्रयुक्त तकनीक पर निर्भर करती है। उदाहरण के लिए, [[GTL+]] 1 स्थानांतरण/चक्र, Alpha_21264#External_interface 2 स्थानांतरण/चक्र, और [[AGTL+]] 4 स्थानांतरण/चक्र करता है। इंटेल प्रति चक्र चार स्थानान्तरण की तकनीक को [[क्वाड डेटा दर]] कहता है। | ||
कई निर्माता मेगाहर्ट्ज में फ्रंट-साइड बस की आवृत्ति प्रकाशित करते हैं, | कई निर्माता मेगाहर्ट्ज में फ्रंट-साइड बस की आवृत्ति प्रकाशित करते हैं, किन्तु विपणन सामग्री अधिकांशतः सैद्धांतिक प्रभावी सिग्नलिंग दर (जिसे सामान्यतः [[ स्थानांतरण (कंप्यूटिंग) ]] प्रति सेकंड या एमटी / एस कहा जाता है) सूचीबद्ध करते हैं। उदाहरण के लिए, यदि एक मदरबोर्ड (या प्रोसेसर) का बस सेट 200 मेगाहर्ट्ज पर है और प्रति घड़ी चक्र में 4 स्थानान्तरण करता है, तो FSB को 800 MT/s पर रेट किया गया है। | ||
लोकप्रिय प्रोसेसर की कई पीढ़ियों के विनिर्देश नीचे दर्शाए गए हैं। | लोकप्रिय प्रोसेसर की कई पीढ़ियों के विनिर्देश नीचे दर्शाए गए हैं। |
Revision as of 18:42, 26 June 2023
फ्रंट-साइड बस (FSB) एक कंप्यूटर संचार इंटरफ़ेस (बस (कंप्यूटिंग)) है जो 1990 और 2000 के दशक के समय अधिकांशतः इंटेल-चिप-आधारित कंप्यूटरों में उपयोग किया जाता था। Alpha_21264#External_interface बस प्रतिस्पर्धी AMD CPU के लिए समान कार्य करती है। दोनों सामान्यतः सेंट्रल प्रोसेसिंग यूनिट (सीपीयू) और एक मेमोरी कंट्रोलर हब के बीच डेटा ले जाते हैं, जिसे नॉर्थब्रिज (कंप्यूटिंग) के रूप में जाना जाता है।[1]
कार्यान्वयन के आधार पर, कुछ कंप्यूटरों में एक बैक-साइड बस भी हो सकती है जो CPU को CPU कैश से जोड़ती है। यह बस और इससे जुड़ा कैश फ्रंट-साइड बस के माध्यम से सिस्टम मेमोरी (या रैम) तक पहुँचने की तुलना में तेज़ है। फ्रंट साइड बस की गति अधिकांशतः कंप्यूटर के प्रदर्शन के एक महत्वपूर्ण उपाय के रूप में उपयोग की जाती है।
मूल फ्रंट-साइड बस आर्किटेक्चर को आधुनिक वॉल्यूम सीपीयू कैश हाइपरट्रांसपोर्ट, इंटेल क्विकपाथ इंटरकनेक्ट या डायरेक्ट मीडिया इंटरफ़ेस द्वारा बदल दिया गया है।
इतिहास
1990 के दशक में पेंटियम प्रो और पेंटियम द्वितीय उत्पादों की घोषणा के समय इंटेल कॉर्पोरेशन द्वारा इस शब्द का उपयोग किया गया था।
फ्रंट साइड प्रोसेसर से बाकी कंप्यूटर सिस्टम के बाहरी इंटरफ़ेस को संदर्भित करता है, जैसा कि बैक साइड के विपरीत होता है, जहां बैक-साइड बस कैश (और संभावित रूप से अन्य सीपीयू) को जोड़ती है।[2]
एक फ्रंट-साइड बस (FSB) का उपयोग ज्यादातर पीसी से संबंधित मदरबोर्ड (पर्सनल कंप्यूटर और सर्वर सहित) पर किया जाता है। वे संभवतः ही कभी अंतः स्थापित प्रणाली या इसी तरह के छोटे कंप्यूटरों में उपयोग किए जाते हैं। एफएसबी डिजाइन पिछले दशकों के सिंगल सिस्टम बस डिजाइनों पर एक प्रदर्शन सुधार था, किन्तु इन फ्रंट-साइड बसों को कभी-कभी सिस्टम बस के रूप में संदर्भित किया जाता है।
फ्रंट-साइड बसें सामान्यतः सीपीयू और बाकी हार्डवेयर को एक चिपसेट के माध्यम से जोड़ती हैं, जिसे इंटेल ने नॉर्थब्रिज (कंप्यूटिंग) और साउथब्रिज (कंप्यूटिंग) के रूप में लागू किया है। पेरिफ़ेरल कंपोनेंट इंटरकनेक्ट (पीसीआई), त्वरित ग्राफिक्स पोर्ट (एजीपी) और मेमोरी बस जैसी अन्य बसें सभी कनेक्टेड डिवाइसों के बीच डेटा प्रवाहित करने के लिए चिपसेट से जुड़ती हैं। ये माध्यमिक प्रणाली बसें सामान्यतः फ्रंट-साइड बस घड़ी से प्राप्त गति से चलती हैं, किन्तु आवश्यक नहीं कि इसके लिए सिंक्रनाइज़ेशन (कंप्यूटर विज्ञान) हो।
उन्नत लघु उपकरण ेस की टोरेंज़ा पहल के उत्तर में, इंटेल ने अपने एफएसबी सीपीयू सॉकेट को तीसरे पक्ष के उपकरणों के लिए खोल दिया।[3] बीजिंग में इंटेल डेवलपर फोरम में स्प्रिंग 2007 में की गई इस घोषणा से पहले, इंटेल ने बहुत ही बारीकी से पहरा दिया था, जिसकी एफएसबी तक पहुंच थी, केवल सीपीयू सॉकेट में इंटेल प्रोसेसर की अनुमति थी। पहला उदाहरण क्षेत्र में प्रोग्राम की जा सकने वाली द्वार श्रंखला (FPGA) सह-प्रोसेसर था, जो Intel-Xilinx-Nallatech के बीच सहयोग का परिणाम था।[4] और Intel-Altera-XtremeData (जो 2008 में भेज दिया गया)।[5][6][7]
संबंधित घटक गति
सीपीयू
आवृत्ति जिस पर एक प्रोसेसर (सीपीयू) संचालित होता है, कुछ स्थितियोंमें फ्रंट-साइड बस (एफएसबी) की गति के लिए घड़ी गुणक को लागू करके निर्धारित किया जाता है। उदाहरण के लिए, 3200 मेगाहर्ट्ज़ पर चलने वाला प्रोसेसर 400 मेगाहर्ट्ज़ एफएसबी का उपयोग कर सकता है। इसका मतलब है कि 8 की एक आंतरिक सीपीयू गुणक सेटिंग (जिसे बस/कोर अनुपात भी कहा जाता है) है। अर्थात, सीपीयू को फ्रंट-साइड बस की 8 गुना आवृत्ति पर चलाने के लिए सेट किया गया है: 400 मेगाहर्ट्ज × 8 = 3200 मेगाहर्ट्ज। अलग-अलग सीपीयू गति या तो एफएसबी आवृत्ति या सीपीयू गुणक को अलग-अलग करके प्राप्त की जाती हैं, इसे overclocking या अंडरक्लॉकिंग कहा जाता है।
मेमोरी
FSB स्पीड सेट करना सीधे तौर पर मेमोरी के स्पीड ग्रेड से संबंधित होता है जिसे सिस्टम को उपयोग करना चाहिए। मेमोरी बस नॉर्थब्रिज और रैम को जोड़ती है, जैसे फ्रंट-साइड बस सीपीयू और नॉर्थब्रिज को जोड़ती है। अधिकांशतः, इन दोनों बसों को एक ही फ्रीक्वेंसी पर चलना चाहिए। अधिकांश स्थितियोंमें फ़्रंट-साइड बस को 450 मेगाहर्ट्ज़ तक बढ़ाने का मतलब मेमोरी को 450 मेगाहर्ट्ज़ पर चलाना भी है।
नए सिस्टम में, 4:5 और इसी तरह के मेमोरी अनुपात को देखना संभव है। इस स्थिति में मेमोरी एफएसबी की तुलना में 5/4 गुना तेजी से चलेगी, जिसका अर्थ है कि 400 मेगाहर्ट्ज बस 500 मेगाहर्ट्ज पर मेमोरी के साथ चल सकती है। इसे अधिकांशतः 'अतुल्यकालिक' प्रणाली के रूप में जाना जाता है। सीपीयू और सिस्टम आर्किटेक्चर में अंतर के कारण, विभिन्न एफएसबी-टू-मेमोरी अनुपात के साथ समग्र सिस्टम प्रदर्शन अप्रत्याशित तरीके से भिन्न हो सकता है।
छवि , ध्वनि रिकॉर्डिंग और प्रजनन, गति ग्राफिक्स , वीडियो गेम, फील्ड-प्रोग्रामेबल गेट एरे सिंथेसिस और वैज्ञानिक एप्लिकेशन जो बड़े डेटा सेट के प्रत्येक तत्व पर कम मात्रा में काम करते हैं, FSB गति एक प्रमुख प्रदर्शन मुद्दा बन जाता है। धीमी FSB के कारण CPU को रैंडम एक्सेस मेमोरी से डेटा के आने की प्रतीक्षा में महत्वपूर्ण समय व्यतीत करना पड़ेगा। चूँकि, यदि प्रत्येक तत्व से जुड़ी संगणनाएँ अधिक जटिल हैं, तो प्रोसेसर इनका प्रदर्शन करने में अधिक समय व्यतीत करेगा; इसलिए, FSB गति बनाए रखने में सक्षम होगा क्योंकि जिस दर पर मेमोरी एक्सेस की जाती है वह कम हो जाती है।
परिधीय बसें
मेमोरी बस की तरह, PCI और AGP बसों को भी फ्रंट-साइड बस से अतुल्यकालिक रूप से चलाया जा सकता है। पुराने सिस्टम में, इन बसों को फ्रंट-साइड बस फ्रीक्वेंसी के एक निर्धारित अंश पर संचालित किया जाता है। यह अंश BIOS द्वारा निर्धारित किया गया था। नई प्रणालियों में, पीसीआई, एजीपी, और पीसीआई एक्सप्रेस परिधीय बसें अधिकांशतः अपने स्वयं के घड़ी का संकेत प्राप्त करती हैं, जो समय के लिए फ्रंट-साइड बस पर उनकी निर्भरता को समाप्त कर देती हैं।
ओवरक्लॉकिंग
ओवरक्लॉकिंग कंप्यूटर घटकों को उनके स्टॉक प्रदर्शन स्तर से परे संचालित करने का अभ्यास है, जिस आवृत्ति पर घटक चलाने के लिए सेट किया गया है, और जब आवश्यक हो, तो घटक को भेजे गए वोल्टेज को संशोधित करके इसे इन उच्च आवृत्तियों पर संचालित करने की अनुमति देता है। स्थिरता।
कई मदरबोर्ड उपयोगकर्ता को जम्पर (कंप्यूटिंग) या BIOS सेटिंग्स को बदलकर क्लॉक मल्टीप्लायर और एफएसबी सेटिंग्स को मैन्युअल रूप से सेट करने की अनुमति देते हैं। लगभग सभी सीपीयू निर्माता अब चिप में प्रीसेट मल्टीप्लायर सेटिंग को लॉक कर देते हैं। कुछ बंद सीपीयू को अनलॉक करना संभव है; उदाहरण के लिए, कुछ AMD Athlon प्रोसेसर को CPU की सतह पर बिंदुओं पर विद्युत संपर्कों को जोड़कर अनलॉक किया जा सकता है। एएमडी और इंटेल के कुछ अन्य प्रोसेसर कारखाने से अनलॉक किए गए हैं और इस सुविधा के कारण अंतिम उपयोगकर्ताओं और खुदरा विक्रेताओं द्वारा उत्साही-ग्रेड प्रोसेसर के रूप में लेबल किए गए हैं। सभी प्रोसेसरों के लिए, सीपीयू और नॉर्थब्रिज के बीच विलंबता (इंजीनियरिंग) को कम करके प्रसंस्करण गति को बढ़ाने के लिए एफएसबी की गति को बढ़ाया जा सकता है।
यह अभ्यास घटकों को उनके विनिर्देशों से परे धकेलता है और अनियमित व्यवहार, अति ताप या समय से पहले विफलता का कारण बन सकता है। यदि कंप्यूटर सामान्य रूप से चलता हुआ दिखाई देता है, भारी लोड के अनुसार समस्याएं दिखाई दे सकती हैं। हेवलेट पैकर्ड या गड्ढा जैसे खुदरा विक्रेताओं या निर्माताओं से खरीदे गए अधिकांश निजी कंप्यूटर उपयोगकर्ता को अनियमित व्यवहार या विफलता की संभावना के कारण गुणक या एफएसबी सेटिंग्स को बदलने की अनुमति नहीं देते हैं। कस्टम मशीन बनाने के लिए अलग से खरीदे गए मदरबोर्ड से उपयोगकर्ता को पीसी के BIOS में मल्टीप्लायर और एफएसबी सेटिंग्स को संपादित करने की अनुमति मिलती है।
विकास
पहली बार डिजाइन किए जाने पर फ्रंट-साइड बस में उच्च लचीलेपन और कम लागत का लाभ था। साधारण सममित मल्टीप्रोसेसर एक साझा एफएसबी पर कई सीपीयू लगाते हैं, चूंकि बैंडविड्थ विकट: अड़चन के कारण प्रदर्शन को रैखिक रूप से स्केल नहीं किया जा सकता है।
लगभग 2008 तक सभी Intel Atom, Celeron, Intel P5 (माइक्रोआर्किटेक्चर), Core 2, और Xeon प्रोसेसर मॉडल में फ्रंट-साइड बस का उपयोग किया गया था। मूल रूप से, यह बस सभी सिस्टम उपकरणों और CPU के लिए एक केंद्रीय कनेक्टिंग पॉइंट थी।
एक तेज सीपीयू की क्षमता बर्बाद हो जाती है यदि यह निर्देशों और डेटा को उतनी जल्दी प्राप्त नहीं कर सकता है जितनी जल्दी यह उन्हें निष्पादित कर सकता है। सीपीयू मुख्य मेमोरी में डेटा को पढ़ने या लिखने के लिए प्रतीक्षा करते समय महत्वपूर्ण समय निष्क्रिय कर सकता है, और उच्च-प्रदर्शन प्रोसेसर को उच्च बैंडविड्थ और कम विलंबता मेमोरी की आवश्यकता होती है। एएमडी द्वारा फ्रंट-साइड बस की एक पुरानी और धीमी तकनीक के रूप में आलोचना की गई थी जो सिस्टम प्रदर्शन को सीमित करती है।[8] अधिक आधुनिक डिज़ाइन एएमडी के हाइपरट्रांसपोर्ट और इंटेल के डायरेक्ट मीडिया इंटरफेस | डीएमआई 2.0 या इंटेल क्विकपाथ इंटरकनेक्ट (क्यूपीआई) जैसे पॉइंट-टू-पॉइंट और सीरियल कनेक्शन का उपयोग करते हैं। ये कार्यान्वयन सीपीयू से प्लेटफार्म नियंत्रक हब , साउथब्रिज (कंप्यूटिंग) या आई/ओ कंट्रोलर के सीधे लिंक के पक्ष में पारंपरिक नॉर्थब्रिज (कंप्यूटिंग) को हटा देते हैं।[9] एक पारंपरिक वास्तुकला में, फ्रंट-साइड बस मुख्य मेमोरी सहित सिस्टम में सीपीयू और अन्य सभी उपकरणों के बीच तत्काल डेटा लिंक के रूप में कार्य करती है। हाइपरट्रांसपोर्ट- और क्यूपीआई-आधारित सिस्टम में, सिस्टम मेमोरी को सीपीयू में एकीकृत स्मृति नियंत्रक के माध्यम से स्वतंत्र रूप से एक्सेस किया जाता है, बैंडविड्थ को अन्य उपयोगों के लिए हाइपरट्रांसपोर्ट या क्यूपीआई लिंक पर छोड़ दिया जाता है। यह सीपीयू डिजाइन की जटिलता को बढ़ाता है किन्तु मल्टीप्रोसेसर सिस्टम में उत्तम थ्रूपुट के साथ-साथ उत्तम स्केलिंग भी प्रदान करता है।
स्थानांतरण दरें
बैंडविड्थ (कंप्यूटिंग) या फ्रंट-साइड बस का अधिकतम सैद्धांतिक थ्रूपुट इसके डेटा पथ की चौड़ाई, इसकी घड़ी की दर (चक्र प्रति सेकंड) और प्रति घड़ी चक्र में किए गए डेटा ट्रांसफर की संख्या के उत्पाद द्वारा निर्धारित किया जाता है। उदाहरण के लिए, एक 64-अंश (8-बाइट) चौड़ा एफएसबी 100 मेगाहर्ट्ज की आवृत्ति पर काम कर रहा है जो प्रति चक्र 4 स्थानान्तरण करता है जिसकी बैंडविड्थ 3200 मेगाबाइट प्रति सेकंड (एमबी/एस) है:
- 8 बाइट्स/ट्रांसफर × 100 मेगाहर्ट्ज × 4 ट्रांसफर/चक्र = 3200 एमबी/एस
प्रति चक्र प्रति निर्देश स्थानान्तरण की संख्या प्रयुक्त तकनीक पर निर्भर करती है। उदाहरण के लिए, GTL+ 1 स्थानांतरण/चक्र, Alpha_21264#External_interface 2 स्थानांतरण/चक्र, और AGTL+ 4 स्थानांतरण/चक्र करता है। इंटेल प्रति चक्र चार स्थानान्तरण की तकनीक को क्वाड डेटा दर कहता है।
कई निर्माता मेगाहर्ट्ज में फ्रंट-साइड बस की आवृत्ति प्रकाशित करते हैं, किन्तु विपणन सामग्री अधिकांशतः सैद्धांतिक प्रभावी सिग्नलिंग दर (जिसे सामान्यतः स्थानांतरण (कंप्यूटिंग) प्रति सेकंड या एमटी / एस कहा जाता है) सूचीबद्ध करते हैं। उदाहरण के लिए, यदि एक मदरबोर्ड (या प्रोसेसर) का बस सेट 200 मेगाहर्ट्ज पर है और प्रति घड़ी चक्र में 4 स्थानान्तरण करता है, तो FSB को 800 MT/s पर रेट किया गया है।
लोकप्रिय प्रोसेसर की कई पीढ़ियों के विनिर्देश नीचे दर्शाए गए हैं।
इंटेल प्रोसेसर
CPU | FSB Frequency (MHz) | Transfers/Cycle | Bus Width | Transfer Rate (MB/sec) |
---|---|---|---|---|
Pentium | 50 - 66 | 1 | 64-bit | 400 - 528 |
Pentium Overdrive | 25 - 66 | 1 | 32 or 64-bit | 200 - 528 |
Pentium Pro | 60 / 66 | 1 | 64-bit | 480 - 528 |
Pentium MMX | 60 / 66 | 1 | 64-bit | 480 - 528 |
Pentium MMX Overdrive | 50 / 60 / 66 | 1 | 64-bit | 400 - 528 |
Pentium II | 66 / 100 | 1 | 64-bit | 528 / 800 |
Pentium II Xeon | 100 | 1 | 64-bit | 800 |
Pentium II Overdrive | 60 / 66 | 1 | 64-bit | 480 - 528 |
Pentium III | 100 / 133 | 1 | 64-bit | 800 / 1064 |
Pentium III Xeon | 100 / 133 | 1 | 64-bit | 800 / 1064 |
Pentium III-M | 100 / 133 | 1 | 64-bit | 800 / 1064 |
Pentium 4 | 100 / 133 | 4 | 64-bit | 3200 - 4256 |
Pentium 4-M | 100 | 4 | 64-bit | 3200 |
Pentium 4 HT | 133 / 200 | 4 | 64-bit | 4256 / 6400 |
Pentium 4 HT Extreme Edition | 200 / 266 | 4 | 64-bit | 6400 / 8512 |
Pentium D | 133 / 200 | 4 | 64-bit | 4256 - 6400 |
Pentium Extreme Edition | 200 / 266 | 4 | 64-bit | 6400 / 8512 |
Pentium M | 100 / 133 | 4 | 64-bit | 3200 / 4256 |
Pentium Dual-Core | 200 / 266 | 4 | 64-bit | 6400 / 8512 |
Pentium Dual-Core Mobile | 133 - 200 | 4 | 64-bit | 6400 - 8512 |
Celeron | 66 - 200 | 1-4 | 64-bit | 528 - 6400 |
Celeron Mobile | 133 - 200 | 1-4 | 64-bit | 4256 - 6400 |
Celeron D | 133 | 4 | 64-bit | 4256 |
Celeron M | 66 - 200 | 1-4 | 64-bit | 528 - 6400 |
Celeron Dual-Core | 200 | 4 | 64-bit | 6400 |
Celeron Dual-Core Mobile | 133 - 200 | 4 | 64-bit | 4256 - 6400 |
Itanium | 133 | 2 | 64-bit | 2133 |
Itanium 2 | 200 - 333 | 2 | 128-bit | 6400 - 10666 |
Xeon | 100 - 400 | 4 | 64-bit | 3200 - 12800 |
Core Solo | 133 / 166 | 4 | 64-bit | 4256 / 5312 |
Core Duo | 133 / 166 | 4 | 64-bit | 4256 / 5312 |
Core 2 Solo | 133 - 200 | 4 | 64-bit | 4256 - 6400 |
Core 2 Duo | 200 - 333 | 4 | 64-bit | 6400 - 10656 |
Core 2 Duo Mobile | 133 - 266 | 4 | 64-bit | 4256 - 8512 |
Core 2 Quad | 266 / 333 | 4 | 64-bit | 8512 / 10656 |
Core 2 Quad Mobile | 266 | 4 | 64-bit | 8512 |
Core 2 Extreme | 266 - 400 | 4 | 64-bit | 8512 - 12800 |
Core 2 Extreme Mobile | 200 / 266 | 4 | 64-bit | 6400 / 8512 |
Atom | 100 - 166 | 4 | 64-bit | 3200 - 5312 |
एएमडी प्रोसेसर
CPU | FSB Frequency (MHz) | Transfers/Cycle | Bus Width | Transfer Rate (MB/sec) |
---|---|---|---|---|
K5 | 50 - 66 | 1 | 64-bit | 400 - 528 |
K6 | 66 | 1 | 64-bit | 528 |
K6-II | 66 - 100 | 1 | 64-bit | 528 - 800 |
K6-III | 66 / 100 | 1 | 64-bit | 528 - 800 |
Athlon | 100 / 133 | 2 | 64-bit | 1600 - 2128 |
Athlon XP | 100 / 133 / 166 / 200 | 2 | 64-bit | 1600 - 3200 |
Athlon MP | 100 / 133 | 2 | 64-bit | 1600 - 2128 |
Mobile Athlon 4 | 100 | 2 | 64-bit | 1600 |
Athlon XP-M | 100 / 133 | 2 | 64-bit | 1600 - 2128 |
Duron | 100 / 133 | 2 | 64-bit | 1600 - 2128 |
Sempron | 166 / 200 | 2 | 64-bit | 2656 - 3200 |
संदर्भ
- ↑ Scott Mueller (2003). पीसी का उन्नयन और मरम्मत (15th ed.). Que Publishing. p. 314. ISBN 978-0-7897-2974-3.
- ↑ Todd Langley and Rob Kowalczyk (January 2009). "Introduction to Intel Architecture: The Basics" (PDF). "White paper". Intel Corporation. Archived from the original (PDF) on June 7, 2011. Retrieved May 28, 2011.
- ↑ Charlie Demerjian (April 17, 2007). "Intel opens up its front side bus to the world+dog: IDF Spring 007 Xilinx heralds the bombshell". The Inquirer. Archived from the original on October 7, 2012. Retrieved May 28, 2011.
{{cite news}}
: CS1 maint: unfit URL (link) - ↑ "नल्लाटेक ने उद्योग के पहले एफएसबी-एफपीजीए मॉड्यूल के लिए अर्ली एक्सेस प्रोग्राम लॉन्च किया". Business Wire news release. Nallatech. September 18, 2007. Retrieved June 14, 2011.
- ↑ "एक्सट्रीमडेटा स्ट्रैटिक्स III एफपीजीए-आधारित इंटेल एफएसबी मॉड्यूल की पेशकश करता है". Business Wire news release. Chip Design magazine. September 18, 2007. Archived from the original on July 23, 2011. Retrieved June 14, 2011.
- ↑ Ashlee Vance (April 17, 2007). "उच्च फाइबर आहार एएमडी को मात देने के लिए आवश्यक इंटेल 'नियमितता' देता है". The Register. Retrieved May 28, 2011.
- ↑ "XtremeData Begins Shipping 1066 MHz Altera Stratix III FPGA-Based Intel FSB Module". Business Wire news release. XtremeData. June 17, 2008. Retrieved June 14, 2011.
- ↑ Allan McNaughton (September 29, 2003). "AMD HyperTransport Bus: Transport Your Application to Hyper Performance". AMD. Archived from the original on March 25, 2012. Retrieved June 14, 2011.
- ↑ "इंटेल क्विकपाथ इंटरकनेक्ट का एक परिचय" (PDF). Intel Corporation. January 30, 2009. Retrieved June 14, 2011.