ज्यामितीय ब्राउनियन गति: Difference between revisions

From Vigyanwiki
Line 1: Line 1:
{{Short description|Continuous stochastic process}}
{{Short description|Continuous stochastic process}}
[[File:GBM2.png|thumb|400x400px|प्राप्ति उत्पन्न करने वाले अनुकरण के लिए, नीचे देखें।]]'''ज्यामितीय ब्राउनियन गति''' '''(GBM)''' (जिसे '''घातांकी ब्राउनियन गति''' के रूप में भी जाना जाता है) एक सतत-समय [[प्रसंभाव्य प्रक्रिया]] है जिसमें यादृच्छिक रूप से भिन्न मात्रा का [[लघुगणक]] बहाव के साथ एक [[ब्राउनियन गति]] (जिसे [[वीनर प्रक्रिया]] भी कहा जाता है) का अनुसरण करता है।<ref>{{cite book |title=संभाव्यता मॉडल का परिचय|first=Sheldon M. |last=Ross |location=Amsterdam |publisher=Elsevier |edition=11th |year=2014 |chapter=Variations on Brownian Motion |pages=612–14 |isbn=978-0-12-407948-9 |chapter-url=https://books.google.com/books?id=A3YpAgAAQBAJ&pg=PA612 }}</ref>यह प्रसंभाव्य प्रक्रियाओं का एक महत्वपूर्ण उदाहरण है जो एक [[प्रसंभाव्य अवकलन समीकरण]] (SDE) को संतुष्ट करता है, विशिष्टतया, इसका उपयोग [[ब्लैक स्कोल्स मॉडल]] में स्टॉक कीमतों के मॉडल के लिए [[गणितीय वित्त]] में किया जाता है।
[[File:GBM2.png|thumb|400x400px|प्राप्ति उत्पन्न करने वाले अनुकरण के लिए, नीचे देखें।]]'''ज्यामितीय ब्राउनियन गति''' '''(GBM)''' (जिसे '''घातांकी ब्राउनियन गति''' के रूप में भी जाना जाता है) एक सतत-समय [[प्रसंभाव्य प्रक्रिया]] है जिसमें यादृच्छिक रूप से भिन्न मात्रा का [[लघुगणक]] बहाव के साथ एक [[ब्राउनियन गति]] (जिसे [[वीनर प्रक्रिया]] भी कहा जाता है) का अनुसरण करता है।<ref>{{cite book |title=संभाव्यता मॉडल का परिचय|first=Sheldon M. |last=Ross |location=Amsterdam |publisher=Elsevier |edition=11th |year=2014 |chapter=Variations on Brownian Motion |pages=612–14 |isbn=978-0-12-407948-9 |chapter-url=https://books.google.com/books?id=A3YpAgAAQBAJ&pg=PA612 }}</ref>यह प्रसंभाव्य प्रक्रियाओं का एक महत्वपूर्ण उदाहरण है जो एक [[प्रसंभाव्य अवकलन समीकरण]] (SDE) को संतुष्ट करता है, विशिष्टतया, इसका उपयोग [[ब्लैक स्कोल्स मॉडल]] में शेयर कीमतों के मॉडल के लिए [[गणितीय वित्त]] में किया जाता है।


== तकनीकी परिभाषा: एस डी ई ==
== तकनीकी परिभाषा: एस डी ई ==
Line 19: Line 19:
: <math>d(\ln S_t) =  (\ln S_t)'  d S_t + \frac{1}{2} (\ln S_t)'' \,dS_t \,dS_t
: <math>d(\ln S_t) =  (\ln S_t)'  d S_t + \frac{1}{2} (\ln S_t)'' \,dS_t \,dS_t
= \frac{d S_t}{S_t} -\frac{1}{2} \,\frac{1}{S_t^2} \, dS_t \, dS_t </math>
= \frac{d S_t}{S_t} -\frac{1}{2} \,\frac{1}{S_t^2} \, dS_t \, dS_t </math>
जहाँ  <math> dS_t \, dS_t</math> एस डी ई का [[द्विघात रूपांतर]] है।
जहाँ  <math> dS_t \, dS_t</math> SDE का [[द्विघात रूपांतर]] है।


:<math>  d S_t \, d S_t \, = \, \sigma^2 \, S_t^2 \, d W_t^2 + 2 \sigma S_t^2 \mu \, d W_t \, d t + \mu^2 S_t^2 \, d t^2 </math>
:<math>  d S_t \, d S_t \, = \, \sigma^2 \, S_t^2 \, d W_t^2 + 2 \sigma S_t^2 \mu \, d W_t \, d t + \mu^2 S_t^2 \, d t^2 </math>
Line 74: Line 74:
{{Collapse bottom}}
{{Collapse bottom}}


GBM के और गुणों को प्राप्त करते समय, SDE का उपयोग किया जा सकता है जिसका GBM समाधान है, या ऊपर दिए गए स्पष्ट समाधान का उपयोग किया जा सकता है। उदाहरण के लिए, स्टोकेस्टिक प्रोसेस लॉग पर विचार करें (S<sub>''t''</sub>). यह एक दिलचस्प प्रक्रिया है, क्योंकि ब्लैक-स्कोल्स मॉडल में यह स्टॉक मूल्य के [[लॉग वापसी]] से संबंधित है। f(S) = log(S) के साथ इटो के लेम्मा का उपयोग करना देता है
GBM के और गुणों को प्राप्त करते समय, SDE का उपयोग किया जा सकता है जिसका GBM समाधान है, या ऊपर दिए गए स्पष्ट समाधान का उपयोग किया जा सकता है। उदाहरण के लिए, स्टोकेस्टिक प्रोसेस लॉग पर विचार करें (S<sub>''t''</sub>). यह एक दिलचस्प प्रक्रिया है, क्योंकि ब्लैक-स्कोल्स मॉडल में यह शेयर मूल्य के [[लॉग वापसी]] से संबंधित है। f(S) = log(S) के साथ इटो के लेम्मा का उपयोग करना देता है
:<math>
:<math>
\begin{alignat}{2}
\begin{alignat}{2}
Line 140: Line 140:




== वित्त में प्रयोग करें ==
== वित्त में उपयोग ==
{{main|Black–Scholes model}}
{{main|Black–Scholes model}}
ब्लैक-स्कोल्स मॉडल में स्टॉक की कीमतों को मॉडल करने के लिए ज्यामितीय ब्राउनियन गति का उपयोग किया जाता है और यह स्टॉक मूल्य व्यवहार का सबसे व्यापक रूप से इस्तेमाल किया जाने वाला मॉडल है।<ref name="Hull">{{cite book|title=विकल्प, वायदा और अन्य डेरिवेटिव|edition=7|first=John|last=Hull|year=2009|chapter=12.3}}</ref>
ब्लैक-स्कोल्स मॉडल में शेयर की कीमतों को मॉडल करने के लिए ज्यामितीय ब्राउनियन गति का उपयोग किया जाता है और यह शेयर कीमत व्यवहार का सबसे व्यापक रूप से उपयोग किया जाने वाला मॉडल है।<ref name="Hull">{{cite book|title=विकल्प, वायदा और अन्य डेरिवेटिव|edition=7|first=John|last=Hull|year=2009|chapter=12.3}}</ref>
मॉडल स्टॉक की कीमतों के लिए GBM का उपयोग करने के कुछ तर्क हैं:
 
*GBM का अपेक्षित प्रतिफल प्रक्रिया के मूल्य (स्टॉक मूल्य) से स्वतंत्र है, जो वास्तविकता में हमारी अपेक्षा से सहमत है।<ref name="Hull" />*GBM प्रक्रिया वास्तविक स्टॉक कीमतों की तरह ही केवल सकारात्मक मान लेती है।
मॉडल शेयर की कीमतों के लिए GBM का उपयोग करने के कुछ तर्क हैं:
*GBM प्रक्रिया अपने रास्तों में उसी तरह का 'खुरदरापन' दिखाती है जैसा कि हम वास्तविक स्टॉक कीमतों में देखते हैं।
*GBM का अपेक्षित प्रतिफल प्रक्रिया के मूल्य ( शेयर मूल्य) से स्वतंत्र है, जो वास्तविकता में हमारी अपेक्षा से सहमत है।<ref name="Hull" />
*GBM प्रक्रिया वास्तविक शेयर कीमतों की तरह ही केवल सकारात्मक मान ही लेती है।
*GBM प्रक्रिया अपने रास्तों में उसी तरह की 'असमतलता' दिखाती है जैसा कि हम वास्तविक शेयर कीमतों में देखते हैं।
*GBM प्रक्रियाओं के साथ गणना करना अपेक्षाकृत आसान है।
*GBM प्रक्रियाओं के साथ गणना करना अपेक्षाकृत आसान है।


हालाँकि, GBM पूरी तरह से यथार्थवादी मॉडल नहीं है, विशेष रूप से यह निम्नलिखित बिंदुओं में वास्तविकता से कम है:
हालाँकि, GBM पूरी तरह से यथार्थवादी मॉडल नहीं है, विशेष रूप से यह निम्नलिखित बिंदुओं में वास्तविकता से कम है:
*वास्तविक स्टॉक कीमतों में, समय के साथ अस्थिरता में परिवर्तन होता है (संभवतः [[स्टोकेस्टिक अस्थिरता]]), लेकिन GBM में, अस्थिरता को स्थिर माना जाता है।
*वास्तविक शेयर कीमतों में, समय के साथ अस्थिरता में परिवर्तन होता है (संभवतः प्रसंभाव्यता), लेकिन GBM में, अस्थिरता को स्थिर माना जाता है।
*वास्तविक जीवन में, स्टॉक की कीमतें अक्सर अप्रत्याशित घटनाओं या समाचारों के कारण उछाल दिखाती हैं, लेकिन GBM में, पथ निरंतर (कोई अनिरंतरता नहीं) है।
*वास्तविक जीवन में, शेयर की कीमतें अक्सर अप्रत्याशित घटनाओं या समाचारों के कारण उछाल दिखाती हैं, लेकिन GBM में, पथ निरंतर (कोई अनिरंतरता नहीं) है।


मॉडलिंग स्टॉक की कीमतों के अलावा, ज्यामितीय ब्राउनियन गति ने व्यापारिक रणनीतियों की निगरानी में भी आवेदन पाया है।<ref>{{cite journal |last1=Rej |first1=A. |last2=Seager |first2=P. |last3=Bouchaud |first3=J.-P. |title=You are in a drawdown. When should you start worrying? |journal=Wilmott |date=January 2018 |volume=2018 |issue=93 |pages=56–59 |doi=10.1002/wilm.10646 |arxiv=1707.01457 |s2cid=157827746 |url=https://onlinelibrary.wiley.com/doi/abs/10.1002/wilm.10646}}</ref>
शेयर कीमतों की मॉडलिंग के अलावा, ज्यामितीय ब्राउनियन गति ने व्यापारिक रणनीतियों की निगरानी में भी उपयोग पाया है।<ref>{{cite journal |last1=Rej |first1=A. |last2=Seager |first2=P. |last3=Bouchaud |first3=J.-P. |title=You are in a drawdown. When should you start worrying? |journal=Wilmott |date=January 2018 |volume=2018 |issue=93 |pages=56–59 |doi=10.1002/wilm.10646 |arxiv=1707.01457 |s2cid=157827746 |url=https://onlinelibrary.wiley.com/doi/abs/10.1002/wilm.10646}}</ref>
== विस्तार ==
GBM को  शेयर की कीमतों के लिए एक मॉडल के रूप में अधिक यथार्थवादी बनाने के प्रयास में, कोई इस धारणा को छोड़ सकता है कि अस्थिरता (<math>\sigma</math>) स्थिर है। यदि हम मानते हैं कि अस्थिरता शेयर की कीमत और समय का एक [[निश्चयात्मक]] कार्य है, तो इसे [[स्थानीय अस्थिरता]] मॉडल कहा जाता है।


स्थानीय अस्थिरता


== एक्सटेंशन ==
यदि इसके बजाय हम मानते हैं कि अस्थिरता की अपनी यादृच्छिकता होती है - जिसे अक्सर एक अलग ब्राउनियन मोशन द्वारा संचालित एक अलग समीकरण द्वारा वर्णित किया जाता है - मॉडल को स्टोकेस्टिक अस्थिरता मॉडल कहा जाता है।
GBM को स्टॉक की कीमतों के लिए एक मॉडल के रूप में अधिक यथार्थवादी बनाने के प्रयास में, कोई इस धारणा को छोड़ सकता है कि अस्थिरता (<math>\sigma</math>) स्थिर है। यदि हम मानते हैं कि अस्थिरता शेयर की कीमत और समय का एक [[नियतात्मक]] कार्य है, तो इसे [[स्थानीय अस्थिरता]] मॉडल कहा जाता है। यदि इसके बजाय हम मानते हैं कि अस्थिरता की अपनी यादृच्छिकता होती है - जिसे अक्सर एक अलग ब्राउनियन मोशन द्वारा संचालित एक अलग समीकरण द्वारा वर्णित किया जाता है - मॉडल को स्टोकेस्टिक अस्थिरता मॉडल कहा जाता है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 13:11, 24 June 2023

प्राप्ति उत्पन्न करने वाले अनुकरण के लिए, नीचे देखें।

ज्यामितीय ब्राउनियन गति (GBM) (जिसे घातांकी ब्राउनियन गति के रूप में भी जाना जाता है) एक सतत-समय प्रसंभाव्य प्रक्रिया है जिसमें यादृच्छिक रूप से भिन्न मात्रा का लघुगणक बहाव के साथ एक ब्राउनियन गति (जिसे वीनर प्रक्रिया भी कहा जाता है) का अनुसरण करता है।[1]यह प्रसंभाव्य प्रक्रियाओं का एक महत्वपूर्ण उदाहरण है जो एक प्रसंभाव्य अवकलन समीकरण (SDE) को संतुष्ट करता है, विशिष्टतया, इसका उपयोग ब्लैक स्कोल्स मॉडल में शेयर कीमतों के मॉडल के लिए गणितीय वित्त में किया जाता है।

तकनीकी परिभाषा: एस डी ई

एक प्रसंभाव्य प्रक्रिया St को GBM का पालन करने के लिए कहा जाता है यदि यह निम्नलिखित प्रसंभाव्य अवकलन समीकरण (SDE) को संतुष्ट करता है:

जहाँ एक वीनर प्रक्रिया या ब्राउनियन गति है, और ('प्रतिशत बहाव') और ('प्रतिशत अस्थिरता') स्थिरांक हैं।

पूर्व मापदण्ड का उपयोग नियतात्मक रुझानों के मॉडल के लिए किया जाता है, जबकि अनुवर्ती मापदण्ड गति के दौरान होने वाली अप्रत्याशित घटनाओं का मॉडल होता है।

एस डी ई (SDE) को हल करना

एक यादृच्छिक प्रारंभिक मान के लिए S0 उपरोक्त में एसडीई विश्लेषणात्मक समाधान है (इटो व्याख्या के तहत):

व्युत्पत्ति के लिए इटो कैलकुलस के उपयोग की आवश्यकता होती है। इटो के सूत्र को लागू करने से होता है

जहाँ SDE का द्विघात रूपांतर है।

जब , ,की तुलना में तेजी से 0 में परिवर्तित हो जाता है,

तब से . तो उपरोक्त अतिसूक्ष्म राशि द्वारा सरलीकृत किया जा सकता है

उपरोक्त समीकरण में के मान को अवरुद्ध करके और सरलीकरण करके हम प्राप्त करते हैं

घातांकी लेना और दोनों पक्षों को से गुणा करना जैसा कि उपरोक्त हल से पता चलता है।

गुण

उपरोक्त समाधान (टी के किसी भी मूल्य के लिए) एक लॉग-सामान्य वितरण है | लॉग-सामान्य रूप से वितरित यादृच्छिक चर अपेक्षित मूल्य और भिन्नता द्वारा दिया गया है[2]

उन्हें इस तथ्य का उपयोग करके प्राप्त किया जा सकता है कि एक मार्टिंगेल (संभाव्यता सिद्धांत) है, और वह

की संभावना घनत्व समारोह है:

style="background: #F0F2F5; font-size:87%; padding:0.2em 0.3em; text-align:center; " |
Derivation of GBM probability density function

GBM के प्रायिकता घनत्व फ़ंक्शन को प्राप्त करने के लिए, हमें PDF के समय विकास का मूल्यांकन करने के लिए फोकर-प्लैंक समीकरण का उपयोग करना चाहिए:

कहाँ डिराक डेल्टा समारोह है। संगणना को सरल बनाने के लिए, हम एक लघुगणक परिवर्तन प्रस्तुत कर सकते हैं , GBM के रूप में अग्रणी:

तब पीडीएफ के विकास के लिए समतुल्य फोकर-प्लैंक समीकरण बन जाता है:

परिभाषित करना और . नए चरों को पेश करके और , फोकर-प्लैंक समीकरण में डेरिवेटिव को इस रूप में रूपांतरित किया जा सकता है:

फोकर-प्लैंक समीकरण के नए रूप की ओर अग्रसर:

हालाँकि, यह ऊष्मा समीकरण का विहित रूप है। जिसमें ऊष्मा गिरी द्वारा दिया गया घोल है:

मूल चरों को जोड़ने से GBM के लिए PDF प्राप्त होता है:

GBM के और गुणों को प्राप्त करते समय, SDE का उपयोग किया जा सकता है जिसका GBM समाधान है, या ऊपर दिए गए स्पष्ट समाधान का उपयोग किया जा सकता है। उदाहरण के लिए, स्टोकेस्टिक प्रोसेस लॉग पर विचार करें (St). यह एक दिलचस्प प्रक्रिया है, क्योंकि ब्लैक-स्कोल्स मॉडल में यह शेयर मूल्य के लॉग वापसी से संबंधित है। f(S) = log(S) के साथ इटो के लेम्मा का उपयोग करना देता है

यह इस प्रकार है कि .

यह परिणाम GBM के स्पष्ट समाधान के लघुगणक को लागू करके भी प्राप्त किया जा सकता है:

उम्मीद लेने से ऊपर जैसा ही परिणाम मिलता है: .

नमूना पथ अनुकरण करना

# Python code for the plot

import numpy as np
import matplotlib.pyplot as plt

mu = 1
n = 50
dt = 0.1
x0 = 100
np.random.seed(1)

sigma = np.arange(0.8, 2, 0.2)

x = np.exp(
    (mu - sigma ** 2 / 2) * dt
    + sigma * np.random.normal(0, np.sqrt(dt), size=(len(sigma), n)).T
)
x = np.vstack([np.ones(len(sigma)), x])
x = x0 * x.cumprod(axis=0)

plt.plot(x)
plt.legend(np.round(sigma, 2))
plt.xlabel("$t$")
plt.ylabel("$x$")
plt.title(
    "Realizations of Geometric Brownian Motion with different variances\n $\mu=1$"
)
plt.show()


बहुभिन्नरूपी संस्करण

जीबीएम को उस मामले में बढ़ाया जा सकता है जहां कई सहसंबद्ध मूल्य पथ हैं।

प्रत्येक मूल्य पथ अंतर्निहित प्रक्रिया का अनुसरण करता है

जहां वीनर प्रक्रियाएं सहसंबद्ध हैं कहाँ .

बहुभिन्नरूपी मामले के लिए, इसका तात्पर्य है


वित्त में उपयोग

ब्लैक-स्कोल्स मॉडल में शेयर की कीमतों को मॉडल करने के लिए ज्यामितीय ब्राउनियन गति का उपयोग किया जाता है और यह शेयर कीमत व्यवहार का सबसे व्यापक रूप से उपयोग किया जाने वाला मॉडल है।[3]

मॉडल शेयर की कीमतों के लिए GBM का उपयोग करने के कुछ तर्क हैं:

  • GBM का अपेक्षित प्रतिफल प्रक्रिया के मूल्य ( शेयर मूल्य) से स्वतंत्र है, जो वास्तविकता में हमारी अपेक्षा से सहमत है।[3]
  • GBM प्रक्रिया वास्तविक शेयर कीमतों की तरह ही केवल सकारात्मक मान ही लेती है।
  • GBM प्रक्रिया अपने रास्तों में उसी तरह की 'असमतलता' दिखाती है जैसा कि हम वास्तविक शेयर कीमतों में देखते हैं।
  • GBM प्रक्रियाओं के साथ गणना करना अपेक्षाकृत आसान है।

हालाँकि, GBM पूरी तरह से यथार्थवादी मॉडल नहीं है, विशेष रूप से यह निम्नलिखित बिंदुओं में वास्तविकता से कम है:

  • वास्तविक शेयर कीमतों में, समय के साथ अस्थिरता में परिवर्तन होता है (संभवतः प्रसंभाव्यता), लेकिन GBM में, अस्थिरता को स्थिर माना जाता है।
  • वास्तविक जीवन में, शेयर की कीमतें अक्सर अप्रत्याशित घटनाओं या समाचारों के कारण उछाल दिखाती हैं, लेकिन GBM में, पथ निरंतर (कोई अनिरंतरता नहीं) है।

शेयर कीमतों की मॉडलिंग के अलावा, ज्यामितीय ब्राउनियन गति ने व्यापारिक रणनीतियों की निगरानी में भी उपयोग पाया है।[4]

विस्तार

GBM को शेयर की कीमतों के लिए एक मॉडल के रूप में अधिक यथार्थवादी बनाने के प्रयास में, कोई इस धारणा को छोड़ सकता है कि अस्थिरता () स्थिर है। यदि हम मानते हैं कि अस्थिरता शेयर की कीमत और समय का एक निश्चयात्मक कार्य है, तो इसे स्थानीय अस्थिरता मॉडल कहा जाता है।

स्थानीय अस्थिरता

यदि इसके बजाय हम मानते हैं कि अस्थिरता की अपनी यादृच्छिकता होती है - जिसे अक्सर एक अलग ब्राउनियन मोशन द्वारा संचालित एक अलग समीकरण द्वारा वर्णित किया जाता है - मॉडल को स्टोकेस्टिक अस्थिरता मॉडल कहा जाता है।

यह भी देखें

  • भूरी सतह

संदर्भ

  1. Ross, Sheldon M. (2014). "Variations on Brownian Motion". संभाव्यता मॉडल का परिचय (11th ed.). Amsterdam: Elsevier. pp. 612–14. ISBN 978-0-12-407948-9.
  2. Øksendal, Bernt K. (2002), Stochastic Differential Equations: An Introduction with Applications, Springer, p. 326, ISBN 3-540-63720-6
  3. 3.0 3.1 Hull, John (2009). "12.3". विकल्प, वायदा और अन्य डेरिवेटिव (7 ed.).
  4. Rej, A.; Seager, P.; Bouchaud, J.-P. (January 2018). "You are in a drawdown. When should you start worrying?". Wilmott. 2018 (93): 56–59. arXiv:1707.01457. doi:10.1002/wilm.10646. S2CID 157827746.


बाहरी संबंध