Y-Δ रूपांतरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 94: Line 94:


:<math>R_\text{Y}\left(N_1, N_2\right) = R_1 + R_2</math>
:<math>R_\text{Y}\left(N_1, N_2\right) = R_1 + R_2</math>
इस तरह:
इस प्रकार,


:<math>R_1 + R_2 = \frac{R_\text{c}(R_\text{a} + R_\text{b})}{R_\text{T}}</math> (1)
:<math>R_1 + R_2 = \frac{R_\text{c}(R_\text{a} + R_\text{b})}{R_\text{T}}</math> (1)


के लिए दोहराया जा रहा है <math>R(N_2,N_3)</math>:
<math>R(N_2,N_3)</math> के लिए दोहराया जा रहा है:


:<math>R_2 + R_3 = \frac{R_\text{a}(R_\text{b} + R_\text{c})}{R_\text{T}}</math> (2)
:<math>R_2 + R_3 = \frac{R_\text{a}(R_\text{b} + R_\text{c})}{R_\text{T}}</math> (2)


और के लिए <math>R\left(N_1, N_3\right)</math>:
और <math>R\left(N_1, N_3\right)</math> के लिए निम्न समीकरण को दोहराया जा रहा है:


:<math>R_1 + R_3 = \frac{R_\text{b}\left(R_\text{a} + R_\text{c}\right)}{R_\text{T}}.</math> (3)
:<math>R_1 + R_3 = \frac{R_\text{b}\left(R_\text{a} + R_\text{c}\right)}{R_\text{T}}.</math> (3)


यहाँ से, के मान <math>\left\{R_1, R_2, R_3\right\}</math> रैखिक संयोजन (जोड़ और/या घटाव) द्वारा निर्धारित किया जा सकता है।
जहाँ से, <math>\left\{R_1, R_2, R_3\right\}</math> के मान रैखिक संयोजन (जोड़ और/या घटाव) द्वारा निर्धारित किए जा सकते हैं।


उदाहरण के लिए, (1) और (3) को जोड़ने पर (2) को घटाने पर प्राप्त होता है
उदाहरण के लिए, (1) और (3) को जोड़ने पर और (2) को घटाने पर प्राप्त होता है-


:<math>\begin{align}
:<math>\begin{align}
Line 126: Line 126:
:<math>R_3 = \frac{R_\text{a}R_\text{b}}{R_\text{T}}</math> (6)
:<math>R_3 = \frac{R_\text{a}R_\text{b}}{R_\text{T}}</math> (6)


=== वाई-लोड से Δ-लोड परिवर्तन समीकरण ===
=== Y-लोड से Δ-लोड परिवर्तन समीकरण ===
होने देना
मान लीजिए


:<math>R_\text{T} = R_\text{a} + R_\text{b} + R_\text{c}</math>.
:<math>R_\text{T} = R_\text{a} + R_\text{b} + R_\text{c}</math>.


हम Δ से Y समीकरण को इस प्रकार लिख सकते हैं
हम Δ से Y समीकरण को इस प्रकार लिख सकते हैं-


:<math>R_1 = \frac{R_\text{b}R_\text{c}}{R_\text{T}} </math>   (1)
:<math>R_1 = \frac{R_\text{b}R_\text{c}}{R_\text{T}} </math>   (1)
Line 137: Line 137:
:<math>R_3 = \frac{R_\text{a}R_\text{b}}{R_\text{T}}. </math> (3)
:<math>R_3 = \frac{R_\text{a}R_\text{b}}{R_\text{T}}. </math> (3)


समीकरणों के युग्मों को गुणा करने पर प्राप्त होता है
समीकरणों के युग्मों को गुणा करने पर प्राप्त होता है-


:<math>R_1 R_2 = \frac{R_\text{a}R_\text{b}R_\text{c}^2 }{R_\text{T}^2}</math>   (4)
:<math>R_1 R_2 = \frac{R_\text{a}R_\text{b}R_\text{c}^2 }{R_\text{T}^2}</math>   (4)
Line 143: Line 143:
:<math>R_2 R_3 = \frac{R_\text{a}^2 R_\text{b}R_\text{c}}{R_\text{T}^2}</math> (6)
:<math>R_2 R_3 = \frac{R_\text{a}^2 R_\text{b}R_\text{c}}{R_\text{T}^2}</math> (6)


और इन समीकरणों का योग है
और इन समीकरणों का योग है-


:<math>R_1 R_2 + R_1 R_3 + R_2 R_3 = \frac{
:<math>R_1 R_2 + R_1 R_3 + R_2 R_3 = \frac{
Line 152: Line 152:
</math> (7)
</math> (7)


कारक <math>R_\text{a}R_\text{b}R_\text{c}</math> दाहिनी ओर से, जा रहा है <math>R_\text{T}</math> अंश में, एक के साथ रद्द करना <math>R_\text{T}</math> भाजक में।
अंश में <math>R_\text{T}</math> को त्यागते हुए दाहिनी ओर से <math>R_\text{a}R_\text{b}R_\text{c}</math> को भाजक में <math>R_\text{T}</math> के साथ निरस्त करते हुए गुणनखंड करें।


:<math>\begin{align}
:<math>\begin{align}
Line 172: Line 172:
     &={} R_\text{a},
     &={} R_\text{a},
\end{align}</math>
\end{align}</math>
जिसके लिए समीकरण है <math>R_\text{a}</math>. (8) को (2) या (3) से विभाजित करना (के लिए भाव <math>R_2</math> या <math>R_3</math>) शेष समीकरण देता है।
जो <math>R_\text{a}</math> के लिए समीकरण है। (8) को (2) या (3) से विभाजित करने पर (<math>R_2</math> या <math>R_3</math> के लिए व्यंजक) शेष समीकरण देता है।  


==Δ एक व्यावहारिक जनरेटर == के वाई परिवर्तन के लिए
'''विशेष जनरेटर के लिए Δ से Y रूपांतरण'''


संतुलित तीन चरण विद्युत शक्ति के विश्लेषण के दौरान तीन चरण [[विद्युत शक्ति प्रणाली]], सामान्यतः इसकी सादगी के कारण प्रति चरण (या एकल चरण) परिपथ का विश्लेषण किया जाता है। उसके लिए, [[ बिजली पैदा करने वाला ]], [[ट्रांसफार्मर]], लोड और [[एसी मोटर]] के लिए समतुल्य वाई कनेक्शन का उपयोग किया जाता है। व्यावहारिक डेल्टा से जुड़े तीन-चरण जनरेटर के स्टेटर वाइंडिंग, निम्नलिखित आंकड़े में दिखाए गए हैं, निम्नलिखित छः सूत्रों का उपयोग करके समकक्ष वाई-कनेक्टेड जेनरेटर में परिवर्तित किया जा सकता है{{efn|For a demonstration, read the [[Talk:Y-Δ_transform#Derivation_of_the_formulas_for_converting_a_delta_to_wye_practical_generator|Talk page]].}}:
संतुलित तीन-चरण [[विद्युत शक्ति प्रणाली|विद्युत शक्ति प्रणालियों]] के विश्लेषण के समय, सामान्यतः इसकी सरलता के कारण समकक्ष प्रति चरण (या एकल चरण) परिपथ का विश्लेषण किया जाता है। इसलिए [[ बिजली पैदा करने वाला |जनरेटर]], [[ट्रांसफार्मर]], लोड और [[एसी मोटर]] के लिए समतुल्य वाई कनेक्शन का उपयोग किया जाता है। विशेष डेल्टा से जुड़े तीन-चरण जनरेटर के स्टेटर वाइंडिंग को निम्न आकृति में दर्शाया गया है, जिसे निम्नलिखित छह सूत्रों का उपयोग करके समकक्ष वाई-कनेक्टेड जनरेटर में परिवर्तित किया जा सकता है{{efn|For a demonstration, read the [[Talk:Y-Δ_transform#Derivation_of_the_formulas_for_converting_a_delta_to_wye_practical_generator|Talk page]].}}:


[[File:Practical generator connected in delta-triangle (version 2).png|275px|thumb|center|डेल्टा/त्रिकोण/पीआई में जुड़ा व्यावहारिक जनरेटर। दिखाई गई मात्राएँ फेजर वोल्टेज और जटिल प्रतिबाधा हैं। इसका विस्तार करने के लिए छवि पर क्लिक करें।]]
[[File:Practical generator connected in delta-triangle (version 2).png|275px|thumb|center|डेल्टा/त्रिकोण/पीआई में जुड़ा विशेष जनरेटर। दर्शायी गई राशियाँ फेजर वोल्टेज और जटिल प्रतिबाधा हैं। इसका विस्तार करने के लिए छवि पर क्लिक करें।]]


<math>
<math>
Line 190: Line 190:
\end{align}
\end{align}
</math>
</math>
परिणामी नेटवर्क निम्नलिखित है। समतुल्य नेटवर्क का तटस्थ नोड काल्पनिक है, और इसलिए लाइन-टू-न्यूट्रल फेजर वोल्टेज हैं। परिवर्तन के दौरान, लाइन फेजर धाराएं और लाइन (या लाइन-टू-लाइन या चरण-दर-चरण) फेजर वोल्टेज परिवर्तित नहीं होते हैं।


[[File:Equivalent practical generator connected in wye-star (version 2).png|275px|thumb|center|वाई/स्टार/टी में जुड़ा समतुल्य व्यावहारिक जनरेटर। इसका विस्तार करने के लिए छवि पर क्लिक करें।]]यदि वास्तविक डेल्टा जनरेटर संतुलित है, जिसका अर्थ है कि आंतरिक फेजर वोल्टेज में समान परिमाण है और एक दूसरे के मध्य 120 ° द्वारा चरण-स्थानांतरित किया जाता है और तीन जटिल प्रतिबाधाएं समान हैं, तो पिछले सूत्र निम्नलिखित चार तक कम हो जाते हैं:
परिणामी नेटवर्क निम्नलिखित है। समतुल्य नेटवर्क का तटस्थ नोड काल्पनिक है, और इसीलिए लाइन-टू-न्यूट्रल फेजर वोल्टेज है। रूपांतरण के समय, लाइन फेजर धाराएं और लाइन (या लाइन-टू-लाइन या चरण-दर-चरण) फेजर वोल्टेज परिवर्तित नहीं होते हैं।
 
[[File:Equivalent practical generator connected in wye-star (version 2).png|275px|thumb|center|वाई/स्टार/टी में जुड़ा समतुल्य विशेष जनरेटर। इसका विस्तार करने के लिए छवि पर क्लिक करें।]]यदि वास्तविक डेल्टा जनरेटर संतुलित है, जिसका अर्थ है कि आंतरिक फेजर वोल्टेज में समान परिमाण है जिसे एक दूसरे के मध्य 120° द्वारा चरण-स्थानांतरित किया जाता है और इसकी तीन जटिल प्रतिबाधाएं समान हैं, तो पूर्व सूत्र निम्नलिखित चार तक कम हो जाते हैं:


<math>
<math>
Line 202: Line 203:
\end{align}
\end{align}
</math>
</math>
जहां अंतिम तीन समीकरणों के लिए, पहले चिह्न (+) का उपयोग किया जाता है यदि चरण अनुक्रम धनात्मक/एबीसी है या दूसरा चिह्न (-) का उपयोग किया जाता है यदि चरण अनुक्रम ऋणात्मक/एसीबी है।
 
जहां अंतिम तीन समीकरणों के लिए, प्रथम चिह्न (+) का उपयोग किया जाता है यदि चरण अनुक्रम धनात्मक/एबीसी है या द्वितीय चिह्न (-) का उपयोग किया जाता है यदि चरण अनुक्रम ऋणात्मक/एसीबी है।


== यह भी देखें ==
== यह भी देखें ==
* स्टार-जाल परिवर्तन
* स्टार-मेश रूपांतरण
* नेटवर्क विश्लेषण (विद्युत परिपथ)
* नेटवर्क विश्लेषण (विद्युत परिपथ)
* विद्युत नेटवर्क, तीन-चरण विद्युत शक्ति | तीन-चरण शक्ति, वाई और Δ कनेक्शन के उदाहरणों के लिए [[पॉलीफ़ेज़ सिस्टम]]
* Y और Δ संबंध के उदाहरणों के लिए विद्युत नेटवर्क, तीन चरण की शक्ति, [[पॉलीफ़ेज़ सिस्टम|पॉलीफ़ेज़ प्रणाली]]
* Y-Δ स्टार्टिंग तकनीक की चर्चा के लिए AC मोटर
* Y-Δ प्रारंभिक तकनीक के विचार के लिए AC मोटर


==संदर्भ==
==संदर्भ==

Revision as of 16:23, 17 June 2023

विद्युत अभियन्त्रण में Y-Δ रूपांतरण को वाई-डेल्टा भी लिखा जाता है और इसे कई अन्य नामों से भी जाना जाता है, यह विद्युत नेटवर्क के विश्लेषण को सरल बनाने के लिए गणितीय तकनीक है। यह नाम परिपथ आरेखों की आकृति से प्राप्त होता है, जो क्रमशः अक्षर Y और ग्रीक कैपिटल लेटर Δ की भाँति दिखता हैं। यह परिपथ परिवर्तन सिद्धांत 1899 में आर्थर एडविन केनेली द्वारा प्रकाशित किया गया था।[1] यह तीन-चरण विद्युत शक्ति परिपथ के विश्लेषण में व्यापक रूप से उपयोग किया जाता है।

Y-Δ रूपांतरण को तीन प्रतिरोधों के लिए स्टार-मेश रूपांतरण की विशेष स्थिति माना जा सकता है। गणित में, Y-Δ रूपांतरण वृत्तीय तलीय रेखांकन के सिद्धांत में महत्वपूर्ण भूमिका निभाता है।[2]


नाम

इसके T-Π प्रतिनिधित्व में रूपांतरण का चित्रण।

Y-Δ रूपांतरण को कई अन्य नामों से भी जाना जाता है, जो अधिकांशतः किसी भी क्रम में सूचीबद्ध दो आकृतियों पर आधारित होते हैं। Y के रूप में वर्णित वाई को T या स्टार भी कहा जा सकता है; डेल्टा के रूप में लिखे गए Δ को त्रिभुज Π (पाई के रूप में वर्णित) या जाल भी कहा जा सकता है। इस प्रकार, रूपांतरण के सामान्य नामों में वाई-डेल्टा या डेल्टा-वाई, स्टार-डेल्टा, स्टार-मेश, या T-Π सम्मिलित हैं।

मूल Y-Δ रूपांतरण

इस लेख में उपयोग किए जाने वाले लेबल के साथ Δ और Y परिपथ।

रूपांतरण का उपयोग तीन टर्मिनलों वाले नेटवर्क में समानता स्थापित करने के लिए किया जाता है। जहां तीन तत्व सामान्य नोड पर समाप्त होते हैं और कोई भी स्रोत नहीं होता है, तब प्रतिबाधाओं को परिवर्तित कर नोड को समाप्त कर दिया जाता है। तुल्यता के लिए, टर्मिनलों के किसी भी जोड़े के मध्य प्रतिबाधा दोनों नेटवर्कों के लिए समान होनी चाहिए। यहां दिए गए समीकरण जटिल के साथ वास्तविक प्रतिबाधाओं के लिए भी मान्य होते हैं। जटिल प्रतिबाधा ओम में मापी गई मात्रा है जो सामान्य प्रकार से सकारात्मक वास्तविक संख्या के रूप में प्रतिरोध का प्रतिनिधित्व करती है, और सकारात्मक एवं नकारात्मक काल्पनिक मानों के रूप में विद्युत प्रतिक्रिया का भी प्रतिनिधित्व करती है।

Δ से Y में रूपांतरण के लिए समीकरण

सामान्य विचार यह है कि निम्नलिखित समीकरण द्वारा Δ परिपथ में सन्निकट नोड्स के प्रतिबाधा , के साथ Y परिपथ के टर्मिनल नोड पर प्रतिबाधा की गणना की जाए।

जहाँ , Δ परिपथ में सभी प्रतिबाधाएँ हैं। इससे विशिष्ट सूत्र प्राप्त होता है-


Y से Δ में रूपांतरण के लिए समीकरण

सामान्य विचार Δ परिपथ में प्रतिबाधा की गणना करना है

जहां , Y परिपथ में प्रतिबाधा के सभी जोड़े के गुणनफलों का योग है और , Y परिपथ में नोड की प्रतिबाधा है जो के शीर्ष के विपरीत है। विशिष्ट शीर्षों के सूत्र इस प्रकार हैं-

या, यदि प्रतिरोध के अतिरिक्त प्रवेश का उपयोग कर रहे हैं:

ध्यान दें कि प्रवेश का उपयोग करके Y से Δ में सामान्य सूत्र प्रतिरोध का उपयोग करके Δ से Y के समान है।

परिवर्तन के अस्तित्व और विशिष्टता का प्रमाण

विद्युत परिपथों में सुपरपोजिशन प्रमेय के परिणाम के रूप में रूपांतरण की व्यवहार्यता दर्शायी जा सकती है। अधिक सामान्य स्टार-मेश रूपांतरण के परिणाम के रूप में प्राप्त संक्षिप्त प्रमाण निम्नानुसार दिया जा सकता है। समतुल्यता इस कथन में निहित है कि तीन नोड्स ( और ) पर प्रयुक्त होने वाले किसी भी बाहरी वोल्टेज ( और ) के लिए, संबंधित धाराएं ( और ), Y और Δ परिपथ दोनों के लिए पूर्णतः समान हैं। इस प्रमाण में, हम नोड्स पर दी गई बाहरी धाराओं से प्रारम्भ करते हैं। सुपरपोज़िशन प्रमेय के अनुसार, धारा के साथ तीन नोड्स पर प्रयुक्त निम्नलिखित तीन समस्याओं के नोड्स पर परिणामी वोल्टेज के सुपरपोज़िशन का अध्ययन करके वोल्टेज प्राप्त किया जा सकता है-

  1. और

किरचॉफ के परिपथ नियम का उपयोग करके समानता को सरलता से दर्शाया जा सकता है। अब प्रत्येक समस्या अपेक्षाकृत सरल है, क्योंकि इसमें केवल आदर्श धारा स्रोत सम्मिलित है। प्रत्येक समस्या के लिए नोड्स पर पूर्णतः समान परिणामी वोल्टेज प्राप्त करने के लिए, दो परिपथों में समतुल्य प्रतिरोध समान होना चाहिए, यह श्रेणी और समांतर परिपथ के मूल नियमों का उपयोग करके सरलता से प्राप्त किया जा सकता है:

चूँकि सामान्यतः छह समीकरण तीन चर () को अन्य तीन चर () के संदर्भ में व्यक्त करने के लिए पर्याप्त से अधिक होते हैं, जहाँ यह दर्शाना सरल है कि ये समीकरण वास्तव में ऊपर डिज़ाइन की गई अभिव्यक्तियों की ओर ले जाते हैं।

वास्तव में, सुपरपोजिशन प्रमेय प्रतिरोधों के मानो के मध्य संबंध स्थापित करता है, विद्युत चुंबकत्व विशिष्टता प्रमेय ऐसे समाधान की विशिष्टता की आश्वासन देता है।

नेटवर्क का सरलीकरण

दो टर्मिनलों के मध्य प्रतिरोधी नेटवर्क को सैद्धांतिक रूप से समतुल्य प्रतिरोधी के लिए सरलीकृत किया जा सकता है (सामान्यतः, यह प्रतिबाधा के लिए उचित है)। श्रेणी और समानांतर रूपांतरण ऐसा करने के लिए मूल उपकरण हैं, किन्तु जटिल नेटवर्क यहां दर्शाये गए सेतु के लिए पर्याप्त नहीं हैं।

Y-Δ रूपांतरण का उपयोग समान समय में नोड को समाप्त करने और नेटवर्क बनाने के लिए किया जा सकता है जिसे आगे सरलीकृत किया जा सकता है, जैसा कि दर्शाया गया है।

नोड D को समाप्त करने के लिए Y-Δ रूपांतरण का उपयोग करके सेतु प्रतिरोधी नेटवर्क का रूपांतरण समकक्ष नेटवर्क उत्पन्न करता है जिसे सरलता से सरलीकृत किया जा सकता है।

विपरीत रूपांतरण Δ-Y नोड जोड़ता है, जो प्रायः अग्र सरलीकरण के लिए मार्ग प्रशस्त करने में सरल होता है।

Δ-Y रूपांतरण का उपयोग करके सेतु प्रतिरोधी नेटवर्क का रूपांतरण भी समतुल्य नेटवर्क उत्पन्न करता है जिसे सरलता से अधिक सरल बनाया जा सकता है।

प्लानर ग्राफ द्वारा प्रस्तुत प्रत्येक दो-टर्मिनल नेटवर्क को श्रेणी, समांतर, Y-Δ, और Δ-Y रूपांतरणों के अनुक्रम द्वारा समकक्ष प्रतिरोधी में अल्प किया जा सकता है।[3] चूँकि, ऐसे गैर-प्लानर नेटवर्क होते हैं जिन्हें इन रूपांतरणों का उपयोग करके सरल नहीं किया जा सकता है, जैसे कि टोरस या पीटरसन परिवार के किसी सदस्य के चारों ओर आवेष्टित नियमित वर्ग ग्रिड।

ग्राफ सिद्धांत

ग्राफ़ सिद्धांत में, Y-Δ रूपांतरण का अर्थ Y सबग्राफ को समतुल्य Δ सबग्राफ से प्रतिस्थापित करना होता है। रूपांतरण, ग्राफ़ में कोरों की संख्या को संरक्षित करता है, किन्तु शीर्षों की संख्या या चक्रों (ग्राफ़ सिद्धांत) की संख्या को संरक्षित नहीं करता है। दो ग्राफ़ को Y-Δ समतुल्य कहा जाता है यदि एक को दूसरे से Y-Δ की श्रेणी द्वारा किसी भी दिशा में प्राप्त किया जा सकता है। उदाहरण के लिए, पीटरसन परिवार Y-Δ समतुल्य वर्ग है।

प्रदर्शन

Δ-लोड से Y-लोड रूपांतरण समीकरण

इस लेख में उपयोग किए जाने वाले लेबल के साथ Δ और Y परिपथ।

Y से , Δ से को संबंधित करने के लिए दो संबंधित नोड्स के मध्य प्रतिबाधा की तुलना की जाती है। किसी भी विन्यास में प्रतिबाधा निर्धारित की जाती है जैसे कि नोड्स में से एक को परिपथ से विभक्त कर दिया जाता है।

N3 के साथ N1 और N2 के मध्य प्रतिबाधा को Δ में डिस्कनेक्ट किया गया:

सरलीकरण के लिए, मान लीजिये का योग है।

इस प्रकार,

Y में N1 और N2 के मध्य संबंधित प्रतिबाधा सरल है:

इस प्रकार,

(1)

के लिए दोहराया जा रहा है:

(2)

और के लिए निम्न समीकरण को दोहराया जा रहा है:

(3)

जहाँ से, के मान रैखिक संयोजन (जोड़ और/या घटाव) द्वारा निर्धारित किए जा सकते हैं।

उदाहरण के लिए, (1) और (3) को जोड़ने पर और (2) को घटाने पर प्राप्त होता है-

संपूर्णता के लिए:

(4)
(5)
(6)

Y-लोड से Δ-लोड परिवर्तन समीकरण

मान लीजिए

.

हम Δ से Y समीकरण को इस प्रकार लिख सकते हैं-

  (1)
  (2)
(3)

समीकरणों के युग्मों को गुणा करने पर प्राप्त होता है-

  (4)
  (5)
(6)

और इन समीकरणों का योग है-

(7)

अंश में को त्यागते हुए दाहिनी ओर से को भाजक में के साथ निरस्त करते हुए गुणनखंड करें।

(8)

(8) और {(1), (2), (3)} के मध्य समानता पर ध्यान दें

(8) को (1) से विभाजित करें

जो के लिए समीकरण है। (8) को (2) या (3) से विभाजित करने पर ( या के लिए व्यंजक) शेष समीकरण देता है।

विशेष जनरेटर के लिए Δ से Y रूपांतरण

संतुलित तीन-चरण विद्युत शक्ति प्रणालियों के विश्लेषण के समय, सामान्यतः इसकी सरलता के कारण समकक्ष प्रति चरण (या एकल चरण) परिपथ का विश्लेषण किया जाता है। इसलिए जनरेटर, ट्रांसफार्मर, लोड और एसी मोटर के लिए समतुल्य वाई कनेक्शन का उपयोग किया जाता है। विशेष डेल्टा से जुड़े तीन-चरण जनरेटर के स्टेटर वाइंडिंग को निम्न आकृति में दर्शाया गया है, जिसे निम्नलिखित छह सूत्रों का उपयोग करके समकक्ष वाई-कनेक्टेड जनरेटर में परिवर्तित किया जा सकता है[lower-alpha 1]:

डेल्टा/त्रिकोण/पीआई में जुड़ा विशेष जनरेटर। दर्शायी गई राशियाँ फेजर वोल्टेज और जटिल प्रतिबाधा हैं। इसका विस्तार करने के लिए छवि पर क्लिक करें।

परिणामी नेटवर्क निम्नलिखित है। समतुल्य नेटवर्क का तटस्थ नोड काल्पनिक है, और इसीलिए लाइन-टू-न्यूट्रल फेजर वोल्टेज है। रूपांतरण के समय, लाइन फेजर धाराएं और लाइन (या लाइन-टू-लाइन या चरण-दर-चरण) फेजर वोल्टेज परिवर्तित नहीं होते हैं।

वाई/स्टार/टी में जुड़ा समतुल्य विशेष जनरेटर। इसका विस्तार करने के लिए छवि पर क्लिक करें।

यदि वास्तविक डेल्टा जनरेटर संतुलित है, जिसका अर्थ है कि आंतरिक फेजर वोल्टेज में समान परिमाण है जिसे एक दूसरे के मध्य 120° द्वारा चरण-स्थानांतरित किया जाता है और इसकी तीन जटिल प्रतिबाधाएं समान हैं, तो पूर्व सूत्र निम्नलिखित चार तक कम हो जाते हैं:

जहां अंतिम तीन समीकरणों के लिए, प्रथम चिह्न (+) का उपयोग किया जाता है यदि चरण अनुक्रम धनात्मक/एबीसी है या द्वितीय चिह्न (-) का उपयोग किया जाता है यदि चरण अनुक्रम ऋणात्मक/एसीबी है।

यह भी देखें

  • स्टार-मेश रूपांतरण
  • नेटवर्क विश्लेषण (विद्युत परिपथ)
  • Y और Δ संबंध के उदाहरणों के लिए विद्युत नेटवर्क, तीन चरण की शक्ति, पॉलीफ़ेज़ प्रणाली
  • Y-Δ प्रारंभिक तकनीक के विचार के लिए AC मोटर

संदर्भ

  1. Kennelly, A. E. (1899). "संचालन नेटवर्क में त्रिकोण और तीन-नुकीले तारों की समानता". Electrical World and Engineer. 34: 413–414.
  2. Curtis, E.B.; Ingerman, D.; Morrow, J.A. (1998). "सर्कुलर प्लानर ग्राफ और रेसिस्टर नेटवर्क". Linear Algebra and Its Applications. 283 (1–3): 115–150. doi:10.1016/S0024-3795(98)10087-3.
  3. Truemper, K. (1989). "प्लानर ग्राफ के लिए डेल्टा-वाई कमी पर". Journal of Graph Theory. 13 (2): 141–148. doi:10.1002/jgt.3190130202.


टिप्पणियाँ

  1. For a demonstration, read the Talk page.


ग्रन्थसूची

  • William Stevenson, Elements of Power System Analysis 3rd ed., McGraw Hill, New York, 1975, ISBN 0-07-061285-4


बाहरी संबंध