एब्बे रेफ्रेक्टोमीटर: Difference between revisions

From Vigyanwiki
(Created page with "{{no footnotes|date=August 2014}} File:Abbe refractometer.jpg|thumb|right|तापमान नियंत्रित प्रिज्म के साथ एब्ब...")
 
No edit summary
Line 1: Line 1:
{{no footnotes|date=August 2014}}
[[File:Abbe refractometer.jpg|thumb|right|तापमान नियंत्रित प्रिज्म के साथ एब्बे रेफ्रेक्टोमीटर का रेखाचित्र]]
[[File:Abbe refractometer.jpg|thumb|right|तापमान नियंत्रित प्रिज्म के साथ एब्बे रेफ्रेक्टोमीटर का रेखाचित्र]]


[[File:Abbe refractometer.png|thumb|right|ज़ीस द्वारा 1920 के आसपास निर्मित एक अब्बे रेफ्रेक्टोमीटर। ध्यान दें कि थर्मामीटर संलग्न नहीं है।]]एब्बे रेफ्रेक्टोमीटर एक [[अपवर्तक सूचकांक]] के उच्च-सटीक माप के लिए एक बेंच-टॉप डिवाइस है।
[[File:Abbe refractometer.png|thumb|right|ज़ीस द्वारा 1920 के आसपास निर्मित अब्बे रेफ्रेक्टोमीटर। ध्यान दें कि थर्मामीटर संलग्न नहीं है।]]एब्बे रेफ्रेक्टोमीटर [[अपवर्तक सूचकांक]] के उच्च-सटीक माप के लिए बेंच-टॉप डिवाइस है।


== विवरण ==
== विवरण ==
Line 8: Line 7:
[[अर्नेस्ट अब्बे]] (1840-1905), 19वीं शताब्दी के अंत में जेना, जर्मनी में [[ कार्ल जीस एजी ]] के लिए काम कर रहे थे, प्रयोगशाला रिफ्रेक्टोमीटर विकसित करने वाले पहले व्यक्ति थे। इन पहले उपकरणों में अंतर्निर्मित थर्मामीटर थे और उपकरण और द्रव के तापमान को नियंत्रित करने के लिए परिसंचारी पानी की आवश्यकता थी। उनके पास फैलाव (ऑप्टिक्स) और एनालॉग स्केल के प्रभावों को खत्म करने के लिए समायोजन भी थे जिनसे रीडिंग ली गई थी।
[[अर्नेस्ट अब्बे]] (1840-1905), 19वीं शताब्दी के अंत में जेना, जर्मनी में [[ कार्ल जीस एजी ]] के लिए काम कर रहे थे, प्रयोगशाला रिफ्रेक्टोमीटर विकसित करने वाले पहले व्यक्ति थे। इन पहले उपकरणों में अंतर्निर्मित थर्मामीटर थे और उपकरण और द्रव के तापमान को नियंत्रित करने के लिए परिसंचारी पानी की आवश्यकता थी। उनके पास फैलाव (ऑप्टिक्स) और एनालॉग स्केल के प्रभावों को खत्म करने के लिए समायोजन भी थे जिनसे रीडिंग ली गई थी।
   
   
एब्बे रेफ्रेक्टोमीटर में तरल नमूना एक रोशनी प्रिज्म और एक अपवर्तक प्रिज्म के बीच एक पतली परत में सैंडविच होता है। अपवर्तक प्रिज्म एक उच्च अपवर्तक सूचकांक (जैसे, 1.75) के साथ एक गिलास से बना है और रेफ्रेक्टोमीटर को अपवर्तक प्रिज्म की तुलना में छोटे अपवर्तक सूचकांक वाले नमूनों के साथ उपयोग करने के लिए डिज़ाइन किया गया है। एक प्रकाश स्रोत को प्रबुद्ध प्रिज्म के माध्यम से प्रक्षेपित किया जाता है, जिसकी निचली सतह जमीन है (यानी, ग्राउंड-[[ काँच ]] संयुक्त की तरह खुरदरी), इसलिए इस सतह पर प्रत्येक बिंदु को सभी दिशाओं में यात्रा करने वाली प्रकाश किरणों को उत्पन्न करने के बारे में सोचा जा सकता है। अपवर्तक प्रिज्म के पीछे की ओर रखा गया एक संसूचक एक प्रकाश और एक अंधेरा क्षेत्र दिखाएगा।
एब्बे रेफ्रेक्टोमीटर में तरल नमूना रोशनी प्रिज्म और अपवर्तक प्रिज्म के बीच पतली परत में सैंडविच होता है। अपवर्तक प्रिज्म उच्च अपवर्तक सूचकांक (जैसे, 1.75) के साथ गिलास से बना है और रेफ्रेक्टोमीटर को अपवर्तक प्रिज्म की तुलना में छोटे अपवर्तक सूचकांक वाले नमूनों के साथ उपयोग करने के लिए डिज़ाइन किया गया है। प्रकाश स्रोत को प्रबुद्ध प्रिज्म के माध्यम से प्रक्षेपित किया जाता है, जिसकी निचली सतह जमीन है (यानी, ग्राउंड-[[ काँच ]] संयुक्त की तरह खुरदरी), इसलिए इस सतह पर प्रत्येक बिंदु को सभी दिशाओं में यात्रा करने वाली प्रकाश किरणों को उत्पन्न करने के बारे में सोचा जा सकता है। अपवर्तक प्रिज्म के पीछे की ओर रखा गया संसूचक प्रकाश और अंधेरा क्षेत्र दिखाएगा।


अब्बे के काम के एक सदी के बाद, रेफ्रेक्टोमीटर की उपयोगिता और सटीकता में सुधार हुआ है, हालांकि उनके संचालन के सिद्धांत में बहुत कम बदलाव आया है। वे कांच, [[प्लास्टिक]] और बहुलक फिल्मों जैसे ठोस नमूनों के अपवर्तक सूचकांक को मापने के लिए उपयोग करने के लिए संभवतः सबसे आसान उपकरण भी हैं। कुछ आधुनिक अब्बे रेफ्रेक्टोमीटर माप के लिए एक [[डिजिटल डाटा]] डिस्प्ले का उपयोग करते हैं, जिससे छोटे स्नातकों के बीच विवेक की आवश्यकता समाप्त हो जाती है। हालाँकि, अंतिम रीडिंग प्राप्त करने के लिए उपयोगकर्ता को अभी भी दृश्य को समायोजित करना होगा।
अब्बे के काम के सदी के बाद, रेफ्रेक्टोमीटर की उपयोगिता और सटीकता में सुधार हुआ है, हालांकि उनके संचालन के सिद्धांत में बहुत कम बदलाव आया है। वे कांच, [[प्लास्टिक]] और बहुलक फिल्मों जैसे ठोस नमूनों के अपवर्तक सूचकांक को मापने के लिए उपयोग करने के लिए संभवतः सबसे आसान उपकरण भी हैं। कुछ आधुनिक अब्बे रेफ्रेक्टोमीटर माप के लिए [[डिजिटल डाटा]] डिस्प्ले का उपयोग करते हैं, जिससे छोटे स्नातकों के बीच विवेक की आवश्यकता समाप्त हो जाती है। हालाँकि, अंतिम रीडिंग प्राप्त करने के लिए उपयोगकर्ता को अभी भी दृश्य को समायोजित करना होगा।


1970 के दशक के अंत और 1980 के दशक की शुरुआत में पहली सही मायने में डिजिटल प्रयोगशाला रिफ्रेक्टोमीटर दिखाई देने लगे, और अब रीडिंग निर्धारित करने के लिए उपयोगकर्ता की आंखों पर निर्भर नहीं रहे। उन्हें अभी भी उपकरण और द्रव के तापमान को नियंत्रित करने के लिए पानी के स्नान के उपयोग की आवश्यकता थी। हालांकि, उनके पास कई तरल पदार्थों के तापमान के अंतर के लिए इलेक्ट्रॉनिक रूप से क्षतिपूर्ति करने की क्षमता थी, जहां एक ज्ञात एकाग्रता-से-अपवर्तक-सूचकांक रूपांतरण होता है। अधिकांश डिजिटल प्रयोगशाला रिफ्रेक्टोमीटर, जबकि उनके एनालॉग एब्बे समकक्षों की तुलना में अधिक सटीक और बहुमुखी हैं, ठोस नमूनों पर पढ़ने में असमर्थ हैं।
1970 के दशक के अंत और 1980 के दशक की शुरुआत में पहली सही मायने में डिजिटल प्रयोगशाला रिफ्रेक्टोमीटर दिखाई देने लगे, और अब रीडिंग निर्धारित करने के लिए उपयोगकर्ता की आंखों पर निर्भर नहीं रहे। उन्हें अभी भी उपकरण और द्रव के तापमान को नियंत्रित करने के लिए पानी के स्नान के उपयोग की आवश्यकता थी। हालांकि, उनके पास कई तरल पदार्थों के तापमान के अंतर के लिए इलेक्ट्रॉनिक रूप से क्षतिपूर्ति करने की क्षमता थी, जहां ज्ञात एकाग्रता-से-अपवर्तक-सूचकांक रूपांतरण होता है। अधिकांश डिजिटल प्रयोगशाला रिफ्रेक्टोमीटर, जबकि उनके एनालॉग एब्बे समकक्षों की तुलना में अधिक सटीक और बहुमुखी हैं, ठोस नमूनों पर पढ़ने में असमर्थ हैं।


1990 के दशक के अंत में, अब्बे रेफ्रेक्टोमीटर मानक 589 [[नैनोमीटर]] के अलावा अन्य [[तरंग दैर्ध्य]] पर माप की क्षमता के साथ उपलब्ध हो गए। ये उपकरण वांछित तरंग दैर्ध्य तक पहुंचने के लिए विशेष फिल्टर का उपयोग करते हैं, और निकट [[अवरक्त]] में माप को अच्छी तरह से बढ़ा सकते हैं (हालांकि अवरक्त किरणों को देखने के लिए एक विशेष दर्शक की आवश्यकता होती है)। मल्टी-वेवलेंथ एब्बे रेफ्रेक्टोमीटर का उपयोग किसी नमूने की एब्बे संख्या को आसानी से निर्धारित करने के लिए किया जा सकता है।
1990 के दशक के अंत में, अब्बे रेफ्रेक्टोमीटर मानक 589 [[नैनोमीटर]] के अलावा अन्य [[तरंग दैर्ध्य]] पर माप की क्षमता के साथ उपलब्ध हो गए। ये उपकरण वांछित तरंग दैर्ध्य तक पहुंचने के लिए विशेष फिल्टर का उपयोग करते हैं, और निकट [[अवरक्त]] में माप को अच्छी तरह से बढ़ा सकते हैं (हालांकि अवरक्त किरणों को देखने के लिए विशेष दर्शक की आवश्यकता होती है)। मल्टी-वेवलेंथ एब्बे रेफ्रेक्टोमीटर का उपयोग किसी नमूने की एब्बे संख्या को आसानी से निर्धारित करने के लिए किया जा सकता है।


<!-- Deleted image removed: [[File:abberefractometers2.jpg|right|thumb|200px|The main types of modern laboratory refractometers]] -->
आज के सबसे उन्नत उपकरण उपकरण और नमूने को गर्म और ठंडा करने के लिए सॉलिड-स्टेट [[ पेल्टियर प्रभाव ]] डिवाइस का उपयोग करते हैं, जिससे बाहरी पानी के स्नान की आवश्यकता समाप्त हो जाती है। अधिकांश मौजूदा उपकरणों पर सॉफ़्टवेयर प्रोग्राम करने योग्य उपयोगकर्ता परिभाषित स्केल और इतिहास फ़ंक्शन जैसी सुविधाएं प्रदान करता है जो पिछले कई मापों को याद करता है। कई निर्माता आसानी से प्रयोग करने योग्य नियंत्रण प्रदान करते हैं, जिसमें लिंक किए गए कंप्यूटर से रीडिंग का उपयोग करने और निर्यात करने की क्षमता होती है।
आज के सबसे उन्नत उपकरण उपकरण और नमूने को गर्म और ठंडा करने के लिए सॉलिड-स्टेट [[ पेल्टियर प्रभाव ]] डिवाइस का उपयोग करते हैं, जिससे बाहरी पानी के स्नान की आवश्यकता समाप्त हो जाती है। अधिकांश मौजूदा उपकरणों पर सॉफ़्टवेयर प्रोग्राम करने योग्य उपयोगकर्ता परिभाषित स्केल और एक इतिहास फ़ंक्शन जैसी सुविधाएं प्रदान करता है जो पिछले कई मापों को याद करता है। कई निर्माता आसानी से प्रयोग करने योग्य नियंत्रण प्रदान करते हैं, जिसमें एक लिंक किए गए कंप्यूटर से रीडिंग का उपयोग करने और निर्यात करने की क्षमता होती है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 09:52, 24 June 2023

तापमान नियंत्रित प्रिज्म के साथ एब्बे रेफ्रेक्टोमीटर का रेखाचित्र
ज़ीस द्वारा 1920 के आसपास निर्मित अब्बे रेफ्रेक्टोमीटर। ध्यान दें कि थर्मामीटर संलग्न नहीं है।

एब्बे रेफ्रेक्टोमीटर अपवर्तक सूचकांक के उच्च-सटीक माप के लिए बेंच-टॉप डिवाइस है।

विवरण

अर्नेस्ट अब्बे (1840-1905), 19वीं शताब्दी के अंत में जेना, जर्मनी में कार्ल जीस एजी के लिए काम कर रहे थे, प्रयोगशाला रिफ्रेक्टोमीटर विकसित करने वाले पहले व्यक्ति थे। इन पहले उपकरणों में अंतर्निर्मित थर्मामीटर थे और उपकरण और द्रव के तापमान को नियंत्रित करने के लिए परिसंचारी पानी की आवश्यकता थी। उनके पास फैलाव (ऑप्टिक्स) और एनालॉग स्केल के प्रभावों को खत्म करने के लिए समायोजन भी थे जिनसे रीडिंग ली गई थी।

एब्बे रेफ्रेक्टोमीटर में तरल नमूना रोशनी प्रिज्म और अपवर्तक प्रिज्म के बीच पतली परत में सैंडविच होता है। अपवर्तक प्रिज्म उच्च अपवर्तक सूचकांक (जैसे, 1.75) के साथ गिलास से बना है और रेफ्रेक्टोमीटर को अपवर्तक प्रिज्म की तुलना में छोटे अपवर्तक सूचकांक वाले नमूनों के साथ उपयोग करने के लिए डिज़ाइन किया गया है। प्रकाश स्रोत को प्रबुद्ध प्रिज्म के माध्यम से प्रक्षेपित किया जाता है, जिसकी निचली सतह जमीन है (यानी, ग्राउंड-काँच संयुक्त की तरह खुरदरी), इसलिए इस सतह पर प्रत्येक बिंदु को सभी दिशाओं में यात्रा करने वाली प्रकाश किरणों को उत्पन्न करने के बारे में सोचा जा सकता है। अपवर्तक प्रिज्म के पीछे की ओर रखा गया संसूचक प्रकाश और अंधेरा क्षेत्र दिखाएगा।

अब्बे के काम के सदी के बाद, रेफ्रेक्टोमीटर की उपयोगिता और सटीकता में सुधार हुआ है, हालांकि उनके संचालन के सिद्धांत में बहुत कम बदलाव आया है। वे कांच, प्लास्टिक और बहुलक फिल्मों जैसे ठोस नमूनों के अपवर्तक सूचकांक को मापने के लिए उपयोग करने के लिए संभवतः सबसे आसान उपकरण भी हैं। कुछ आधुनिक अब्बे रेफ्रेक्टोमीटर माप के लिए डिजिटल डाटा डिस्प्ले का उपयोग करते हैं, जिससे छोटे स्नातकों के बीच विवेक की आवश्यकता समाप्त हो जाती है। हालाँकि, अंतिम रीडिंग प्राप्त करने के लिए उपयोगकर्ता को अभी भी दृश्य को समायोजित करना होगा।

1970 के दशक के अंत और 1980 के दशक की शुरुआत में पहली सही मायने में डिजिटल प्रयोगशाला रिफ्रेक्टोमीटर दिखाई देने लगे, और अब रीडिंग निर्धारित करने के लिए उपयोगकर्ता की आंखों पर निर्भर नहीं रहे। उन्हें अभी भी उपकरण और द्रव के तापमान को नियंत्रित करने के लिए पानी के स्नान के उपयोग की आवश्यकता थी। हालांकि, उनके पास कई तरल पदार्थों के तापमान के अंतर के लिए इलेक्ट्रॉनिक रूप से क्षतिपूर्ति करने की क्षमता थी, जहां ज्ञात एकाग्रता-से-अपवर्तक-सूचकांक रूपांतरण होता है। अधिकांश डिजिटल प्रयोगशाला रिफ्रेक्टोमीटर, जबकि उनके एनालॉग एब्बे समकक्षों की तुलना में अधिक सटीक और बहुमुखी हैं, ठोस नमूनों पर पढ़ने में असमर्थ हैं।

1990 के दशक के अंत में, अब्बे रेफ्रेक्टोमीटर मानक 589 नैनोमीटर के अलावा अन्य तरंग दैर्ध्य पर माप की क्षमता के साथ उपलब्ध हो गए। ये उपकरण वांछित तरंग दैर्ध्य तक पहुंचने के लिए विशेष फिल्टर का उपयोग करते हैं, और निकट अवरक्त में माप को अच्छी तरह से बढ़ा सकते हैं (हालांकि अवरक्त किरणों को देखने के लिए विशेष दर्शक की आवश्यकता होती है)। मल्टी-वेवलेंथ एब्बे रेफ्रेक्टोमीटर का उपयोग किसी नमूने की एब्बे संख्या को आसानी से निर्धारित करने के लिए किया जा सकता है।

आज के सबसे उन्नत उपकरण उपकरण और नमूने को गर्म और ठंडा करने के लिए सॉलिड-स्टेट पेल्टियर प्रभाव डिवाइस का उपयोग करते हैं, जिससे बाहरी पानी के स्नान की आवश्यकता समाप्त हो जाती है। अधिकांश मौजूदा उपकरणों पर सॉफ़्टवेयर प्रोग्राम करने योग्य उपयोगकर्ता परिभाषित स्केल और इतिहास फ़ंक्शन जैसी सुविधाएं प्रदान करता है जो पिछले कई मापों को याद करता है। कई निर्माता आसानी से प्रयोग करने योग्य नियंत्रण प्रदान करते हैं, जिसमें लिंक किए गए कंप्यूटर से रीडिंग का उपयोग करने और निर्यात करने की क्षमता होती है।

यह भी देखें

अग्रिम पठन

  • Sella, Andrea (November 2008). "Abbé's refractometer". Chemistry World: 67.


बाहरी संबंध