जल-में-जल पायस: Difference between revisions
m (Deepak moved page पानी में पानी का पायस to जल-में-जल पायस without leaving a redirect) |
No edit summary |
||
Line 1: | Line 1: | ||
'''जल-में-जल''' (डब्ल्यू/डब्ल्यू) पायस एक प्रणाली है जिसमें एक अन्य सतत जलीय घोल में जल-घुलनशील अणुओं की बूंदें होती हैं; बूंद और निरंतर चरण दोनों में अलग-अलग अणु होते हैं जो पूरी तरह से पानी में घुलनशील होते हैं।<ref>{{cite journal|author=B. T. Nguyen|author2=T. Nicolai|author3=L. Benyahia|name-list-style=amp|title=Stabilization of Water-in-Water Emulsions by Addition of Protein Particles|journal=Langmuir|date=2013|volume=23|issue=3|pages=1453–1458 |doi=10.1021/la402131e|pmid=23895275}}</ref> जैसे, जब अलग-अलग पानी में घुलनशील अणुओं वाले दो पूरी तरह से जलीय घोल को मिलाया जाता है, तो मुख्य रूप से एक घटक वाली पानी की बूंदें दूसरे घटक वाले पानी के घोल में फैल जाती हैं।<ref>{{cite journal|author=I. Capron|author2=S. Costeux|author3=M. Djabourov|name-list-style=amp|title=Water in Water Emulsions: Phase Separation and Rheology of Biopolymer Solutions|journal=Rheologica Acta|date=2001|volume=40|issue=5|pages=441–456|doi=10.1007/s003970100161}}</ref> हाल ही में, इस तरह के पानी-में-पानी पायस को विभिन्न प्रकार के गैर-उभयचर, लेकिन पानी में घुलनशील आणविक अंतःक्रियाओं को अलग करके सहसंयोजन से अस्तित्व और स्थिर होने के लिए प्रदर्शित किया गया था।<ref>{{cite journal|author=K. A. Simon|author2=P. Sejwal|author3=R. B. Gerecht|author4=Y.-Y. Luk|name-list-style=amp|title=Water-in-Water Emulsions Stabilized by Non-Amphiphilic Interactions: Polymer-Dispersed Lyotropic Liquid Crystals.|journal=Langmuir|date=2007|volume=40|issue=5|pages=441–456|doi=10.1021/la062203s}}</ref> इन आणविक इंटरैक्शन में हाइड्रोजन बॉन्डिंग, [[ पाई स्टैकिंग |पाई स्टैकिंग]] और नमक [[ सॉल्ट ब्रिज |सॉल्ट ब्रिज]] हैं। यह डब्ल्यू/डब्ल्यू पायस तब उत्पन्न होता है जब विभिन्न जल-संचालित आणविक कार्यात्मक समूहों को बहुलक और तरल क्रिस्टल अणुओं के जलीय मिश्रण में अलग कर दिया जाता है। | |||
[[Image:Disodium cromolyn glycate.png|150px|thumb|right|डिसोडियम क्रोमोलिन ग्लाइकेट, डीएससीजी की संरचना]]पानी में इस पायस में तरल क्रिस्टल होते हैं जो पानी में घुलने वाली बूंदों के रूप में निलंबित होते हैं। पायस का तरल क्रिस्टल घटक डिसोडियम क्रोमोलिन गैलेट (डीएससीजी) है। यह अणु एक एंटी-आस्थेटिक दवा है, लेकिन डीएससीजी की सांद्रता ~ 9-21 wt% होने पर एक विशेष प्रकार के तरल क्रिस्टल के रूप में भी मौजूद है। पारंपरिक लाइट्रोपिक तरल क्रिस्टल के विपरीत, जिसमें 5सीबी जैसे तैलीय अणु होते हैं, डीएससीजी अणु एम्फीहिलिक नहीं होते, बल्कि पूरी तरह से पानी में घुलनशील होते हैं। इस प्रकार, हाइड्रोफोबिक/हाइड्रोफिलिक समूहों के अलगाव को डीएससीजी पर लागू नहीं किया जा सकता है। पॉलिमर घोल डब्ल्यू/डब्ल्यू पायस के माध्यम या निरंतर चरण के रूप में कार्य करता है। जल में घुलनशील होने के अलावा, इस डब्ल्यू/डब्ल्यू पायस प्रणाली के उत्पादन के लिए एक महत्वपूर्ण मानदंड यह है कि पॉलिमर कार्यात्मक समूहों को सहन नहीं कर सकता है जो डीएससीजी के साथ मजबूती से बातचीत करते हैं। इस तरह, डीएससीजी के साथ मिश्रित होने पर आयनिक बहुलक डब्ल्यू/डब्ल्यू पायस का निर्माण नहीं करता है, बल्कि एक सजातीय घोल या एक अवक्षेप घोल उत्पन्न करता है। फलस्वरूप, ज्ञात पॉलिमर जो डब्ल्यू/डब्ल्यू पायस का वहन करते हैं, उनमें पॉलीएक्रिलिक एमाइड और पॉलीओल्स सम्मिलित हैं। आश्चर्यजनक रूप से, इनमें से कुछ जल-में-जल इमल्शन सहसंयोजन से 30 दिनों तक असाधारण रूप से स्थिर रह सकते हैं। क्योंकि लिक्विड क्रिस्टल के अणु आपस में एक पसंदीदा सामान्य अभिविन्यास ग्रहण करते हैं, एक बूंद में लिक्विड क्रिस्टल का समग्र अभिविन्यास केवल कुछ विन्यासों में ही स्थिर होता है (चित्र 3)। चूंकि पानी में घुलनशील बूंदें aw/w इमल्शन में होती हैं, DSCG अणु बूंद की सतह पर पसंदीदा दिशा में संरेखित होंगे। सिस्टम की समग्र ऊर्जा को कम करने के लिए, बूंदों में डीएससीजी अणु सतहों को छोड़ने के लिए समानांतर या लंबवत संरेखित करने की प्राथमिकता देते हैं। (चित्र 4ए,बी) | |||
[[Image:Disodium cromolyn glycate.png|150px|thumb|right|डिसोडियम क्रोमोलिन ग्लाइकेट, डीएससीजी की संरचना]]इस | |||
क्योंकि लिक्विड क्रिस्टल के अणु आपस में एक पसंदीदा सामान्य अभिविन्यास मानते हैं, एक छोटी बूंद में लिक्विड क्रिस्टल का समग्र अभिविन्यास केवल कुछ विन्यासों (चित्र 3) में स्थिर होता है। | |||
यह अणु एक दमा-रोधी दवा है, लेकिन एक विशेष प्रकार के लिक्विड क्रिस्टल के रूप में भी मौजूद होता है जब डीएससीजी की सांद्रता ~ 9-21 wt% होती है। पारंपरिक लियोट्रोपिक लिक्विड क्रिस्टल के विपरीत, जिसमें [[ 5CB | 5CB]] जैसे तैलीय अणु होते हैं, डीएससीजी अणु एम्फीफिलिक नहीं होते हैं, लेकिन पूरी तरह से पानी में घुलनशील होते हैं। इस प्रकार, [[ जल विरोधी | जल विरोधी]] /[[ हाइड्रोफिलिक | हाइड्रोफिलिक]] समूहों के पृथक्करण को डीएससीजी पर लागू नहीं किया जा सकता है। बहुलक घोल डब्ल्यू/डब्ल्यू पायस के मध्यम या निरंतर चरण के रूप में कार्य करता है। पानी में घुलनशील होने के अलावा, इस डब्ल्यू/डब्ल्यू पायस प्रणाली की पीढ़ी के लिए एक महत्वपूर्ण मानदंड यह है कि बहुलक कार्यात्मक समूहों को सहन नहीं कर सकता है जो डीएससीजी के साथ दृढ़ता से बातचीत करते हैं। इस प्रकार, आयनिक बहुलक जब डीएससीजी के साथ मिलाया जाता है तो डब्ल्यू/डब्ल्यू पायस नहीं बनाता है, लेकिन एक समांगी (रसायन विज्ञान) विलयन या अवक्षेपित विलयन देता है। फलस्वरूप, ज्ञात पॉलिमर जो डब्ल्यू/डब्ल्यू पायस वहन करते हैं उनमें पॉलीऐक्रेलिक एमाइड्स और पॉलीओल्स शामिल हैं। | |||
आश्चर्यजनक रूप से, इनमें से कुछ वाटर-इन-वाटर पायस असाधारण रूप से 30 दिनों तक कोलेसरेंस से स्थिर हो सकते हैं। | |||
क्योंकि लिक्विड क्रिस्टल के अणु आपस में एक पसंदीदा सामान्य अभिविन्यास मानते हैं, एक छोटी बूंद में लिक्विड क्रिस्टल का समग्र अभिविन्यास केवल कुछ विन्यासों (चित्र 3) में स्थिर होता है। डब्ल्यू/डब्ल्यू पायस में पानी की घुलनशील बूंदों के रूप में, डीएससीजी अणु छोटी बूंद की सतह पर एक पसंदीदा दिशा में संरेखित होंगे। प्रणाली की समग्र ऊर्जा को कम करने के लिए, छोटी बूंद में डीएससीजी अणु बूंदों की सतहों के समानांतर या लंबवत संरेखित करना पसंद करते हैं। (चित्र 4ए, बी)। | |||
[[Image:Ww1c.png|500px|right]]इस पानी में पानी के पायस की सह-अवधि से स्थिरता को तीन आणविक बलों के लिए जिम्मेदार ठहराया गया है: | [[Image:Ww1c.png|500px|right]]इस पानी में पानी के पायस की सह-अवधि से स्थिरता को तीन आणविक बलों के लिए जिम्मेदार ठहराया गया है: | ||
Line 8: | Line 12: | ||
[[Image:Wwf4a.png|500px|right]] | [[Image:Wwf4a.png|500px|right]] | ||
[[Image:Wwf4b.png|500px|right]]2. जैसे-जैसे छोटी बूंद का आकार बढ़ता है, छोटी बूंद के चरण के इंटरफेस पर आणविक बातचीत और निरंतर चरण बहुस्तरीय (रसायन विज्ञान) बातचीत के माध्यम से मजबूत हो जाते हैं। | [[Image:Wwf4b.png|500px|right]]2. जैसे-जैसे छोटी बूंद का आकार बढ़ता है, छोटी बूंद के चरण के इंटरफेस पर आणविक बातचीत और निरंतर चरण बहुस्तरीय (रसायन विज्ञान) बातचीत के माध्यम से मजबूत हो जाते हैं। डब्ल्यू/डब्ल्यू पायस में इंटरफेशियल आणविक इंटरैक्शन को मजबूत करने के परिणामस्वरूप बहुलक की एक परत बनती है जो छोटी बूंदों की सतह को कोट करती है जो परिणामस्वरूप बूंदों को एक साथ टकराने से रोकती है। | ||
3. इसके अलावा, यह भी प्रस्तावित है कि जब दो लिक्विड क्रिस्टल ड्रॉपलेट्स मर्ज (कोलेसेंस) होते हैं, तो दो विलय करने वाली बूंदों में लिक्विड क्रिस्टल अणुओं का ओरिएंटेशन एक दूसरे के लिए "अनुकूल" होना चाहिए, और इस प्रकार एक एनर्जी पेनल्टी लगती है जो रोकती है सहसंयोजन की घटना। | 3. इसके अलावा, यह भी प्रस्तावित है कि जब दो लिक्विड क्रिस्टल ड्रॉपलेट्स मर्ज (कोलेसेंस) होते हैं, तो दो विलय करने वाली बूंदों में लिक्विड क्रिस्टल अणुओं का ओरिएंटेशन एक दूसरे के लिए "अनुकूल" होना चाहिए, और इस प्रकार एक एनर्जी पेनल्टी लगती है जो रोकती है सहसंयोजन की घटना। | ||
यह | यह डब्ल्यू/डब्ल्यू पायस पॉलीमर डिस्प्रेस्ड लिक्विड क्रिस्टल (पीडीएलसी) के एक नए वर्ग का भी प्रतिनिधित्व करता है। परंपरागत रूप से ज्ञात पीडीएलसी में तेल-में-पानी पायस होता है जहां तेल की बूंद एक थर्मोट्रॉपिक तरल क्रिस्टल होती है जैसे कि 4-पेंटिल-4'-साइनोबिफेनिल (5सीबी), और पानी के चरण में कुछ बहुलक होते हैं। इसकी तुलना में, इस वाटर-इन-वाटर पायस में पॉलीमर-डिस्पर्स्ड [[ ल्योट्रोपिक ]] लिक्विड क्रिस्टल होते हैं, जहां लियोट्रोपिक लिक्विड क्रिस्टल पानी में घुलनशील डीएससीजी अणु होते हैं। पारंपरिक PDLCs ने स्विचेबल विंडो से लेकर प्रोजेक्शन डिस्प्ले तक, एप्लिकेशन पाया है। बहुलक-छितरी हुई लियोट्रोपिक तरल क्रिस्टल के पानी में पानी के पायस में प्रोटीन संरचना के साथ इसकी अनुकूलता के कारण अत्यधिक जैव-कार्यात्मक सामग्रियों के निर्माण की क्षमता है। | ||
अन्य ज्ञात प्रकार के वाटर-इन-वाटर | अन्य ज्ञात प्रकार के वाटर-इन-वाटर पायस में जलीय घोल में विभिन्न बायोपॉलिमर्स को अलग करना शामिल है। | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 23:36, 25 June 2023
जल-में-जल (डब्ल्यू/डब्ल्यू) पायस एक प्रणाली है जिसमें एक अन्य सतत जलीय घोल में जल-घुलनशील अणुओं की बूंदें होती हैं; बूंद और निरंतर चरण दोनों में अलग-अलग अणु होते हैं जो पूरी तरह से पानी में घुलनशील होते हैं।[1] जैसे, जब अलग-अलग पानी में घुलनशील अणुओं वाले दो पूरी तरह से जलीय घोल को मिलाया जाता है, तो मुख्य रूप से एक घटक वाली पानी की बूंदें दूसरे घटक वाले पानी के घोल में फैल जाती हैं।[2] हाल ही में, इस तरह के पानी-में-पानी पायस को विभिन्न प्रकार के गैर-उभयचर, लेकिन पानी में घुलनशील आणविक अंतःक्रियाओं को अलग करके सहसंयोजन से अस्तित्व और स्थिर होने के लिए प्रदर्शित किया गया था।[3] इन आणविक इंटरैक्शन में हाइड्रोजन बॉन्डिंग, पाई स्टैकिंग और नमक सॉल्ट ब्रिज हैं। यह डब्ल्यू/डब्ल्यू पायस तब उत्पन्न होता है जब विभिन्न जल-संचालित आणविक कार्यात्मक समूहों को बहुलक और तरल क्रिस्टल अणुओं के जलीय मिश्रण में अलग कर दिया जाता है।
पानी में इस पायस में तरल क्रिस्टल होते हैं जो पानी में घुलने वाली बूंदों के रूप में निलंबित होते हैं। पायस का तरल क्रिस्टल घटक डिसोडियम क्रोमोलिन गैलेट (डीएससीजी) है। यह अणु एक एंटी-आस्थेटिक दवा है, लेकिन डीएससीजी की सांद्रता ~ 9-21 wt% होने पर एक विशेष प्रकार के तरल क्रिस्टल के रूप में भी मौजूद है। पारंपरिक लाइट्रोपिक तरल क्रिस्टल के विपरीत, जिसमें 5सीबी जैसे तैलीय अणु होते हैं, डीएससीजी अणु एम्फीहिलिक नहीं होते, बल्कि पूरी तरह से पानी में घुलनशील होते हैं। इस प्रकार, हाइड्रोफोबिक/हाइड्रोफिलिक समूहों के अलगाव को डीएससीजी पर लागू नहीं किया जा सकता है। पॉलिमर घोल डब्ल्यू/डब्ल्यू पायस के माध्यम या निरंतर चरण के रूप में कार्य करता है। जल में घुलनशील होने के अलावा, इस डब्ल्यू/डब्ल्यू पायस प्रणाली के उत्पादन के लिए एक महत्वपूर्ण मानदंड यह है कि पॉलिमर कार्यात्मक समूहों को सहन नहीं कर सकता है जो डीएससीजी के साथ मजबूती से बातचीत करते हैं। इस तरह, डीएससीजी के साथ मिश्रित होने पर आयनिक बहुलक डब्ल्यू/डब्ल्यू पायस का निर्माण नहीं करता है, बल्कि एक सजातीय घोल या एक अवक्षेप घोल उत्पन्न करता है। फलस्वरूप, ज्ञात पॉलिमर जो डब्ल्यू/डब्ल्यू पायस का वहन करते हैं, उनमें पॉलीएक्रिलिक एमाइड और पॉलीओल्स सम्मिलित हैं। आश्चर्यजनक रूप से, इनमें से कुछ जल-में-जल इमल्शन सहसंयोजन से 30 दिनों तक असाधारण रूप से स्थिर रह सकते हैं। क्योंकि लिक्विड क्रिस्टल के अणु आपस में एक पसंदीदा सामान्य अभिविन्यास ग्रहण करते हैं, एक बूंद में लिक्विड क्रिस्टल का समग्र अभिविन्यास केवल कुछ विन्यासों में ही स्थिर होता है (चित्र 3)। चूंकि पानी में घुलनशील बूंदें aw/w इमल्शन में होती हैं, DSCG अणु बूंद की सतह पर पसंदीदा दिशा में संरेखित होंगे। सिस्टम की समग्र ऊर्जा को कम करने के लिए, बूंदों में डीएससीजी अणु सतहों को छोड़ने के लिए समानांतर या लंबवत संरेखित करने की प्राथमिकता देते हैं। (चित्र 4ए,बी)
यह अणु एक दमा-रोधी दवा है, लेकिन एक विशेष प्रकार के लिक्विड क्रिस्टल के रूप में भी मौजूद होता है जब डीएससीजी की सांद्रता ~ 9-21 wt% होती है। पारंपरिक लियोट्रोपिक लिक्विड क्रिस्टल के विपरीत, जिसमें 5CB जैसे तैलीय अणु होते हैं, डीएससीजी अणु एम्फीफिलिक नहीं होते हैं, लेकिन पूरी तरह से पानी में घुलनशील होते हैं। इस प्रकार, जल विरोधी / हाइड्रोफिलिक समूहों के पृथक्करण को डीएससीजी पर लागू नहीं किया जा सकता है। बहुलक घोल डब्ल्यू/डब्ल्यू पायस के मध्यम या निरंतर चरण के रूप में कार्य करता है। पानी में घुलनशील होने के अलावा, इस डब्ल्यू/डब्ल्यू पायस प्रणाली की पीढ़ी के लिए एक महत्वपूर्ण मानदंड यह है कि बहुलक कार्यात्मक समूहों को सहन नहीं कर सकता है जो डीएससीजी के साथ दृढ़ता से बातचीत करते हैं। इस प्रकार, आयनिक बहुलक जब डीएससीजी के साथ मिलाया जाता है तो डब्ल्यू/डब्ल्यू पायस नहीं बनाता है, लेकिन एक समांगी (रसायन विज्ञान) विलयन या अवक्षेपित विलयन देता है। फलस्वरूप, ज्ञात पॉलिमर जो डब्ल्यू/डब्ल्यू पायस वहन करते हैं उनमें पॉलीऐक्रेलिक एमाइड्स और पॉलीओल्स शामिल हैं।
आश्चर्यजनक रूप से, इनमें से कुछ वाटर-इन-वाटर पायस असाधारण रूप से 30 दिनों तक कोलेसरेंस से स्थिर हो सकते हैं। क्योंकि लिक्विड क्रिस्टल के अणु आपस में एक पसंदीदा सामान्य अभिविन्यास मानते हैं, एक छोटी बूंद में लिक्विड क्रिस्टल का समग्र अभिविन्यास केवल कुछ विन्यासों (चित्र 3) में स्थिर होता है। डब्ल्यू/डब्ल्यू पायस में पानी की घुलनशील बूंदों के रूप में, डीएससीजी अणु छोटी बूंद की सतह पर एक पसंदीदा दिशा में संरेखित होंगे। प्रणाली की समग्र ऊर्जा को कम करने के लिए, छोटी बूंद में डीएससीजी अणु बूंदों की सतहों के समानांतर या लंबवत संरेखित करना पसंद करते हैं। (चित्र 4ए, बी)।
इस पानी में पानी के पायस की सह-अवधि से स्थिरता को तीन आणविक बलों के लिए जिम्मेदार ठहराया गया है:
1. छोटी बूंद के गठन की शुरुआत में विभिन्न आणविक बलों का पृथक्करण। इसी तरह की ताकतें एक साथ रहती हैं: लिक्विड क्रिस्टल ड्रॉपलेट चरण में पाई-स्टैकिंग और सॉल्ट ब्रिजिंग दो प्रमुख ताकतें हैं, जबकि हाइड्रोजन बॉन्डिंग निरंतर बहुलक चरण में नियंत्रित होती है।
2. जैसे-जैसे छोटी बूंद का आकार बढ़ता है, छोटी बूंद के चरण के इंटरफेस पर आणविक बातचीत और निरंतर चरण बहुस्तरीय (रसायन विज्ञान) बातचीत के माध्यम से मजबूत हो जाते हैं। डब्ल्यू/डब्ल्यू पायस में इंटरफेशियल आणविक इंटरैक्शन को मजबूत करने के परिणामस्वरूप बहुलक की एक परत बनती है जो छोटी बूंदों की सतह को कोट करती है जो परिणामस्वरूप बूंदों को एक साथ टकराने से रोकती है।
3. इसके अलावा, यह भी प्रस्तावित है कि जब दो लिक्विड क्रिस्टल ड्रॉपलेट्स मर्ज (कोलेसेंस) होते हैं, तो दो विलय करने वाली बूंदों में लिक्विड क्रिस्टल अणुओं का ओरिएंटेशन एक दूसरे के लिए "अनुकूल" होना चाहिए, और इस प्रकार एक एनर्जी पेनल्टी लगती है जो रोकती है सहसंयोजन की घटना।
यह डब्ल्यू/डब्ल्यू पायस पॉलीमर डिस्प्रेस्ड लिक्विड क्रिस्टल (पीडीएलसी) के एक नए वर्ग का भी प्रतिनिधित्व करता है। परंपरागत रूप से ज्ञात पीडीएलसी में तेल-में-पानी पायस होता है जहां तेल की बूंद एक थर्मोट्रॉपिक तरल क्रिस्टल होती है जैसे कि 4-पेंटिल-4'-साइनोबिफेनिल (5सीबी), और पानी के चरण में कुछ बहुलक होते हैं। इसकी तुलना में, इस वाटर-इन-वाटर पायस में पॉलीमर-डिस्पर्स्ड ल्योट्रोपिक लिक्विड क्रिस्टल होते हैं, जहां लियोट्रोपिक लिक्विड क्रिस्टल पानी में घुलनशील डीएससीजी अणु होते हैं। पारंपरिक PDLCs ने स्विचेबल विंडो से लेकर प्रोजेक्शन डिस्प्ले तक, एप्लिकेशन पाया है। बहुलक-छितरी हुई लियोट्रोपिक तरल क्रिस्टल के पानी में पानी के पायस में प्रोटीन संरचना के साथ इसकी अनुकूलता के कारण अत्यधिक जैव-कार्यात्मक सामग्रियों के निर्माण की क्षमता है।
अन्य ज्ञात प्रकार के वाटर-इन-वाटर पायस में जलीय घोल में विभिन्न बायोपॉलिमर्स को अलग करना शामिल है।
संदर्भ
- ↑ B. T. Nguyen; T. Nicolai & L. Benyahia (2013). "Stabilization of Water-in-Water Emulsions by Addition of Protein Particles". Langmuir. 23 (3): 1453–1458. doi:10.1021/la402131e. PMID 23895275.
- ↑ I. Capron; S. Costeux & M. Djabourov (2001). "Water in Water Emulsions: Phase Separation and Rheology of Biopolymer Solutions". Rheologica Acta. 40 (5): 441–456. doi:10.1007/s003970100161.
- ↑ K. A. Simon; P. Sejwal; R. B. Gerecht & Y.-Y. Luk (2007). "Water-in-Water Emulsions Stabilized by Non-Amphiphilic Interactions: Polymer-Dispersed Lyotropic Liquid Crystals". Langmuir. 40 (5): 441–456. doi:10.1021/la062203s.
4. (a) Terentjev, E. M. Europhys. Lett. 1995, 32, 607–612. (b) Poulin,P.; Stark, H.; Lubensky, T. C.; Weitz, D. A. Science 1997, 275, 1770–1773.
5. Scholten, E.; Sagis, L. M. C.; Van der Linden, E., Effect of Bending Rigidity and Interfacial Permeability on the Dynamical Behavior of Water-in-Water Emulsions. Journal of Physical Chemistry B 2006, 110, (7), 3250–3256.
बाहरी कड़ियाँ
1. Salt bridging and example of salt bridges http://www.cryst.bbk.ac.uk/PPS2/projects/day/TDayDiss/SaltBridges.html
2. Tutorial on liquid crystals http://outreach.lci.kent.edu/
3. Introduction to polymer dispersed liquid crystals (PDLC)
4. Droplet configuration of PDLC’s http://plc.cwru.edu/tutorial/enhanced/files/pdlc/droplet/droplet.htm