ज्यामितीय ब्राउनियन गति: Difference between revisions

From Vigyanwiki
No edit summary
Line 4: Line 4:
== तकनीकी परिभाषा: एस डी ई(SDE) ==
== तकनीकी परिभाषा: एस डी ई(SDE) ==


एक प्रसंभाव्य प्रक्रिया ''S<sub>t</sub>'' को GBM का पालन करने के लिए कहा जाता है यदि यह निम्नलिखित प्रसंभाव्य अवकलन समीकरण (SDE) को संतुष्ट करता है:
एक प्रसंभाव्य प्रक्रिया ''S<sub>t</sub>'' को GBM का पालन करने के लिए कहा जाता है यदि यह निम्नलिखित [[प्रसंभाव्य अवकलन समीकरण]] (SDE) को संतुष्ट करता है:


:<math> dS_t = \mu S_t\,dt + \sigma S_t\,dW_t </math>
:<math> dS_t = \mu S_t\,dt + \sigma S_t\,dW_t </math>
Line 12: Line 12:


== एस डी ई (SDE) को हल करना ==
== एस डी ई (SDE) को हल करना ==
एक यादृच्छिक प्रारंभिक मान के लिए S<sub>0</sub> उपरोक्त में एसडीई विश्लेषणात्मक समाधान है (इटो व्याख्या के तहत):
एक यादृच्छिक प्रारंभिक मान के लिए S<sub>0</sub> उपरोक्त में एसडीई विश्लेषणात्मक समाधान है (इटो स्पष्टीकरण के तहत):


: <math> S_t = S_0\exp\left( \left(\mu - \frac{\sigma^2}{2} \right)t + \sigma W_t\right).</math>
: <math> S_t = S_0\exp\left( \left(\mu - \frac{\sigma^2}{2} \right)t + \sigma W_t\right).</math>
व्युत्पत्ति के लिए इटो कैलकुलस के उपयोग की आवश्यकता होती है। इटो के सूत्र को लागू करने से होता है
व्युत्पत्ति के लिए [[इटो कैलकुलस]] के उपयोग की आवश्यकता होती है। [[इटो के सूत्र]] को लागू करने से होता है


: <math>d(\ln S_t) =  (\ln S_t)'  d S_t + \frac{1}{2} (\ln S_t)'' \,dS_t \,dS_t
: <math>d(\ln S_t) =  (\ln S_t)'  d S_t + \frac{1}{2} (\ln S_t)'' \,dS_t \,dS_t
Line 45: Line 45:
== GBM के गुणधर्म ==
== GBM के गुणधर्म ==


उपरोक्त हल <math> S_t </math> (t के किसी भी मान के लिए) एक लॉग-सामान्य रूप से वितरित यादृच्छिक चर [[अपेक्षित मूल्य|अपेक्षित मान]] और [[भिन्नता]] द्वारा दिया गया है<ref>{{Citation
उपरोक्त हल <math> S_t </math> (t के किसी भी मान के लिए) एक [[लॉग-सामान्य रूप से वितरित यादृच्छिक चर]] [[अपेक्षित मूल्य|अपेक्षित मान]] और [[भिन्नता]] द्वारा दिया गया है<ref>{{Citation
  | title = Stochastic Differential Equations: An Introduction with Applications
  | title = Stochastic Differential Equations: An Introduction with Applications
  |publisher=Springer
  |publisher=Springer
Line 55: Line 55:
:<math>\operatorname{E}(S_t)= S_0e^{\mu  t},</math>
:<math>\operatorname{E}(S_t)= S_0e^{\mu  t},</math>
:<math>\operatorname{Var}(S_t)= S_0^2e^{2\mu t} \left( e^{\sigma^2 t}-1\right).</math>
:<math>\operatorname{Var}(S_t)= S_0^2e^{2\mu t} \left( e^{\sigma^2 t}-1\right).</math>
उन्हें इस तथ्य का उपयोग करके प्राप्त किया जा सकता है कि <math> Z_t = \exp\left(\sigma W_t - \frac{1}{2}\sigma^2 t\right) </math> एक मार्टिंगेल (संभाव्यता सिद्धांत) है, और वह
उन्हें इस तथ्य का उपयोग करके प्राप्त किया जा सकता है कि <math> Z_t = \exp\left(\sigma W_t - \frac{1}{2}\sigma^2 t\right) </math> एक [[मार्टिंगेल (संभाव्यता सिद्धांत)]] है, और वह


:<math> \operatorname{E}\left[ \exp\left(2\sigma W_t - \sigma^2 t\right) \mid \mathcal{F}_s\right] = e^{\sigma^2(t - s)} \exp\left(2\sigma W_s - \sigma^2 s\right),\quad \forall 0 \leq s < t. </math>
:<math> \operatorname{E}\left[ \exp\left(2\sigma W_t - \sigma^2 t\right) \mid \mathcal{F}_s\right] = e^{\sigma^2(t - s)} \exp\left(2\sigma W_s - \sigma^2 s\right),\quad \forall 0 \leq s < t. </math>
कीसंभाव्यता घनत्व फ़ंक्शन<math> S_t </math> है:
की संभाव्यता घनत्व फ़ंक्शन <math> S_t </math> है:
: <math>f_{S_t}(s; \mu, \sigma, t) = \frac{1}{\sqrt{2 \pi}}\, \frac{1}{s \sigma \sqrt{t}}\, \exp \left( -\frac{ \left( \ln s - \ln S_0 - \left( \mu - \frac{1}{2} \sigma^2 \right) t \right)^2}{2\sigma^2 t} \right).</math>
: <math>f_{S_t}(s; \mu, \sigma, t) = \frac{1}{\sqrt{2 \pi}}\, \frac{1}{s \sigma \sqrt{t}}\, \exp \left( -\frac{ \left( \ln s - \ln S_0 - \left( \mu - \frac{1}{2} \sigma^2 \right) t \right)^2}{2\sigma^2 t} \right).</math>
{{Collapse top|title=Derivation of GBM probability density function}}
{{Collapse top|title=Derivation of GBM probability density function}}
Line 85: Line 85:
{{Collapse bottom}}
{{Collapse bottom}}


GBM के और गुणों को प्राप्त करते समय, SDE का उपयोग किया जा सकता है जिसका GBM समाधान है, या ऊपर दिए गए स्पष्ट समाधान का उपयोग किया जा सकता है। उदाहरण के लिए, प्रसंभाव्य प्रक्रिया <math>log(S_t)</math> पर विचार करें। यह एक दिलचस्प प्रक्रिया है, क्योंकि ब्लैक-स्कोल्स मॉडल में यह शेयर मूल्य के [[लॉग वापसी]] से संबंधित है। f(S) = log(S) के साथ इटो के लेम्मा का उपयोग करना देता है
GBM के और गुणों को प्राप्त करते समय, SDE का उपयोग किया जा सकता है जिसका GBM समाधान है, या ऊपर दिए गए स्पष्ट समाधान का उपयोग किया जा सकता है। उदाहरण के लिए, प्रसंभाव्य प्रक्रिया <math>log(S_t)</math> पर विचार करें। यह एक दिलचस्प प्रक्रिया है, क्योंकि ब्लैक-स्कोल्स मॉडल में यह शेयर मूल्य के [[लॉग वापसी]] से संबंधित है। f(S) = log(S) के साथ [[इटो के लेम्मा]] का उपयोग देता है
:<math>
:<math>
\begin{alignat}{2}
\begin{alignat}{2}
Line 135: Line 135:
plt.show()
plt.show()
</syntaxhighlight>
</syntaxhighlight>
== बहुभिन्नरूपी संस्करण ==
== बहुभिन्नरूपी संस्करण ==
{{Unreferenced section|date=August 2017}}
{{Unreferenced section|date=August 2017}}
Line 166: Line 164:


हालाँकि, GBM पूरी तरह से यथार्थवादी मॉडल नहीं है, विशेष रूप से यह निम्नलिखित बिंदुओं में वास्तविकता से कम है:
हालाँकि, GBM पूरी तरह से यथार्थवादी मॉडल नहीं है, विशेष रूप से यह निम्नलिखित बिंदुओं में वास्तविकता से कम है:
*वास्तविक  शेयर कीमतों में, समय के साथ अस्थिरता में परिवर्तन होता है (संभवतः प्रसंभाव्यता), लेकिन GBM में, अस्थिरता को स्थिर माना जाता है।
*वास्तविक  शेयर कीमतों में, समय के साथ अस्थिरता में परिवर्तन होता है (संभवतः [[प्रसंभाव्यता]]), लेकिन GBM में, अस्थिरता को स्थिर माना जाता है।
*वास्तविक जीवन में, शेयर की कीमतें अक्सर अप्रत्याशित घटनाओं या समाचारों के कारण उछाल दिखाती हैं, लेकिन GBM में, पथ निरंतर (कोई अनिरंतरता नहीं) है।
*वास्तविक जीवन में, शेयर की कीमतें अक्सर अप्रत्याशित घटनाओं या समाचारों के कारण उछाल दिखाती हैं, लेकिन GBM में, पथ निरंतर (कोई अनिरंतरता नहीं) है।


शेयर कीमतों की मॉडलिंग के अलावा, ज्यामितीय ब्राउनियन गति ने व्यापारिक रणनीतियों की निगरानी में भी उपयोग पाया है।<ref>{{cite journal |last1=Rej |first1=A. |last2=Seager |first2=P. |last3=Bouchaud |first3=J.-P. |title=You are in a drawdown. When should you start worrying? |journal=Wilmott |date=January 2018 |volume=2018 |issue=93 |pages=56–59 |doi=10.1002/wilm.10646 |arxiv=1707.01457 |s2cid=157827746 |url=https://onlinelibrary.wiley.com/doi/abs/10.1002/wilm.10646}}</ref>
शेयर कीमतों की मॉडलिंग के अलावा,ज्यामितीय ब्राउनियन गति ने व्यापारिक रणनीतियों की निगरानी में भी उपयोग पाया है।<ref>{{cite journal |last1=Rej |first1=A. |last2=Seager |first2=P. |last3=Bouchaud |first3=J.-P. |title=You are in a drawdown. When should you start worrying? |journal=Wilmott |date=January 2018 |volume=2018 |issue=93 |pages=56–59 |doi=10.1002/wilm.10646 |arxiv=1707.01457 |s2cid=157827746 |url=https://onlinelibrary.wiley.com/doi/abs/10.1002/wilm.10646}}</ref>
== विस्तार ==
== विस्तार ==
GBM को शेयर की कीमतों के लिए एक मॉडल के रूप में अधिक यथार्थवादी बनाने के प्रयास में, कोई इस धारणा को छोड़ सकता है कि अस्थिरता (<math>\sigma</math>) स्थिर है। यदि हम मानते हैं कि अस्थिरता शेयर की कीमत और समय का एक [[निश्चयात्मक]] कार्य है, तो इसे [[स्थानीय अस्थिरता]] मॉडल कहा जाता है।
GBM को शेयर की कीमतों के लिए एक मॉडल के रूप में अधिक यथार्थवादी बनाने के प्रयास में, [[अस्थिरता मुस्कान]] समस्या के संबंध में भी,कोई इस धारणा को छोड़ सकता है कि अस्थिरता (<math>\sigma</math>) स्थिर है।यदि हम मानते हैं कि अस्थिरता शेयर की कीमत और समय का एक [[निश्चयात्मक]] कार्य है, तो इसे [[स्थानीय अस्थिरता]] मॉडल कहा जाता है।ब्लैक स्कोल्स का स्पष्ट विस्तार GBM एक स्थानीय अस्थिरता वाला SDE है,जिसका वितरण GBM के वितरणों का मिश्रण है,जो कि लॉग-सामान्य मिश्रण की गतिशीलता है,जिसके परिणामस्वरूप विकल्पों के लिए ब्लैक स्कोल्स की कीमतों का एक उत्तल संयोजन होता है।यदि इसके बजाय हम मानते हैं कि अस्थिरता की अपनी यादृच्छिकता होती है - जिसे अक्सर एक अलग ब्राउनियन गति द्वारा संचालित एक अलग समीकरण द्वारा वर्णित किया जाता है - मॉडल को [[प्रसंभाव्य अस्थिरता]] मॉडल कहा जाता है।उदाहरण के लिए [[हेस्टन मॉडल]] देखें।
 
स्थानीय अस्थिरता
 
यदि इसके बजाय हम मानते हैं कि अस्थिरता की अपनी यादृच्छिकता होती है - जिसे अक्सर एक अलग ब्राउनियन मोशन द्वारा संचालित एक अलग समीकरण द्वारा वर्णित किया जाता है - मॉडल को स्टोकेस्टिक अस्थिरता मॉडल कहा जाता है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 21:58, 24 June 2023

प्राप्ति उत्पन्न करने वाले अनुकरण के लिए, नीचे देखें।

ज्यामितीय ब्राउनियन गति (GBM) (जिसे घातांकी ब्राउनियन गति के रूप में भी जाना जाता है) एक सतत-समय प्रसंभाव्य प्रक्रिया है जिसमें यादृच्छिक रूप से भिन्न मात्रा का लघुगणक बहाव के साथ एक ब्राउनियन गति (जिसे वीनर प्रक्रिया भी कहा जाता है) का अनुसरण करता है।[1]यह प्रसंभाव्य प्रक्रियाओं का एक महत्वपूर्ण उदाहरण है जो एक प्रसंभाव्य अवकलन समीकरण (SDE) को संतुष्ट करता है, विशिष्टतया, इसका उपयोग ब्लैक स्कोल्स मॉडल में शेयर कीमतों के मॉडल के लिए गणितीय वित्त में किया जाता है।

तकनीकी परिभाषा: एस डी ई(SDE)

एक प्रसंभाव्य प्रक्रिया St को GBM का पालन करने के लिए कहा जाता है यदि यह निम्नलिखित प्रसंभाव्य अवकलन समीकरण (SDE) को संतुष्ट करता है:

जहाँ एक वीनर प्रक्रिया या ब्राउनियन गति है, और ('प्रतिशत बहाव') और ('प्रतिशत अस्थिरता') स्थिरांक हैं।

पूर्व मापदण्ड का उपयोग नियतात्मक रुझानों के मॉडल के लिए किया जाता है, जबकि अनुवर्ती मापदण्ड गति के दौरान होने वाली अप्रत्याशित घटनाओं का मॉडल होता है।

एस डी ई (SDE) को हल करना

एक यादृच्छिक प्रारंभिक मान के लिए S0 उपरोक्त में एसडीई विश्लेषणात्मक समाधान है (इटो स्पष्टीकरण के तहत):

व्युत्पत्ति के लिए इटो कैलकुलस के उपयोग की आवश्यकता होती है। इटो के सूत्र को लागू करने से होता है

जहाँ SDE का द्विघात रूपांतर है।

जब , ,की तुलना में तेजी से 0 में परिवर्तित हो जाता है,

तब से . तो उपरोक्त अतिसूक्ष्म राशि द्वारा सरलीकृत किया जा सकता है

उपरोक्त समीकरण में के मान को अवरुद्ध करके और सरलीकरण करके हम प्राप्त करते हैं

घातांकी लेना और दोनों पक्षों को से गुणा करना जैसा कि उपरोक्त हल से पता चलता है।

अंकगणितीय ब्राउनियन गति

के लिए प्रक्रिया,SDE को संतुष्ट करने के लिए

,

या अधिक सामान्यतः SDE को हल करने की प्रक्रिया

,

जहाँ m और वास्तविक स्थिरांक हैं और एक प्रारंभिक स्थिति के लिए अंकगणितीय ब्राउनियन गति (ABM) कहलाता है। 1900 में शेयर कीमतों के लिए लुई बैचलर द्वारा सिद्ध माना हुआ मॉडल था,पहला प्रकाशित प्रयास मॉडल ब्राउनियन गति  के लिए,जिसे आज बैचलर मॉडल के रूप में जाना जाता है।जैसा कि ऊपर दिखाया गया है, ABM SDE को एक GBMके लघुगणक के माध्यम से प्राप्त किया जा सकता है इटो के सूत्र द्वारा। इसी तरह, इटो के सूत्र द्वारा एक GBM को एक ABM के घातांकीकरण द्वारा प्राप्त किया जा सकता है।

GBM के गुणधर्म

उपरोक्त हल (t के किसी भी मान के लिए) एक लॉग-सामान्य रूप से वितरित यादृच्छिक चर अपेक्षित मान और भिन्नता द्वारा दिया गया है[2]

उन्हें इस तथ्य का उपयोग करके प्राप्त किया जा सकता है कि एक मार्टिंगेल (संभाव्यता सिद्धांत) है, और वह

की संभाव्यता घनत्व फ़ंक्शन है:

style="background: #F0F2F5; font-size:87%; padding:0.2em 0.3em; text-align:center; " |
Derivation of GBM probability density function

GBM के प्रायिकता घनत्व फ़ंक्शन को प्राप्त करने के लिए, हमें PDF के समय विकास का मूल्यांकन करने के लिए फोकर-प्लैंक समीकरण का उपयोग करना चाहिए:

कहाँ डिराक डेल्टा समारोह है। संगणना को सरल बनाने के लिए, हम एक लघुगणक परिवर्तन प्रस्तुत कर सकते हैं , GBM के रूप में अग्रणी:

तब पीडीएफ के विकास के लिए समतुल्य फोकर-प्लैंक समीकरण बन जाता है:

परिभाषित करना और . नए चरों को पेश करके और , फोकर-प्लैंक समीकरण में डेरिवेटिव को इस रूप में रूपांतरित किया जा सकता है:

फोकर-प्लैंक समीकरण के नए रूप की ओर अग्रसर:

हालाँकि, यह ऊष्मा समीकरण का विहित रूप है। जिसमें ऊष्मा गिरी द्वारा दिया गया घोल है:

मूल चरों को जोड़ने से GBM के लिए PDF प्राप्त होता है:

GBM के और गुणों को प्राप्त करते समय, SDE का उपयोग किया जा सकता है जिसका GBM समाधान है, या ऊपर दिए गए स्पष्ट समाधान का उपयोग किया जा सकता है। उदाहरण के लिए, प्रसंभाव्य प्रक्रिया पर विचार करें। यह एक दिलचस्प प्रक्रिया है, क्योंकि ब्लैक-स्कोल्स मॉडल में यह शेयर मूल्य के लॉग वापसी से संबंधित है। f(S) = log(S) के साथ इटो के लेम्मा का उपयोग देता है

यह इस प्रकार है कि .

यह परिणाम GBM के स्पष्ट समाधान के लघुगणक को लागू करके भी प्राप्त किया जा सकता है:

अपेक्षा रखने से उपरोक्त जैसा ही परिणाम मिलता है: .

नमूना पथों का अनुकरण

# Python code for the plot

import numpy as np
import matplotlib.pyplot as plt

mu = 1
n = 50
dt = 0.1
x0 = 100
np.random.seed(1)

sigma = np.arange(0.8, 2, 0.2)

x = np.exp(
    (mu - sigma ** 2 / 2) * dt
    + sigma * np.random.normal(0, np.sqrt(dt), size=(len(sigma), n)).T
)
x = np.vstack([np.ones(len(sigma)), x])
x = x0 * x.cumprod(axis=0)

plt.plot(x)
plt.legend(np.round(sigma, 2))
plt.xlabel("$t$")
plt.ylabel("$x$")
plt.title(
    "Realizations of Geometric Brownian Motion with different variances\n $\mu=1$"
)
plt.show()

बहुभिन्नरूपी संस्करण

GBM को उस मामले में बढ़ाया जा सकता है जहां कई सहसंबद्ध कीमत के पथ हैं।

प्रत्येक कीमत पथ अंतर्निहित प्रक्रिया का अनुसरण करता है

जहां वीनर प्रक्रियाएं सहसंबद्ध इस प्रकार है कि हैं जहां .

बहुभिन्नरूपी मामले के लिए, इसका तात्पर्य है

एक बहुभिन्नरूपी सूत्रीकरण जो स्वतंत्र ड्राइविंग ब्राउनियन गति को बनाए रखता है

जहां और के बीच के संबंध को अब शब्द के रूप में व्‍यक्‍त किया गया है।

वित्त में उपयोग

ब्लैक-स्कोल्स मॉडल में शेयर की कीमतों को मॉडल करने के लिए ज्यामितीय ब्राउनियन गति का उपयोग किया जाता है और यह शेयर कीमत व्यवहार का सबसे व्यापक रूप से उपयोग किया जाने वाला मॉडल है।[3]

मॉडल शेयर की कीमतों के लिए GBM का उपयोग करने के कुछ तर्क हैं:

  • GBM का अपेक्षित प्रतिफल प्रक्रिया के मूल्य ( शेयर मूल्य) से स्वतंत्र है, जो वास्तविकता में हमारी अपेक्षा से सहमत है।[3]
  • GBM प्रक्रिया वास्तविक शेयर कीमतों की तरह ही केवल सकारात्मक मान ही लेती है।
  • GBM प्रक्रिया अपने पथों में उसी तरह की 'असमतलता' दिखाती है जैसा कि हम वास्तविक शेयर कीमतों में देखते हैं।
  • GBM प्रक्रियाओं के साथ गणना करना अपेक्षाकृत आसान है।

हालाँकि, GBM पूरी तरह से यथार्थवादी मॉडल नहीं है, विशेष रूप से यह निम्नलिखित बिंदुओं में वास्तविकता से कम है:

  • वास्तविक शेयर कीमतों में, समय के साथ अस्थिरता में परिवर्तन होता है (संभवतः प्रसंभाव्यता), लेकिन GBM में, अस्थिरता को स्थिर माना जाता है।
  • वास्तविक जीवन में, शेयर की कीमतें अक्सर अप्रत्याशित घटनाओं या समाचारों के कारण उछाल दिखाती हैं, लेकिन GBM में, पथ निरंतर (कोई अनिरंतरता नहीं) है।

शेयर कीमतों की मॉडलिंग के अलावा,ज्यामितीय ब्राउनियन गति ने व्यापारिक रणनीतियों की निगरानी में भी उपयोग पाया है।[4]

विस्तार

GBM को शेयर की कीमतों के लिए एक मॉडल के रूप में अधिक यथार्थवादी बनाने के प्रयास में, अस्थिरता मुस्कान समस्या के संबंध में भी,कोई इस धारणा को छोड़ सकता है कि अस्थिरता () स्थिर है।यदि हम मानते हैं कि अस्थिरता शेयर की कीमत और समय का एक निश्चयात्मक कार्य है, तो इसे स्थानीय अस्थिरता मॉडल कहा जाता है।ब्लैक स्कोल्स का स्पष्ट विस्तार GBM एक स्थानीय अस्थिरता वाला SDE है,जिसका वितरण GBM के वितरणों का मिश्रण है,जो कि लॉग-सामान्य मिश्रण की गतिशीलता है,जिसके परिणामस्वरूप विकल्पों के लिए ब्लैक स्कोल्स की कीमतों का एक उत्तल संयोजन होता है।यदि इसके बजाय हम मानते हैं कि अस्थिरता की अपनी यादृच्छिकता होती है - जिसे अक्सर एक अलग ब्राउनियन गति द्वारा संचालित एक अलग समीकरण द्वारा वर्णित किया जाता है - मॉडल को प्रसंभाव्य अस्थिरता मॉडल कहा जाता है।उदाहरण के लिए हेस्टन मॉडल देखें।

यह भी देखें

  • भूरी सतह

संदर्भ

  1. Ross, Sheldon M. (2014). "Variations on Brownian Motion". संभाव्यता मॉडल का परिचय (11th ed.). Amsterdam: Elsevier. pp. 612–14. ISBN 978-0-12-407948-9.
  2. Øksendal, Bernt K. (2002), Stochastic Differential Equations: An Introduction with Applications, Springer, p. 326, ISBN 3-540-63720-6
  3. 3.0 3.1 Hull, John (2009). "12.3". विकल्प, वायदा और अन्य डेरिवेटिव (7 ed.).
  4. Rej, A.; Seager, P.; Bouchaud, J.-P. (January 2018). "You are in a drawdown. When should you start worrying?". Wilmott. 2018 (93): 56–59. arXiv:1707.01457. doi:10.1002/wilm.10646. S2CID 157827746.


बाहरी संबंध