फलनिक समीकरण: Difference between revisions

From Vigyanwiki
Line 25: Line 25:
*<math>f(h(x)) = h'(x)f(x)\,\!</math> (जूलिया का समीकरण)।
*<math>f(h(x)) = h'(x)f(x)\,\!</math> (जूलिया का समीकरण)।
*<math>f(xy) = \sum g_l(x) h_l(y)\,\!</math> (लेवी-सिविटा),
*<math>f(xy) = \sum g_l(x) h_l(y)\,\!</math> (लेवी-सिविटा),
*<math>f(x+y) = f(x)g(y)+f(y)g(x)\,\!</math> (त्रिकोणमितीय पहचानों की सूची # कोण योग और अंतर पहचान और [[अतिशयोक्तिपूर्ण कार्य]]),
*<math>f(x+y) = f(x)g(y)+f(y)g(x)\,\!</math> (साइन योगात्मक सूत्र और [[अतिशयोक्तिपूर्ण कार्य|अतिपरवलीय]] साइन योगात्मक सूत्र),
*<math>g(x+y) = g(x)g(y)-f(y)f(x)\,\!</math> (त्रिकोणमितीय सर्वसमिकाओं की सूची#कोण योग और अंतर सर्वसमिका),
*<math>g(x+y) = g(x)g(y)-f(y)f(x)\,\!</math> (कोसाइन योगात्मक सूत्र)
*<math>g(x+y) = g(x)g(y)+f(y)f(x)\,\!</math> (अतिशयोक्तिपूर्ण कार्य)।
*<math>g(x+y) = g(x)g(y)+f(y)f(x)\,\!</math> ([[अतिशयोक्तिपूर्ण कार्य|अतिपरवलीय]] कोसाइन योगात्मक सूत्र)।
*[[विनिमेय कानून]] और साहचर्य कानून कार्यात्मक समीकरण हैं। अपने परिचित रूप में, साहचर्य कानून को [[इंफिक्स नोटेशन]] में [[बाइनरी ऑपरेशन]] लिखकर व्यक्त किया जाता है, <math display="block">(a \circ b) \circ c = a \circ (b \circ c)~,</math> लेकिन अगर हम इसके बजाय f(a,-b) लिखते हैं {{math|''a'' ○ ''b''}} तो साहचर्य कानून एक पारंपरिक कार्यात्मक समीकरण की तरह अधिक दिखता है, <math display="block">f(f(a, b),c) = f(a, f(b, c)).\,\!</math>
*[[विनिमेय कानून]] और साहचर्य कानून कार्यात्मक समीकरण हैं। अपने परिचित रूप में, साहचर्य कानून को [[इंफिक्स नोटेशन]] में [[बाइनरी ऑपरेशन]] लिखकर व्यक्त किया जाता है, <math display="block">(a \circ b) \circ c = a \circ (b \circ c)~,</math> लेकिन अगर हम इसके बजाय f(a,-b) लिखते हैं {{math|''a'' ○ ''b''}} तो साहचर्य कानून एक पारंपरिक कार्यात्मक समीकरण की तरह अधिक दिखता है, <math display="block">f(f(a, b),c) = f(a, f(b, c)).\,\!</math>
* कार्यात्मक समीकरण <math display="block">
* कार्यात्मक समीकरण <math display="block">

Revision as of 20:10, 24 June 2023

गणित में, एक कार्यात्मक समीकरण [1][2][irrelevant citation] व्यापक अर्थ में, एक समीकरण है जिसमें एक या कई कार्य अज्ञात (गणित) के रूप में प्रकट होते हैं। इसलिए, अवकल समीकरण और समाकल समीकरण फलन समीकरण हैं। हालांकि, एक अधिक प्रतिबंधित अर्थ का अक्सर उपयोग किया जाता है, जहां एक कार्यात्मक समीकरण एक समीकरण होता है जो एक ही फ़ंक्शन के कई मानों से संबंधित होता है। उदाहरण के लिए, लघुगणक फलन हैं लघुगणक#लक्षण लघुगणक क्रियात्मक समीकरण द्वारा उत्पाद सूत्र द्वारा अभिलक्षणन यदि अज्ञात फ़ंक्शन के फ़ंक्शन का डोमेन प्राकृतिक संख्या माना जाता है, तो फ़ंक्शन को आम तौर पर अनुक्रम (गणित) के रूप में देखा जाता है, और, इस मामले में, एक कार्यात्मक समीकरण (संकीर्ण अर्थ में) को पुनरावृत्ति संबंध कहा जाता है . इस प्रकार कार्यात्मक समीकरण शब्द का प्रयोग मुख्य रूप से वास्तविक कार्यों और जटिल कार्यों के लिए किया जाता है। इसके अलावा, समाधान के लिए अक्सर एक सहज कार्य माना जाता है, क्योंकि ऐसी स्थिति के बिना, अधिकांश कार्यात्मक समीकरणों में बहुत अनियमित समाधान होते हैं। उदाहरण के लिए, गामा फलन एक ऐसा फलन है जो फलनात्मक समीकरण को संतुष्ट करता है और प्रारंभिक मूल्य ऐसे कई कार्य हैं जो इन शर्तों को पूरा करते हैं, लेकिन गामा फ़ंक्शन अद्वितीय है जो पूरे जटिल विमान में मेरोमॉर्फिक फ़ंक्शन है, और लघुगणकीय रूप से उत्तल कार्य करता है x वास्तविक और धनात्मक (बोहर-मोलरुप प्रमेय)।

उदाहरण

  • पुनरावृत्ति संबंधों को पूर्णांकों या प्राकृतिक संख्याओं पर कार्यों में कार्यात्मक समीकरणों के रूप में देखा जा सकता है, जिसमें शब्दों के सूचकांक के बीच के अंतर को शिफ्ट ऑपरेटर के अनुप्रयोग के रूप में देखा जा सकता है। उदाहरण के लिए, फाइबोनैचि संख्याओं को परिभाषित करने वाला पुनरावर्तन संबंध, , कहाँ पे तथा
  • , जो आवधिक कार्यों की विशेषता प्रदर्शित करता है
  • , जो सम फलनों की विशेषता प्रदर्शित करता है और इसी प्रकार से जो विषम फलनों की विशेषता प्रदर्शित करता है
  • (कॉची का फलनात्मक समीकरण) रेखीय मानचित्रों से संतुष्ट होता है। चयन सिद्धांत के आधार पर समीकरण में अन्य तर्कहीन अरैखिक हल भी हो सकते हैं, जिनका अस्तित्व वास्तविक संख्याओं के लिए हेमल आधार से सिद्ध किया जा सकता है।
  • सभी घातांकीय फलनों से संतुष्ट है। कॉची के योज्य फलनात्मक समीकरण के समान इसमें भी तर्कहीन असंतत हल हो सकते हैं।
  • , सभी लघुगणक फलन और सहअभाज्य पूर्णांक तर्कों, योगात्मक फलनों से संतुष्ट है।
  • , सभी घातीय फलनों और सहअभाज्य पूर्णांक तर्कों, गुणात्मक फलनों से संतुष्ट है।
  • (द्विघात समीकरण या समांतर चतुर्भुज नियम)
  • (जेन्सेन का फलनिक समीकरण)
  • (डी'अलेम्बर्ट का फलनिक समीकरण)
  • (हाबिल समीकरण)
  • (श्रोडर का समीकरण)।
  • (बॉटर का समीकरण)।
  • (जूलिया का समीकरण)।
  • (लेवी-सिविटा),
  • (साइन योगात्मक सूत्र और अतिपरवलीय साइन योगात्मक सूत्र),
  • (कोसाइन योगात्मक सूत्र)
  • (अतिपरवलीय कोसाइन योगात्मक सूत्र)।
  • विनिमेय कानून और साहचर्य कानून कार्यात्मक समीकरण हैं। अपने परिचित रूप में, साहचर्य कानून को इंफिक्स नोटेशन में बाइनरी ऑपरेशन लिखकर व्यक्त किया जाता है,
    लेकिन अगर हम इसके बजाय f(a,-b) लिखते हैं ab तो साहचर्य कानून एक पारंपरिक कार्यात्मक समीकरण की तरह अधिक दिखता है,
  • कार्यात्मक समीकरण
    रीमैन जीटा फ़ंक्शन से संतुष्ट है।[citation needed] राजधानी Γ गामा समारोह को दर्शाता है।
  • गामा फलन निम्नलिखित तीन समीकरणों की प्रणाली का अनूठा हल है:[citation needed]
    •           (लियोनहार्ड यूलर|यूलर का परावर्तन सूत्र)
  • कार्यात्मक समीकरण
    कहाँ पे a, b, c, d पूर्णांक संतोषजनक हैं , अर्थात। = 1, परिभाषित करता है f आदेश का एक मॉड्यूलर रूप होना k.

एक विशेषता यह है कि ऊपर सूचीबद्ध सभी उदाहरण[clarification needed] आम में हिस्सा यह है कि, प्रत्येक मामले में, दो या दो से अधिक ज्ञात कार्य (कभी-कभी एक स्थिरांक से गुणा, कभी-कभी दो चर के जोड़, कभी-कभी पहचान कार्य) अज्ञात कार्यों के तर्क के अंदर होते हैं जिन्हें हल किया जाना है।[citation needed] जब सभी समाधान पूछने की बात आती है, तो हो सकता है कि गणितीय विश्लेषण की शर्तों को लागू किया जाए; उदाहरण के लिए, ऊपर वर्णित कॉची समीकरण के मामले में, जो समाधान निरंतर कार्य हैं वे 'उचित' हैं, जबकि अन्य समाधान जिनके व्यावहारिक अनुप्रयोग होने की संभावना नहीं है, का निर्माण किया जा सकता है (वास्तविक संख्याओं के लिए हैमल आधार का उपयोग करके) परिमेय संख्याओं पर सदिश स्थान के रूप में)। बोह्र-मोलेरुप प्रमेय एक और प्रसिद्ध उदाहरण है।

अंतर्वलन

अंतर्वलन (गणित) को कार्यात्मक समीकरण द्वारा दर्शाया गया है। ये बैबेज के कार्यात्मक समीकरण (वर्ष 1820) में दिखाई देते हैं,[3]

समीकरण के अन्य अंतर्वलन और समाधान सम्मिलित हैं

  • तथा

जिसमें पूर्ववर्ती तीन को विशेष स्थितियों या सीमाओं के रूप में सम्मिलित किया गया है।

समाधान

प्रारंभिक कार्यात्मक समीकरणों को हल करने की एक विधि प्रतिस्थापन है।[citation needed]

कार्यात्मक समीकरणों के कुछ समाधानों ने प्रक्षेप्यता, अंतःक्षेपण, विचित्रता और समता का उपयोग किया है।[citation needed]

कुछ प्रकार्यात्मक समीकरणों को गणितीय प्रेरण तथा एन्सैटेज़ के प्रयोग से हल किया गया है।[citation needed]

कार्यात्मक समीकरणों के कुछ वर्गों को कंप्यूटर-सहायता प्राप्त तकनीकों द्वारा हल किया जा सकता है।[vague][4]

गतिक क्रमादेशन में बेलमैन के कार्यात्मक समीकरण को हल करने के लिए विभिन्न प्रकार की क्रमिक सन्निकटन विधियों[5][6] का उपयोग किया जाता है, जिसमें निश्चित बिंदु पुनरावृत्तियों पर आधारित विधियाँ भी सम्मिलित हैं।

यह भी देखें

टिप्पणियाँ

  1. Rassias, Themistocles M. (2000). कार्यात्मक समीकरण और असमानताएँ. 3300 AA Dordrecht, The Netherlands: Kluwer Academic Publishers. p. 335. ISBN 0-7923-6484-8.{{cite book}}: CS1 maint: location (link)
  2. Czerwik, Stephan (2002). Functional Equations and Inequalities in Several Variables. P O Box 128, Farrer Road, Singapore 912805: World Scientific Publishing Co. p. 410. ISBN 981-02-4837-7.{{cite book}}: CS1 maint: location (link)
  3. Ritt, J. F. (1916). "बैबेज के कार्यात्मक समीकरण के कुछ वास्तविक समाधानों पर". The Annals of Mathematics. 17 (3): 113–122. doi:10.2307/2007270. JSTOR 2007270.
  4. Házy, Attila (2004-03-01). "कंप्यूटर के साथ रैखिक दो चर कार्यात्मक समीकरणों को हल करना". Aequationes Mathematicae (in English). 67 (1): 47–62. doi:10.1007/s00010-003-2703-9. ISSN 1420-8903. S2CID 118563768.
  5. Bellman, R. (1957). Dynamic Programming, Princeton University Press.
  6. Sniedovich, M. (2010). Dynamic Programming: Foundations and Principles, Taylor & Francis.


संदर्भ


बाहरी संबंध