स्वतंत्र और समान रूप से वितरित यादृच्छिक चर: Difference between revisions
m (9 revisions imported from alpha:स्वतंत्र_और_समान_रूप_से_वितरित_यादृच्छिक_चर) |
No edit summary |
||
Line 188: | Line 188: | ||
{{refend}} | {{refend}} | ||
[[Category:CS1 English-language sources (en)]] | |||
[[Category:Collapse templates|Independent And Identically-Distributed Random Variables]] | [[Category:Collapse templates|Independent And Identically-Distributed Random Variables]] | ||
[[Category:Created On 30/05/2023|Independent And Identically-Distributed Random Variables]] | [[Category:Created On 30/05/2023|Independent And Identically-Distributed Random Variables]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page|Independent And Identically-Distributed Random Variables]] | [[Category:Machine Translated Page|Independent And Identically-Distributed Random Variables]] | ||
[[Category:Navigational boxes| ]] | [[Category:Navigational boxes| ]] | ||
Line 198: | Line 200: | ||
[[Category:Template documentation pages|Documentation/doc]] | [[Category:Template documentation pages|Documentation/doc]] | ||
[[Category:Templates Vigyan Ready|Independent And Identically-Distributed Random Variables]] | [[Category:Templates Vigyan Ready|Independent And Identically-Distributed Random Variables]] | ||
[[Category: | [[Category:Templates that add a tracking category]] | ||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] |
Latest revision as of 10:57, 1 July 2023
संभाव्यता सिद्धांत और सांख्यिकी में, संग्रह स्वतंत्र और समान रूप से वितरित यादृच्छिक चर होता है, यदि प्रत्येक यादृच्छिक चर में अन्य के समान संभावना वितरण होता है और सभी परस्पर स्वतंत्रता (संभावना सिद्धांत) होते हैं।[1] इस प्रकार इस संपत्ति को सामान्यतः आई.आई.डी., आईआईडी, या आईआईडी के रूप में संक्षिप्त किया जाता है। इस प्रकार आईआईडी को प्रथम बार सांख्यिकी में परिभाषित किया गया था और डेटा माइनिंग और सिग्नल प्रोसेसिंग जैसे विभिन्न क्षेत्रों में इसका उपयोग होता है।
परिचय
सांख्यिकी सामान्यतः यादृच्छिक नमूनों से संबंधित होती है। चूँकि यादृच्छिक नमूने को उन वस्तुओं के समूह के रूप में माना जा सकता है, जिन्हें यादृच्छिक रूप से चुना जाता है। अतः अधिक औपचारिक रूप से, यह स्वतंत्र, समान रूप से वितरित (आईआईडी) यादृच्छिक डेटा बिंदुओं का क्रम होता है।
दूसरे शब्दों में, यादृच्छिक नमूना और आईआईडी शब्द मूल रूप से होता हैं। इस प्रकार आँकड़ों में, यादृच्छिक नमूना विशिष्ट शब्दावली होती है, किन्तु संभाव्यता में आईआईडी कहना अधिक सामान्य होता है।
- 'समान रूप से वितरित' का अर्थ होता है कि कोई समग्र प्रवृत्ति नहीं होती है - वितरण में उतार-चढ़ाव नहीं होता है और नमूने में सभी वस्तु समान संभाव्यता वितरण से लिए जाते हैं।
- 'स्वतंत्र' का अर्थ होता है कि नमूना वस्तु कि सभी स्वतंत्र घटनाएँ होती हैं। अतः दूसरे शब्दों में, वह किसी भी प्रकार से दूसरे से जुड़े नहीं होते हैं।[2] इस प्रकार चर के मान का ज्ञान दूसरे चर के मान के बारे में कोई जानकारी नहीं देता है और इसके विपरीत होता है।
- आईआईडी चरों को समान रूप से वितरित करने के लिए यह आवश्यक नहीं होता है। इस प्रकार आईआईडी होने के लिए केवल यह आवश्यक होता है कि उन सभी का दूसरे के समान वितरण होता है और उस वितरण से स्वतंत्र रूप से चुने गए होंते है, भले ही उनका वितरण कितना भी समान या गैर-समान क्यों नही होता है।
आवेदन
स्वतंत्र और समान रूप से वितरित यादृच्छिक चर अधिकांशतः धारणा के रूप में उपयोग किए जाते हैं, जो अंतर्निहित गणित को सरल बनाने की प्रवृत्ति रखता है। इस प्रकार सांख्यिकीय मॉडलिंग के व्यावहारिक अनुप्रयोगों में चूंकि धारणा यथार्थवादी हो भी सकती है और नहीं भी हो सकती है।[3]
इस प्रकार आई.आई.डी. धारणा का उपयोग केंद्रीय सीमा प्रमेय में भी किया जाता है, जिसमें कहा गया है कि आई.आई.डी. के योग (या औसत) का प्रायिकता वितरण परिमित भिन्नता वाले चर सामान्य वितरण की ओर अग्रसर होते हैं।[4]
अधिकांशतः आई.आई.डी. धारणा यादृच्छिक चर के अनुक्रम के संदर्भ में उत्पन्न होती है। इस प्रकार तब स्वतंत्र और समान रूप से वितरित का तात्पर्य होता है कि अनुक्रम में तत्व यादृच्छिक चर से स्वतंत्र होता है जो इससे पहले आया था। इस प्रकार आई.आई.डी. अनुक्रम मार्कोव अनुक्रम से भिन्न होता है, जहां एनवें यादृच्छिक चर के लिए संभाव्यता वितरण अनुक्रम में पिछले यादृच्छिक चर (पहले क्रम मार्कोव अनुक्रम के लिए) का कार्य होता है। आई.आई.डी. अनुक्रम नमूना स्थान या घटना स्थान के सभी तत्वों के लिए संभावनाओं को समान नहीं होता है।[5] उदाहरण के लिए, बार-बार भरे हुए पासे को फेंकने से परिणाम पक्षपाती होने के अतिरिक्त आई.आई.डी. अनुक्रम उत्पन्न होता है।
सिग्नल प्रोसेसिंग और इमेज प्रोसेसिंग में परिवर्तन की धारणा आई.आई.डी. तात्पर्य दो विशिष्टताओं "आईडी" भाग और "आई" भाग होता है।
पहचान- समय अक्ष पर संकेत स्तर संतुलित होता है।
आई - सिग्नल वर्णक्रम को चपटा होता है। अर्थात्, फ़िल्टरिंग (जैसे डीकोनोवोल्यूशन) द्वारा सफेद ध्वनि सिग्नल (अर्थात् संकेत जहां सभी आवृत्तियों समान रूप से उपस्थित होता हैं) में परिवर्तित किया जाता है।
परिभाषा
दो यादृच्छिक चर के लिए परिभाषा
मान लीजिए कि यादृच्छिक चर और मूल्यों को ग्रहण करने के लिए परिभाषित किया गया है। अतः . जैसे कि और के संचयी वितरण कार्य और होता है। इस प्रकार क्रमशः, और उनके संयुक्त संभाव्यता वितरण को निरूपित करता है।
दो यादृच्छिक चर और और यदि समान रूप से वितरित किए जाते हैं।[6]
दो यादृच्छिक चर और स्वतंत्र होते हैं और यदि वितरित किए जाते हैं। (आगे देखें)
दो यादृच्छिक चर और आई.आई.डी होता हैं यदि वह स्वतंत्र और समान रूप से वितरित हैं। अर्थात्,
|
(Eq.1) |
दो से अधिक यादृच्छिक चर के लिए परिभाषा
सामान्यतः परिभाषा स्वाभाविक रूप से दो से अधिक यादृच्छिक चर तक फैली हुई होती है। इस प्रकार हम कह सकते हैं कि यादृच्छिक चर आई.आई.डी होता हैं यदि वह स्वतंत्र होता हैं (आगे देखें ) और समान रूप से वितरित होता है।
|
(Eq.2) |
जहाँ के संयुक्त संचयी वितरण फलन को दर्शाता है।
स्वतंत्रता की परिभाषा
प्रायिकता सिद्धांत में, दो घटनाएँ, और , को स्वतंत्र कहा जाता है और यदि . निम्नांकित में, के लिए छोटा है।
मान लीजिए प्रयोग की दो घटनाएँ और . यदि , संभावना होती है . सामान्यतः, की घटना की संभावना पर प्रभाव पड़ता है, जिसे सशर्त संभाव्यता कहा जाता है और केवल जब घटना होती है होने पर कोई प्रभाव नहीं पड़ता है , वहाँ है।
नोट: यदि और , तब और पारस्परिक रूप से स्वतंत्र हैं, जिन्हें समय में पारस्परिक रूप से असंगत के साथ स्थापित नहीं किया जा सकता है। अर्थात्, स्वतंत्रता संगत होता है और पारस्परिक बहिष्कार संबंधित होता है।
कल्पना करना , , और तीन घटनाएँ हैं। यदि , , , और संतुष्ट होती हैं, तब घटनाएँ , , और परस्पर स्वतंत्र होती हैं।
अधिक सामान्य परिभाषा होती है। इस प्रकार आयोजन, . यदि किसी के लिए उत्पाद घटनाओं की संभावनाएं घटनाएँ प्रत्येक घटना की संभावनाओं के उत्पाद के समान्तर होती हैं, फिर घटनाएँ दूसरे से स्वतंत्र होती हैं।
उदाहरण
उदाहरण 1
उचित या अनुचित रूलेट व्हील के घुमावों के परिणामों का क्रम आई.आई.डी. इसका निहितार्थ यह है कि यदि रूलेट गेंद "लाल" रंग पर गिरती है, उदाहरण के लिए, पंक्ति में 20 बार, अगली स्पिन किसी भी अन्य स्पिन की तुलना में "ब्लैक" होने की अधिक या कम संभावना नहीं होती है (जुआरी का भ्रम देखें)।
उदाहरण 2
सिक्के को 10 बार उछालें और रिकॉर्ड करें कि सिक्का कितनी बार सिर पर गिरा।
- स्वतंत्र - लैंडिंग का प्रत्येक परिणाम दूसरे परिणाम को प्रभावित नहीं करेगा, जिसका अर्थ है कि 10 परिणाम दूसरे से स्वतंत्र हैं।
- समान रूप से वितरित - भले ही सिक्का उचित हो (संभावना 1/2 सिर) या अनुचित, जब तक कि प्रत्येक फ्लिप के लिए एक ही सिक्के का उपयोग किया जाता है, प्रत्येक फ्लिप में एक दूसरे के फ्लिप की समान संभावना होगी। दो संभावित आईआईडी. का ऐसा क्रम परिणामों को बर्नौली प्रक्रिया भी कहा जाता है।
उदाहरण 3
एक पासे को 10 बार घुमाएँ और रिकॉर्ड करें कि कितनी बार परिणाम 1 आता है।
- स्वतंत्र - डाइस का प्रत्येक परिणाम अगले परिणाम को प्रभावित नहीं करेगा, जिसका अर्थ है कि 10 परिणाम दूसरे से स्वतंत्र हैं।
- समान रूप से वितरित - इस बात पर ध्यान दिए बिना कि डाई निष्पक्ष है या भारित है, प्रत्येक रोल की एक दूसरे रोल के समान संभावना होगी। इसके विपरीत, 10 अलग-अलग पासा रोल करना, जिनमें से कुछ भारित हैं और जिनमें से कुछ नहीं हैं, आईआईडी चर का उत्पादन नहीं करेंगे।
उदाहरण 4
52 कार्ड वाले कार्ड के मानक डेक से एक कार्ड चुनें, फिर कार्ड को वापस डेक में रखें। इसे 52 बार दोहराएं। दिखाई देने वाले राजाओं की संख्या रिकॉर्ड करें
- स्वतंत्र - कार्ड का प्रत्येक परिणाम अगले परिणाम को प्रभावित नहीं करेगा, जिसका अर्थ है कि 52 परिणाम दूसरे से स्वतंत्र हैं।
- इसके विपरीत, यदि निकाला गया प्रत्येक कार्ड डेक से बाहर रखा जाता है, तो बाद के ड्रॉ इससे प्रभावित होंगे (एक बादशाह के चित्र बनाने से दूसरे बादशाह के चित्र बनाने की संभावना कम हो जाएगी), और परिणाम स्वतंत्र नहीं होगा। समान रूप से वितरित - इसमें से एक कार्ड निकालने के बाद, हर बार बादशाह बनने की प्रायिकता 4/52 होती है, जिसका अर्थ है कि हर बार प्रायिकता समान होती है।
सामान्यीकरण
कई परिणाम जो पहली बार इस धारणा के अनुसार सिद्ध हुए थे कि यादृच्छिक चर आईआईडी हैं। कमजोर वितरण धारणा के तहत भी सही साबित हुए हैं।
विनिमेय यादृच्छिक चर
सबसे सामान्य धारणा जो आई.आई.डी. के मुख्य गुणों को साझा करती है। चर विनिमेय यादृच्छिक चर हैं, जो ब्रूनो डी फिनेची द्वारा प्रस्तुत किए गए हैं। विनिमेयता का अर्थ है कि चूंकि चर स्वतंत्र नहीं हो सकते हैं, भविष्य वाले अतीत की तरह व्यवहार करते हैं - औपचारिक रूप से, परिमित अनुक्रम का कोई भी मूल्य उन मूल्यों के किसी भी क्रमचय के रूप में संभव है। - जितना कि उन मूल्यों का कोई क्रमपरिवर्तन - सममित समूह के अनुसार संयुक्त संभाव्यता वितरण अपरिवर्तनीय है।
यह उपयोगी सामान्यीकरण प्रदान करता है - उदाहरण के लिए, प्रतिस्थापन के बिना नमूना लेना स्वतंत्र नहीं है, किन्तु विनिमय योग्य है।
लेवी प्रक्रिया
स्टोचैस्टिक कैलकुलस में, आई.आई.डी. चरों को असतत समय लेवी प्रक्रिया के रूप में माना जाता है: प्रत्येक चर यह बताता है कि एक समय से दूसरे में कितना परिवर्तन होता है।
उदाहरण के लिए, बरनौली परीक्षणों के अनुक्रम की व्याख्या बरनौली प्रक्रिया के रूप में की जाती है।
निरंतर समय लेवी प्रक्रियाओं को सम्मिलित करने के लिए इसे सामान्यीकृत किया जा सकता है और कई लेवी प्रक्रियाओं को आई.आई.डी. की सीमा के रूप में देखा जा सकता है। चर-उदाहरण के लिए, वीनर प्रक्रिया बर्नौली प्रक्रिया की सीमा है।
मशीन लर्निंग में
मशीन लर्निंग तेजी से, अधिक त्रुटिहीन परिणाम देने के लिए वर्तमान में बड़ी मात्रा में डेटा का उपयोग करता है।[7] इसलिए, हमें समग्र प्रतिनिधित्व के साथ ऐतिहासिक डेटा का उपयोग करने की आवश्यकता है। यदि प्राप्त डेटा समग्र स्थिति का प्रतिनिधित्व नहीं करता है, तो नियमों को गलत या गलत तरीके से सारांशित किया जाएगा।
आई.आई.डी. परिकल्पना, प्रशिक्षण नमूने में व्यक्तिगत स्थितियोंकी संख्या बहुत कम हो सकती है।
यह धारणा गणितीय रूप से गणना करने के लिए अधिकतमकरण को बहुत आसान बनाती है। गणित में स्वतंत्र और समान वितरण की धारणा को देखते हुए अनुकूलन समस्याओं में संभावना कार्य की गणना सरल हो जाती है। स्वतंत्रता की मान्यता के कारण, संभावना फलन को इस प्रकार लिखा जा सकता है
देखी गई घटना की संभावना को अधिकतम करने के लिए, लॉग फ़ंक्शन लें और पैरामीटर θ को अधिकतम करें। अर्थात गणना करने के लिए:
जहाँ
कंप्यूटर कई योगों की गणना करने के लिए बहुत कुशल है, किन्तु यह गुणन की गणना करने में कुशल नहीं है। कम्प्यूटेशनल दक्षता में वृद्धि के लिए यह सरलीकरण मुख्य कारण है। और यह लॉग ट्रांसफ़ॉर्मेशन भी अधिकतम करने की प्रक्रिया में है, कई घातीय कार्यों को रैखिक कार्यों में बदल रहा है।
दो कारणों से, व्यावहारिक अनुप्रयोगों में केंद्रीय सीमा प्रमेय का उपयोग करना आसान है।
- यदि नमूना अधिक जटिल गैर-गाऊसी वितरण से आता है, यह अच्छी तरह से अनुमानित भी हो सकता है। क्योंकि इसे केंद्रीय सीमा प्रमेय से गॉसियन वितरण तक सरल बनाया जा सकता है। बड़ी संख्या में देखे जाने योग्य नमूनों के लिए, कई यादृच्छिक चरों के योग का लगभग सामान्य वितरण होगा।
- दूसरा कारण यह है कि मॉडल की त्रुटिहीनता मॉडल इकाई की सादगी और प्रतिनिधि शक्ति के साथ-साथ डेटा की गुणवत्ता पर निर्भर करती है। क्योंकि इकाई की सरलता से व्याख्या करना और पैमाना बनाना आसान हो जाता है, और इकाई से प्रतिनिधि शक्ति + पैमाना मॉडल की त्रुटिहीनता में सुधार करता है। गहरे तंत्रिका नेटवर्क की तरह, प्रत्येक न्यूरॉन बहुत सरल है, किन्तु मॉडल की त्रुटिहीनता में सुधार के लिए अधिक जटिल सुविधाओं का प्रतिनिधित्व करने के लिए परत दर परत मजबूत प्रतिनिधि शक्ति है।
यह भी देखें
- डी फिनेटी की प्रमेय
- जोड़ीदार स्वतंत्रता
- केंद्रीय सीमा प्रमेय
संदर्भ
- ↑ Clauset, Aaron (2011). "संभाव्यता वितरण पर एक संक्षिप्त प्राइमर" (PDF). Santa Fe Institute. Archived from the original (PDF) on 2012-01-20. Retrieved 2011-11-29.
- ↑ Stephanie (2016-05-11). "IID Statistics: Independent and Identically Distributed Definition and Examples". Statistics How To (in English). Retrieved 2021-12-09.
- ↑ Hampel, Frank (1998), "Is statistics too difficult?", Canadian Journal of Statistics, 26 (3): 497–513, doi:10.2307/3315772, hdl:20.500.11850/145503, JSTOR 3315772, S2CID 53117661 (§8).
- ↑ Blum, J. R.; Chernoff, H.; Rosenblatt, M.; Teicher, H. (1958). "विनिमेय प्रक्रियाओं के लिए केंद्रीय सीमा प्रमेय". Canadian Journal of Mathematics. 10: 222–229. doi:10.4153/CJM-1958-026-0. S2CID 124843240.
- ↑ Cover, T. M.; Thomas, J. A. (2006). सूचना सिद्धांत के तत्व. Wiley-Interscience. pp. 57–58. ISBN 978-0-471-24195-9.
- ↑ Casella & Berger 2002, Theorem 1.5.10
- ↑ "What is Machine Learning? A Definition". Expert.ai (in English). 2020-05-05. Retrieved 2021-12-16.
अग्रिम पठन
- Casella, George; Berger, Roger L. (2002), Statistical Inference, Duxbury Advanced Series