एंडोथर्म: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 10: Line 10:


== उत्पत्ति ==
== उत्पत्ति ==
ऐसा माना जाता है कि एंडोथर्मी की उत्पत्ति [[ पर्मिअन |पर्मिअन]] काल के अंत में हुई थी''<ref>{{cite journal | vauthors = Rey K, Amiot R, Fourel F, Abdala F, Fluteau F, Jalil NE, Liu J, Rubidge BS, Smith RM, Steyer JS, Viglietti PA, Wang X, Lécuyer C | display-authors = 6 | title = ऑक्सीजन समस्थानिक कई Permo-Triassic therapsid clades के भीतर उन्नत थर्मोमेटाबोलिज्म का सुझाव देते हैं| journal = eLife | volume = 6 | date = July 2017 | pmid = 28716184 | pmc = 5515572 | doi = 10.7554/eLife.28589 | doi-access = free }}</ref>''। वर्तमान में हुए अध्ययन में दावा किया गया है कि [[ synapses |सिनैप्सिडा]] (स्तनधारी वंश) के अंदर एंडोथर्मी की उत्पत्ति [[स्तनधारी मोरफा]] के मध्य थी, जो लगभग 233 मिलियन वर्ष पूर्व [[लेट ट्राइसिक]] अवधि के समय कैलिब्रेट किया गया नोड था।''<ref>{{cite journal | vauthors = Araújo R, David R, Benoit J, Lungmus JK, Stoessel A, Barrett PM, Maisano JA, Ekdale E, Orliac M, Luo ZX, Martinelli AG, Hoffman EA, Sidor CA, Martins RM, Spoor F, Angielczyk KD | display-authors = 6 | title = इनर ईयर बायोमैकेनिक्स से स्तनधारी एंडोथर्मी के लिए लेट ट्राइसिक मूल का पता चलता है| journal = [[Nature (journal)|Nature]] | volume = 607 | issue = 7920 | pages = 726–731 | date = July 2022 | pmid = 35859179 | doi = 10.1038/s41586-022-04963-z }}</ref>इसके अतिरिक्त अन्य अध्ययन ने तर्क दिया कि ताज-समूह स्तनधारियों के मध्य [[मध्य जुरासिक]] के समय एंडोथर्मी केवल पश्चात में दिखाई दिया।<ref>{{cite journal |last1=Newham |first1=Elis |last2=Gill |first2=Pamela G. |last3=Corfe |first3=Ian J. |date=16 February 2022 |title=नए उपकरण स्तनधारी एंडोथर्मी के लिए मध्य जुरासिक उत्पत्ति का सुझाव देते हैं|url=https://onlinelibrary.wiley.com/doi/10.1002/bies.202100060 |journal=[[BioEssays]] |volume=44 |issue=4 |pages=1-16 |doi=10.1002/bies.202100060 |access-date=3 April 2023}}</ref>''एंडोथर्मी के साक्ष्य बेसल सिनैप्सिड्स ([[pelycosaur|प्लिकोसोर]]), [[परियासौर]], [[मीनसरीसृप]], [[प्लेसीओसौर]], [[ mosasaur | मोसासौर]] एवं बेसल [[आर्कोसौरोमोर्फा]] में पाए गए हैं।<ref name=":1">{{cite journal | vauthors = Grigg G, Nowack J, Bicudo JE, Bal NC, Woodward HN, Seymour RS | title = Whole-body endothermy: ancient, homologous and widespread among the ancestors of mammals, birds and crocodylians | journal = Biological Reviews of the Cambridge Philosophical Society | volume = 97 | issue = 2 | pages = 766–801 | date = April 2022 | pmid = 34894040 | pmc = 9300183 | doi = 10.1111/brv.12822 }}</ref><ref>{{cite journal | vauthors = Legendre LJ, Guénard G, Botha-Brink J, Cubo J | title = आर्कोसॉरस में पैतृक उच्च चयापचय दर के लिए पुरापाषाणकालीन साक्ष्य| journal = Systematic Biology | volume = 65 | issue = 6 | pages = 989–996 | date = November 2016 | pmid = 27073251 | doi = 10.1093/sysbio/syw033 | doi-access = free }}</ref><ref>{{cite journal | vauthors = Benton MJ |date= December 2021 |title=ट्रायसिक में सिनैप्सिड्स और आर्कोसॉरस और हथियारों की दौड़ में एंडोथर्मी की उत्पत्ति|journal=Gondwana Research |language=en |volume=100 |pages=261–289 |doi=10.1016/j.gr.2020.08.003|s2cid= 222247711 |doi-access=free }}</ref> यहां तक ​​​​कि सबसे प्राथमिक एमनियोट्स भी एंडोथर्म हो सकते हैं।<ref name=":1" />
ऐसा माना जाता है कि एंडोथर्मी की उत्पत्ति [[ पर्मिअन |पर्मिअन]] काल के अंत में हुई थी''<ref>{{cite journal | vauthors = Rey K, Amiot R, Fourel F, Abdala F, Fluteau F, Jalil NE, Liu J, Rubidge BS, Smith RM, Steyer JS, Viglietti PA, Wang X, Lécuyer C | display-authors = 6 | title = ऑक्सीजन समस्थानिक कई Permo-Triassic therapsid clades के भीतर उन्नत थर्मोमेटाबोलिज्म का सुझाव देते हैं| journal = eLife | volume = 6 | date = July 2017 | pmid = 28716184 | pmc = 5515572 | doi = 10.7554/eLife.28589 | doi-access = free }}</ref>''। वर्तमान में हुए अध्ययन में दावा किया गया है कि [[ synapses |सिनैप्सिडा]] (स्तनधारी वंश) के अंदर एंडोथर्मी की उत्पत्ति [[स्तनधारी मोरफा]] के मध्य थी, जो लगभग 233 मिलियन वर्ष पूर्व [[लेट ट्राइसिक]] अवधि के समय कैलिब्रेट किया गया नोड था।''<ref>{{cite journal | vauthors = Araújo R, David R, Benoit J, Lungmus JK, Stoessel A, Barrett PM, Maisano JA, Ekdale E, Orliac M, Luo ZX, Martinelli AG, Hoffman EA, Sidor CA, Martins RM, Spoor F, Angielczyk KD | display-authors = 6 | title = इनर ईयर बायोमैकेनिक्स से स्तनधारी एंडोथर्मी के लिए लेट ट्राइसिक मूल का पता चलता है| journal = [[Nature (journal)|Nature]] | volume = 607 | issue = 7920 | pages = 726–731 | date = July 2022 | pmid = 35859179 | doi = 10.1038/s41586-022-04963-z }}</ref>इसके अतिरिक्त अन्य अध्ययन ने तर्क दिया कि एंडोथर्मी केवल पश्चात में, [[मध्य जुरासिक]] क्राउन-समूह स्तनधारियों के मध्य दिखाई दिया।<ref>{{cite journal |last1=Newham |first1=Elis |last2=Gill |first2=Pamela G. |last3=Corfe |first3=Ian J. |date=16 February 2022 |title=नए उपकरण स्तनधारी एंडोथर्मी के लिए मध्य जुरासिक उत्पत्ति का सुझाव देते हैं|url=https://onlinelibrary.wiley.com/doi/10.1002/bies.202100060 |journal=[[BioEssays]] |volume=44 |issue=4 |pages=1-16 |doi=10.1002/bies.202100060 |access-date=3 April 2023}}</ref>''एंडोथर्मी के साक्ष्य बेसल सिनैप्सिड्स ([[pelycosaur|प्लिकोसोर]]), [[परियासौर]], [[मीनसरीसृप]], [[प्लेसीओसौर]], [[ mosasaur |मोसासौर]] एवं बेसल [[आर्कोसौरोमोर्फा]] में पाए गए हैं।<ref name=":1">{{cite journal | vauthors = Grigg G, Nowack J, Bicudo JE, Bal NC, Woodward HN, Seymour RS | title = Whole-body endothermy: ancient, homologous and widespread among the ancestors of mammals, birds and crocodylians | journal = Biological Reviews of the Cambridge Philosophical Society | volume = 97 | issue = 2 | pages = 766–801 | date = April 2022 | pmid = 34894040 | pmc = 9300183 | doi = 10.1111/brv.12822 }}</ref><ref>{{cite journal | vauthors = Legendre LJ, Guénard G, Botha-Brink J, Cubo J | title = आर्कोसॉरस में पैतृक उच्च चयापचय दर के लिए पुरापाषाणकालीन साक्ष्य| journal = Systematic Biology | volume = 65 | issue = 6 | pages = 989–996 | date = November 2016 | pmid = 27073251 | doi = 10.1093/sysbio/syw033 | doi-access = free }}</ref><ref>{{cite journal | vauthors = Benton MJ |date= December 2021 |title=ट्रायसिक में सिनैप्सिड्स और आर्कोसॉरस और हथियारों की दौड़ में एंडोथर्मी की उत्पत्ति|journal=Gondwana Research |language=en |volume=100 |pages=261–289 |doi=10.1016/j.gr.2020.08.003|s2cid= 222247711 |doi-access=free }}</ref> यहां तक ​​​​कि सबसे प्राथमिक एमनियोट्स भी एंडोथर्म हो सकते हैं।<ref name=":1" />




== तंत्र ==
== संरचना ==


===ऊष्मा पैदा करना एवं संरक्षण ===
===ऊष्मा पैदा करना एवं संरक्षण ===
[[File:Homeothermy-poikilothermy.png|thumb|right|कोर तापमान के कार्य के रूप में एक एंडोथर्मिक जानवर (स्तनपायी) एवं एक एक्टोथर्मिक जानवर (सरीसृप) का निरंतर ऊर्जा उत्पादन]]
[[File:Homeothermy-poikilothermy.png|thumb|right|कोर तापमान के कार्य के रूप में एक एंडोथर्मिक जानवर (स्तनपायी) एवं एक एक्टोथर्मिक जानवर (सरीसृप) का निरंतर ऊर्जा उत्पादन]]
[[File:Thermal Regulation Graph.svg|thumb|यह छवि एंडोथर्म एवं एक्टोथर्म के मध्य अंतर दिखाती है। माउस एंडोथर्मिक है एवं होमोस्टेसिस के माध्यम से अपने शरीर के तापमान को नियंत्रित करता है। छिपकली एक्टोथर्मिक है एवं इसके शरीर का तापमान पर्यावरण पर निर्भर है।]]कई एंडोथर्म में एक्टोथर्म की अपेक्षा में प्रति कोशिका (जीव विज्ञान) में [[माइटोकॉन्ड्रिया]] की बड़ी मात्रा होती है। यह उन्हें उस दर को बढ़ाकर ऊष्मा उत्पन्न करने में सक्षम बनाता है जिस पर वे वसा एवं शर्करा का चयापचय करते हैं। तदनुसार, अपने उच्च चयापचय को बनाए रखने के लिए, एंडोथर्मिक जानवरों को आमतौर पर एक्टोथर्मिक जानवरों की अपेक्षा में कई गुना अधिक भोजन की आवश्यकता होती है, एवं आमतौर पर चयापचय ईंधन की अधिक निरंतर आपूर्ति की आवश्यकता होती है।
[[File:Thermal Regulation Graph.svg|thumb|यह छवि एंडोथर्म एवं एक्टोथर्म के मध्य अंतर दिखाती है। माउस एंडोथर्मिक है एवं होमोस्टेसिस के माध्यम से अपने शरीर के तापमान को नियंत्रित करता है। छिपकली एक्टोथर्मिक है एवं इसके शरीर का तापमान पर्यावरण पर निर्भर है।]]कई एंडोथर्म में एक्टोथर्म की अपेक्षा में प्रति कोशिका (जीव विज्ञान) में [[माइटोकॉन्ड्रिया]] की अधिक मात्रा होती है। यह उन्हें वसा और शर्करा के चयापचय की दर को बढ़ाकर गर्मी उत्पन्न करने में सक्षम बनाता है। तदनुसार, अपने उच्च चयापचय को बनाए रखने के लिए, एंडोथर्मिक जानवरों को सामान्यतः एक्टोथर्मिक जानवरों की अपेक्षा में कई गुना अधिक भोजन की आवश्यकता होती है, एवं सामान्यतः चयापचय ईंधन की अधिक निरंतर आपूर्ति की आवश्यकता होती है।


कई एंडोथर्मिक जानवरों में, [[ अल्प तपावस्था |अल्प तपावस्था]] की नियंत्रित अस्थायी स्थिति शरीर के तापमान को परिवेशी स्तर तक गिरने की अनुमति देकर ऊर्जा का संरक्षण करती है। ऐसी अवस्थाएँ संक्षिप्त, नियमित सर्कैडियन लय हो सकती हैं जिन्हें [[ सो हो जाना ]] कहा जाता है, या वे बहुत लंबे समय तक हो सकती हैं, यहाँ तक कि मौसमी, चक्रों को [[ सीतनिद्रा ]] कहा जाता है। कई छोटे पक्षियों (जैसे [[ चिड़ियों ]]) एवं छोटे स्तनधारियों (जैसे [[टेनरेक]]्स) के शरीर का तापमान नाटकीय रूप से दैनिक निष्क्रियता के समय गिरता है, जैसे रात में दैनिक जानवरों में या दिन के समय रात में रहने वाले जानवरों में, इस प्रकार शरीर के तापमान को बनाए रखने की ऊर्जा लागत कम हो जाती है। शरीर के तापमान में कम कठोर रुक-रुक कर कमी अन्य बड़े एंडोथर्म में भी होती है; उदाहरण के लिए मानव चयापचय भी नींद के समय धीमा हो जाता है, जिससे मुख्य तापमान में गिरावट आती है, आमतौर पर 1 डिग्री सेल्सियस के क्रम में। तापमान में अन्य बदलाव हो सकते हैं, आमतौर पर छोटे, या तो अंतर्जात या बाहरी परिस्थितियों या जोरदार परिश्रम के जवाब में, एवं या तो वृद्धि या गिरावट।<ref>{{cite journal | vauthors = Refinetti R | title = शरीर के तापमान की सर्कैडियन लय| journal = Frontiers in Bioscience | volume = 15 | issue = 2 | pages = 564–594 | date = January 2010 | pmid = 20036834 | doi = 10.2741/3634 }}</ref>
कई एंडोथर्मिक जानवरों में, [[ अल्प तपावस्था |अल्प तपावस्था]] की नियंत्रित अस्थायी स्थिति शरीर के तापमान को परिवेशी स्तर तक गिरने की अनुमति देकर ऊर्जा का संरक्षण करती है। ऐसी अवस्थाएँ संक्षिप्त, नियमित सर्कैडियन लय हो सकती हैं जिन्हें [[ सो हो जाना |टॉरपोर]] कहा जाता है, या वे बहुत लंबे समय, यहाँ तक कि मौसमी, चक्रों में भी हो सकते हैं जिन्हें[[ सीतनिद्रा ]]कहा जाता है। कई छोटे पक्षियों (जैसे[[ चिड़ियों | हमिंगबर्ड]]) एवं छोटे स्तनधारियों (जैसे [[टेनरेक|टेनरेक्स]]) के शरीर का तापमान नाटकीय रूप से दैनिक निष्क्रियता के समय कम होता है, जैसे रात में दैनिक जानवरों में या दिन के समय रात में रहने वाले जानवरों में, इस प्रकार शरीर के तापमान को बनाए रखने की ऊर्जा कम हो जाती है। शरीर के तापमान में कम कठोर रुक-रुक कर कमी अन्य बड़े एंडोथर्म में भी होती है; उदाहरण के लिए मानव चयापचय भी नींद के समय धीमा हो जाता है, जिससे मुख्य तापमान में गिरावट आती है, सामान्यतः 1 डिग्री सेल्सियस के क्रम में। तापमान में अन्य बदलाव हो सकते हैं, सामान्यतः छोटे, या तो अंतर्जात या बाहरी परिस्थितियों या जोरदार परिश्रम के जवाब में, एवं या तो वृद्धि या गिरावट।<ref>{{cite journal | vauthors = Refinetti R | title = शरीर के तापमान की सर्कैडियन लय| journal = Frontiers in Bioscience | volume = 15 | issue = 2 | pages = 564–594 | date = January 2010 | pmid = 20036834 | doi = 10.2741/3634 }}</ref>
आराम करने वाला मानव शरीर अपनी ऊष्मा का लगभग दो-तिहाई भाग छाती एवं पेट के साथ-साथ मस्तिष्क में आंतरिक अंगों में चयापचय के माध्यम से उत्पन्न करता है। मस्तिष्क शरीर द्वारा उत्पादित कुल ऊष्मा का लगभग 16% उत्पन्न करता है।<ref>{{Cite web | vauthors = Kimball JW | date = 25 June 2014 |title = गर्मी का परिवहन|url = https://www.biology-pages.info/H/HeatTransport.html |work = Kimball's Biology Pages | via = www.biology-pages.info }}</ref>
आराम करने वाला मानव शरीर अपनी ऊष्मा का लगभग दो-तिहाई भाग छाती एवं पेट के साथ-साथ मस्तिष्क में आंतरिक अंगों में चयापचय के माध्यम से उत्पन्न करता है। मस्तिष्क शरीर द्वारा उत्पादित कुल ऊष्मा का लगभग 16% उत्पन्न करता है।<ref>{{Cite web | vauthors = Kimball JW | date = 25 June 2014 |title = गर्मी का परिवहन|url = https://www.biology-pages.info/H/HeatTransport.html |work = Kimball's Biology Pages | via = www.biology-pages.info }}</ref>
ऊष्मा का हानि छोटे जीवों के लिए एक बड़ा खतरा है, क्योंकि उनके समीप [[सतह-क्षेत्र-से-आयतन अनुपात]] का बड़ा अनुपात है। छोटे गर्म रक्त वाले जानवरों में [[छाल]] या [[पंख]] के रूप में [[थर्मल इन्सुलेशन]] होता है। जलीय गर्म-खून वाले जानवर, जैसे कि [[पिनिपेड]], आमतौर पर [[त्वचा]] के नीचे [[ रोना ]] की गहरी परतें होती हैं एवं कोई भी फर जो उनके समीप हो सकता है; दोनों उनके इन्सुलेशन में योगदान करते हैं। [[पेंगुइन]] के पंख एवं चर्बी दोनों होते हैं। पेंग्विन पंख स्केल-जैसे होते हैं एवं इन्सुलेशन एवं सुव्यवस्थित करने दोनों के लिए काम करते हैं। एंडोथर्म जो बहुत ठंडी परिस्थितियों में रहते हैं या ऊष्मा के हानि की स्थिति में रहते हैं, जैसे कि ध्रुवीय जल, [[अद्भुत नेटवर्क]] होते हैं जो [[ उष्मा का आदान प्रदान करने वाला ]]्स के रूप में कार्य करते हैं। नसें गर्म रक्त से भरी धमनियों से सटी हुई हैं। कुछ धमनी ऊष्मा ठंडे खून में ले जाती है एवं ट्रंक में वापस पुनर्नवीनीकरण की जाती है। पक्षी, विशेष रूप से [[waders]], प्रायः अपने पैरों में बहुत अच्छी तरह से विकसित रीटे मिराबाइल होते हैं - वे [[शहंशाह पेंग्विन]] के पैरों में अनुकूलन का भाग होते हैं जो उन्हें अंटार्कटिक सर्दियों की बर्फ पर महीनों बिताने में सक्षम बनाते हैं।<ref>{{cite journal | vauthors = Thomas DB, Fordyce RE | year = 2008 | title = पेंग्विन द्वारा शोषित विषमतापीय खामी| journal = Australian Journal of Zoology | volume = 55 | issue = 5| pages = 317–321 | doi = 10.1071/ZO07053 }}</ref><ref>{{cite journal | vauthors = Thomas DB, Ksepka DT, Fordyce RE | title = पेंगुइन हीट-रिटेंशन संरचनाएं ग्रीनहाउस अर्थ में विकसित हुईं| journal = Biology Letters | volume = 7 | issue = 3 | pages = 461–464 | date = June 2011 | pmid = 21177693 | pmc = 3097858 | doi = 10.1098/rsbl.2010.0993 }}</ref> ठंड के जवाब में, कई गर्म खून वाले जानवर भी ऊष्मा के हानि को कम करने के लिए [[वाहिकासंकीर्णन]] द्वारा त्वचा में रक्त के प्रवाह को कम कर देते हैं। नतीजतन, वे सफेद हो जाते हैं (पीला हो जाते हैं)।
ऊष्मा का हानि छोटे जीवों के लिए एक बड़ा खतरा है, क्योंकि उनके समीप [[सतह-क्षेत्र-से-आयतन अनुपात]] का बड़ा अनुपात है। छोटे गर्म रक्त वाले जानवरों में [[छाल]] या [[पंख]] के रूप में [[थर्मल इन्सुलेशन]] होता है। जलीय गर्म-खून वाले जानवर, जैसे कि [[पिनिपेड]], सामान्यतः [[त्वचा]] के नीचे [[ रोना ]] की गहरी परतें होती हैं एवं कोई भी फर जो उनके समीप हो सकता है; दोनों उनके इन्सुलेशन में योगदान करते हैं। [[पेंगुइन]] के पंख एवं चर्बी दोनों होते हैं। पेंग्विन पंख स्केल-जैसे होते हैं एवं इन्सुलेशन एवं सुव्यवस्थित करने दोनों के लिए काम करते हैं। एंडोथर्म जो बहुत ठंडी परिस्थितियों में रहते हैं या ऊष्मा के हानि की स्थिति में रहते हैं, जैसे कि ध्रुवीय जल, [[अद्भुत नेटवर्क]] होते हैं जो [[ उष्मा का आदान प्रदान करने वाला ]]्स के रूप में कार्य करते हैं। नसें गर्म रक्त से भरी धमनियों से सटी हुई हैं। कुछ धमनी ऊष्मा ठंडे खून में ले जाती है एवं ट्रंक में वापस पुनर्नवीनीकरण की जाती है। पक्षी, विशेष रूप से [[waders]], प्रायः अपने पैरों में बहुत अच्छी तरह से विकसित रीटे मिराबाइल होते हैं - वे [[शहंशाह पेंग्विन]] के पैरों में अनुकूलन का भाग होते हैं जो उन्हें अंटार्कटिक सर्दियों की बर्फ पर महीनों बिताने में सक्षम बनाते हैं।<ref>{{cite journal | vauthors = Thomas DB, Fordyce RE | year = 2008 | title = पेंग्विन द्वारा शोषित विषमतापीय खामी| journal = Australian Journal of Zoology | volume = 55 | issue = 5| pages = 317–321 | doi = 10.1071/ZO07053 }}</ref><ref>{{cite journal | vauthors = Thomas DB, Ksepka DT, Fordyce RE | title = पेंगुइन हीट-रिटेंशन संरचनाएं ग्रीनहाउस अर्थ में विकसित हुईं| journal = Biology Letters | volume = 7 | issue = 3 | pages = 461–464 | date = June 2011 | pmid = 21177693 | pmc = 3097858 | doi = 10.1098/rsbl.2010.0993 }}</ref> ठंड के जवाब में, कई गर्म खून वाले जानवर भी ऊष्मा के हानि को कम करने के लिए [[वाहिकासंकीर्णन]] द्वारा त्वचा में रक्त के प्रवाह को कम कर देते हैं। नतीजतन, वे सफेद हो जाते हैं (पीला हो जाते हैं)।


=== ज़्यादा गरम होने से बचना ===
=== ज़्यादा गरम होने से बचना ===
Line 29: Line 29:
एक्टोथर्मी पर एंडोथर्मी का प्रमुख लाभ बाहरी तापमान में उतार-चढ़ाव के प्रति संवेदनशीलता में कमी है। स्थान (एवं इसलिए बाहरी तापमान) के अतिरिक्त, एंडोथर्मी इष्टतम एंजाइम गतिविधि के लिए निरंतर कोर तापमान बनाए रखता है।
एक्टोथर्मी पर एंडोथर्मी का प्रमुख लाभ बाहरी तापमान में उतार-चढ़ाव के प्रति संवेदनशीलता में कमी है। स्थान (एवं इसलिए बाहरी तापमान) के अतिरिक्त, एंडोथर्मी इष्टतम एंजाइम गतिविधि के लिए निरंतर कोर तापमान बनाए रखता है।


एंडोथर्म आंतरिक होमोस्टैटिक तंत्र द्वारा शरीर के तापमान को नियंत्रित करते हैं। स्तनधारियों में, दो भिन्न भिन्न होमोस्टैटिक तंत्र थर्मोरेग्यूलेशन में सम्मिलित होते हैं तंत्र शरीर के तापमान को बढ़ाता है, जबकि दूसरा इसे कम करता है। दो भिन्न भिन्न तंत्रों की उपस्थिति बहुत उच्च स्तर का नियंत्रण प्रदान करती है। यह महत्वपूर्ण है क्योंकि स्तनधारियों के मुख्य तापमान को नियंत्रित किया जा सकता है ताकि एंजाइम गतिविधि के लिए इष्टतम तापमान के करीब हो सके।
एंडोथर्म आंतरिक होमोस्टैटिक संरचना द्वारा शरीर के तापमान को नियंत्रित करते हैं। स्तनधारियों में, दो भिन्न भिन्न होमोस्टैटिक संरचना थर्मोरेग्यूलेशन में सम्मिलित होते हैं संरचना शरीर के तापमान को बढ़ाता है, जबकि दूसरा इसे कम करता है। दो भिन्न भिन्न संरचनाों की उपस्थिति बहुत उच्च स्तर का नियंत्रण प्रदान करती है। यह महत्वपूर्ण है क्योंकि स्तनधारियों के मुख्य तापमान को नियंत्रित किया जा सकता है ताकि एंजाइम गतिविधि के लिए इष्टतम तापमान के करीब हो सके।


जानवर के चयापचय की समग्र दर प्रत्येक के लिए लगभग दो गुना बढ़ जाती है {{convert|10|C-change|F-change|0|abbr=on}} [[तापमान]] में वृद्धि, अतिताप से बचने की आवश्यकता द्वारा सीमित। एंडोथर्मी एक्टोथर्मी (शीत-रक्तता) की अपेक्षा में आंदोलन में अधिक गति प्रदान नहीं करता है - एक्टोथर्मिक जानवर एक ही आकार के गर्म-खून वाले जानवरों के रूप में तेजी से आगे बढ़ सकते हैं एवं एक्टोथर्म के निकट या उसके इष्टतम तापमान पर निर्माण कर सकते हैं, परन्तु प्रायःउच्च चयापचय को बनाए नहीं रख सकते एंडोथर्म के रूप में लंबे समय तक गतिविधि। एंडोथर्मिक/होमोथर्मिक जानवर दिन एवं रात के मध्य तेज तापमान भिन्नता के स्थानों में दैनिक चक्र के समय अधिक सक्रिय रूप से सक्रिय हो सकते हैं एवं तापमान के महान [[मौसम]]ी अंतर के स्थानों में वर्ष के समय अधिक सक्रिय हो सकते हैं। यह निरंतर आंतरिक तापमान एवं अधिक भोजन की आवश्यकता को बनाए रखने के लिए अधिक ऊर्जा खर्च करने की आवश्यकता के साथ है।<ref>{{cite book | vauthors = Campbell NA, Reece JB |year=2002 |title=जीवविज्ञान|url=https://archive.org/details/biologyc00camp |url-access=registration |edition=6th |publisher=Benjamin/Cummings |page=[https://archive.org/details/biologyc00camp/page/845 845] |isbn=978-0-8053-6624-2 }}</ref> प्रजनन के समय एंडोथर्मी महत्वपूर्ण हो सकता है, उदाहरण के लिए, थर्मल रेंज का विस्तार करने में, जिस पर प्रजातियां पुनरुत्पादन कर सकती हैं, क्योंकि भ्रूण सामान्यतः थर्मल उतार-चढ़ाव के असहिष्णु होते हैं जो वयस्कों द्वारा सरलता से सहन किए जाते हैं।<ref>{{cite journal | vauthors = Farmer CG | title = Parental Care: The Key to Understanding Endothermy and Other Convergent Features in Birds and Mammals | journal = The American Naturalist | volume = 155 | issue = 3 | pages = 326–334 | date = March 2000 | pmid = 10718729 | doi = 10.1086/303323 | s2cid = 17932602 }}</ref><ref>{{cite journal | vauthors = Farmer CG | title = Reproduction: the adaptive significance of endothermy | journal = The American Naturalist | volume = 162 | issue = 6 | pages = 826–840 | date = December 2003 | pmid = 14737720 | doi = 10.1086/380922 | s2cid = 15356891 }}</ref> एंडोथर्मी [[फंगल]] संक्रमण से भी सुरक्षा प्रदान कर सकता है। जबकि हजारों कवक प्रजातियां कीड़ों को संक्रमित करती हैं, केवल कुछ सौ लक्षित स्तनपायी, एवं प्रायःकेवल एक समझौता प्रतिरक्षा प्रणाली वाले। हाल का अध्ययन<ref>{{cite journal | vauthors = Robert VA, Casadevall A | title = कशेरुकी एंडोथर्मी अधिकांश कवक को संभावित रोगजनकों के रूप में प्रतिबंधित करता है| journal = The Journal of Infectious Diseases | volume = 200 | issue = 10 | pages = 1623–1626 | date = November 2009 | pmid = 19827944 | doi = 10.1086/644642 | doi-access = free }}</ref>
जानवर के चयापचय की समग्र दर प्रत्येक के लिए लगभग दो गुना बढ़ जाती है {{convert|10|C-change|F-change|0|abbr=on}} [[तापमान]] में वृद्धि, अतिताप से बचने की आवश्यकता द्वारा सीमित। एंडोथर्मी एक्टोथर्मी (शीत-रक्तता) की अपेक्षा में आंदोलन में अधिक गति प्रदान नहीं करता है - एक्टोथर्मिक जानवर एक ही आकार के गर्म-खून वाले जानवरों के रूप में तेजी से आगे बढ़ सकते हैं एवं एक्टोथर्म के निकट या उसके इष्टतम तापमान पर निर्माण कर सकते हैं, परन्तु प्रायःउच्च चयापचय को बनाए नहीं रख सकते एंडोथर्म के रूप में लंबे समय तक गतिविधि। एंडोथर्मिक/होमोथर्मिक जानवर दिन एवं रात के मध्य तेज तापमान भिन्नता के स्थानों में दैनिक चक्र के समय अधिक सक्रिय रूप से सक्रिय हो सकते हैं एवं तापमान के महान [[मौसम]]ी अंतर के स्थानों में वर्ष के समय अधिक सक्रिय हो सकते हैं। यह निरंतर आंतरिक तापमान एवं अधिक भोजन की आवश्यकता को बनाए रखने के लिए अधिक ऊर्जा खर्च करने की आवश्यकता के साथ है।<ref>{{cite book | vauthors = Campbell NA, Reece JB |year=2002 |title=जीवविज्ञान|url=https://archive.org/details/biologyc00camp |url-access=registration |edition=6th |publisher=Benjamin/Cummings |page=[https://archive.org/details/biologyc00camp/page/845 845] |isbn=978-0-8053-6624-2 }}</ref> प्रजनन के समय एंडोथर्मी महत्वपूर्ण हो सकता है, उदाहरण के लिए, थर्मल रेंज का विस्तार करने में, जिस पर प्रजातियां पुनरुत्पादन कर सकती हैं, क्योंकि भ्रूण सामान्यतः थर्मल उतार-चढ़ाव के असहिष्णु होते हैं जो वयस्कों द्वारा सरलता से सहन किए जाते हैं।<ref>{{cite journal | vauthors = Farmer CG | title = Parental Care: The Key to Understanding Endothermy and Other Convergent Features in Birds and Mammals | journal = The American Naturalist | volume = 155 | issue = 3 | pages = 326–334 | date = March 2000 | pmid = 10718729 | doi = 10.1086/303323 | s2cid = 17932602 }}</ref><ref>{{cite journal | vauthors = Farmer CG | title = Reproduction: the adaptive significance of endothermy | journal = The American Naturalist | volume = 162 | issue = 6 | pages = 826–840 | date = December 2003 | pmid = 14737720 | doi = 10.1086/380922 | s2cid = 15356891 }}</ref> एंडोथर्मी [[फंगल]] संक्रमण से भी सुरक्षा प्रदान कर सकता है। जबकि हजारों कवक प्रजातियां कीड़ों को संक्रमित करती हैं, केवल कुछ सौ लक्षित स्तनपायी, एवं प्रायःकेवल एक समझौता प्रतिरक्षा प्रणाली वाले। हाल का अध्ययन<ref>{{cite journal | vauthors = Robert VA, Casadevall A | title = कशेरुकी एंडोथर्मी अधिकांश कवक को संभावित रोगजनकों के रूप में प्रतिबंधित करता है| journal = The Journal of Infectious Diseases | volume = 200 | issue = 10 | pages = 1623–1626 | date = November 2009 | pmid = 19827944 | doi = 10.1086/644642 | doi-access = free }}</ref>
Line 36: Line 36:
[[एक्टोथर्म]] अपने शरीर का तापमान ज्यादातर बाहरी ताप स्रोतों जैसे सूर्य के प्रकाश ऊर्जा के माध्यम से बढ़ाते हैं; इसलिए, वे परिचालन शरीर के तापमान तक पहुंचने के लिए पर्यावरणीय परिस्थितियों पर निर्भर करते हैं। एंडोथर्मिक जानवर ज्यादातर चयापचय सक्रिय अंगों एवं ऊतकों (यकृत, गुर्दे, हृदय, मस्तिष्क, मांसपेशियों) या भूरे वसा ऊतक (बीएटी) जैसे विशेष ऊष्मा पैदा करने वाले ऊतकों के माध्यम से आंतरिक ऊष्मा उत्पादन का उपयोग करते हैं। सामान्य तौर पर, किसी दिए गए शरीर द्रव्यमान पर एंडोथर्म में एक्टोथर्म की अपेक्षा में उच्च चयापचय दर होती है। एक परिणाम के रूप में उन्हें उच्च भोजन सेवन दर की भी आवश्यकता होती है, जो एक्टोथर्म की अपेक्षा में एंडोथर्म की प्रचुरता को सीमित कर सकती है।
[[एक्टोथर्म]] अपने शरीर का तापमान ज्यादातर बाहरी ताप स्रोतों जैसे सूर्य के प्रकाश ऊर्जा के माध्यम से बढ़ाते हैं; इसलिए, वे परिचालन शरीर के तापमान तक पहुंचने के लिए पर्यावरणीय परिस्थितियों पर निर्भर करते हैं। एंडोथर्मिक जानवर ज्यादातर चयापचय सक्रिय अंगों एवं ऊतकों (यकृत, गुर्दे, हृदय, मस्तिष्क, मांसपेशियों) या भूरे वसा ऊतक (बीएटी) जैसे विशेष ऊष्मा पैदा करने वाले ऊतकों के माध्यम से आंतरिक ऊष्मा उत्पादन का उपयोग करते हैं। सामान्य तौर पर, किसी दिए गए शरीर द्रव्यमान पर एंडोथर्म में एक्टोथर्म की अपेक्षा में उच्च चयापचय दर होती है। एक परिणाम के रूप में उन्हें उच्च भोजन सेवन दर की भी आवश्यकता होती है, जो एक्टोथर्म की अपेक्षा में एंडोथर्म की प्रचुरता को सीमित कर सकती है।


क्योंकि एक्टोथर्म शरीर के तापमान के नियमन के लिए पर्यावरणीय परिस्थितियों पर निर्भर करते हैं, वे आमतौर पर रात में एवं सुबह में अधिक सुस्त होते हैं जब वे पहली धूप में गर्म होने के लिए अपने आश्रय से निकलते हैं। इसलिए अधिकांश कशेरुकी एक्टोथर्म में खाने की गतिविधि दिन के समय (दैनिक गतिविधि पैटर्न) तक ही सीमित है। छिपकलियों में, उदाहरण के लिए, केवल कुछ प्रजातियों को निशाचर (जैसे कई जेकॉस) के रूप में जाना जाता है एवं वे ज्यादातर 'सिट एंड वेट' फोर्जिंग रणनीतियों का उपयोग करते हैं जिन्हें सक्रिय फोर्जिंग के लिए आवश्यक शरीर के तापमान की आवश्यकता नहीं हो सकती है। एंडोथर्मिक कशेरुक प्रजातियां, इसलिए, पर्यावरणीय परिस्थितियों पर कम निर्भर हैं एवं उन्होंने अपने दैनिक गतिविधि पैटर्न में एक उच्च परिवर्तनशीलता (प्रजातियों के अंदर एवं दोनों के मध्य) विकसित की है।<ref name =Hut>{{cite book|vauthors=Hut RA, Kronfeld-Schor N, van der Vinne V, De la Iglesia H |title=In search of a temporal niche: environmental factors|year=2012|volume=199|pages=281–304|pmid=22877672|doi=10.1016/B978-0-444-59427-3.00017-4|series=Progress in Brain Research|isbn=978-0-444-59427-3 }}</ref>
क्योंकि एक्टोथर्म शरीर के तापमान के नियमन के लिए पर्यावरणीय परिस्थितियों पर निर्भर करते हैं, वे सामान्यतः रात में एवं सुबह में अधिक सुस्त होते हैं जब वे पहली धूप में गर्म होने के लिए अपने आश्रय से निकलते हैं। इसलिए अधिकांश कशेरुकी एक्टोथर्म में खाने की गतिविधि दिन के समय (दैनिक गतिविधि पैटर्न) तक ही सीमित है। छिपकलियों में, उदाहरण के लिए, केवल कुछ प्रजातियों को निशाचर (जैसे कई जेकॉस) के रूप में जाना जाता है एवं वे ज्यादातर 'सिट एंड वेट' फोर्जिंग रणनीतियों का उपयोग करते हैं जिन्हें सक्रिय फोर्जिंग के लिए आवश्यक शरीर के तापमान की आवश्यकता नहीं हो सकती है। एंडोथर्मिक कशेरुक प्रजातियां, इसलिए, पर्यावरणीय परिस्थितियों पर कम निर्भर हैं एवं उन्होंने अपने दैनिक गतिविधि पैटर्न में एक उच्च परिवर्तनशीलता (प्रजातियों के अंदर एवं दोनों के मध्य) विकसित की है।<ref name =Hut>{{cite book|vauthors=Hut RA, Kronfeld-Schor N, van der Vinne V, De la Iglesia H |title=In search of a temporal niche: environmental factors|year=2012|volume=199|pages=281–304|pmid=22877672|doi=10.1016/B978-0-444-59427-3.00017-4|series=Progress in Brain Research|isbn=978-0-444-59427-3 }}</ref>
ऐसा माना जाता है कि मेसोज़ोइक काल में [[ स्वतंत्रता ]] स्तनधारी प्रजातियों की विविधता के विकास में एंडोथर्मिया का विकास महत्वपूर्ण था। एंडोथर्मिया ने शुरुआती स्तनधारियों को छोटे शरीर के आकार को बनाए रखते हुए रात के समय सक्रिय रहने की क्षमता प्रदान की। [[ photoreception ]] में अनुकूलन एवं आधुनिक यूथेरियन स्तनधारियों की विशेषता वाले यूवी संरक्षण के हानि को मूल रूप से निशाचर जीवन शैली के अनुकूलन के रूप में समझा जाता है, यह सुझाव देते हुए कि समूह एक विकासवादी अड़चन ([[निशाचर अड़चन]]) से गुजरा है। यह दैनिक सरीसृपों एवं डायनासोरों के शिकारी दबाव से बचा जा सकता था, चूँकि कुछ शिकारी डायनासोर, समान रूप से एंडोथर्मिक होने के कारण, उन स्तनधारियों का शिकार करने के लिए निशाचर जीवन शैली को अपना सकते थे।<ref name=Hut/><ref>{{cite journal | vauthors = Gerkema MP, Davies WI, Foster RG, Menaker M, Hut RA | title = निशाचर अड़चन और स्तनधारियों में गतिविधि के पैटर्न का विकास| journal = Proceedings. Biological Sciences | volume = 280 | issue = 1765 | pages = 20130508 | date = August 2013 | pmid = 23825205 | pmc = 3712437 | doi = 10.1098/rspb.2013.0508 }}</ref>
ऐसा माना जाता है कि मेसोज़ोइक काल में [[ स्वतंत्रता | स्वसंरचनाता]] स्तनधारी प्रजातियों की विविधता के विकास में एंडोथर्मिया का विकास महत्वपूर्ण था। एंडोथर्मिया ने शुरुआती स्तनधारियों को छोटे शरीर के आकार को बनाए रखते हुए रात के समय सक्रिय रहने की क्षमता प्रदान की। [[ photoreception ]] में अनुकूलन एवं आधुनिक यूथेरियन स्तनधारियों की विशेषता वाले यूवी संरक्षण के हानि को मूल रूप से निशाचर जीवन शैली के अनुकूलन के रूप में समझा जाता है, यह सुझाव देते हुए कि समूह एक विकासवादी अड़चन ([[निशाचर अड़चन]]) से गुजरा है। यह दैनिक सरीसृपों एवं डायनासोरों के शिकारी दबाव से बचा जा सकता था, चूँकि कुछ शिकारी डायनासोर, समान रूप से एंडोथर्मिक होने के कारण, उन स्तनधारियों का शिकार करने के लिए निशाचर जीवन शैली को अपना सकते थे।<ref name=Hut/><ref>{{cite journal | vauthors = Gerkema MP, Davies WI, Foster RG, Menaker M, Hut RA | title = निशाचर अड़चन और स्तनधारियों में गतिविधि के पैटर्न का विकास| journal = Proceedings. Biological Sciences | volume = 280 | issue = 1765 | pages = 20130508 | date = August 2013 | pmid = 23825205 | pmc = 3712437 | doi = 10.1098/rspb.2013.0508 }}</ref>





Revision as of 20:49, 24 June 2023

एंडोथर्म (प्राचीन यूनानी ἔνδον एंडन के अंदर एवं θέρμη थर्मे ऊष्मा) ऐसा जीव है जो अपने शरीर को चपापचयीरूप से अनुकूल तापमान पर बनाए रखता है, मुख्य रूप से परिवेशीय ऊष्मा पर निर्भर होने के अतिरिक्त अपने आंतरिक शारीरिक कार्यों द्वारा उत्पन ऊष्मा का उपयोग करके। इस तरह की आंतरिक रूप से उत्पन्न ऊष्मा मुख्य रूप से पशु के नियमित चयापचय का आकस्मिक उत्पाद है, परन्तु अत्यधिक ठंड या कम गतिविधि की स्थिति में एंडोथर्म विशेष रूप से ऊष्मा उत्पादन के लिए अनुकूलित विशेष विधि प्रारम्भ कर सकता है। उदाहरणों में विशेष-कार्य पेशीय परिश्रम जैसे कंपकंपी, एवं अनकपलर ऑक्सीडेटिव चयापचय, जैसे भूरे वसा ऊतक के अंदर सम्मिलित हैं।

केवल पक्षी एवं स्तनधारी ही जानवरों के सार्वभौमिक रूप से एंडोथर्मिक समूह हैं। चूँकि, अर्जेंटीना के काले एवं सफेद टेगू, लेदरबैक समुद्री कछुआ, लैमनिड शार्क, टूना एवं बिलफिश,में पाए जाने वाले एवं ओपेरोफ्थेरा ब्रुमाटा भी एंडोथर्मिक हैं। स्तनधारियों एवं पक्षियों के विपरीत, कुछ सरीसृप, विशेष रूप से पाइथोनिडे एवं टेगू की कुछ प्रजातियों में मौसमी प्रजनन एंडोथर्मी होती है जिसमें वे केवल अपने प्रजनन के मौसम के समय एंडोथर्मिक होते हैं।

सामान्य भाषा में, एंडोथर्म को गर्म-रक्त वाले के रूप में जाना जाता है। एंडोथर्मी के विपरीत एक्टोथर्मी है, चूँकि सामान्यतः एंडोथर्म एवं एक्टोथर्म की प्रकृति के मध्य कोई पूर्ण या स्पष्ट भिन्नता नहीं है।

उत्पत्ति

ऐसा माना जाता है कि एंडोथर्मी की उत्पत्ति पर्मिअन काल के अंत में हुई थी[1]। वर्तमान में हुए अध्ययन में दावा किया गया है कि सिनैप्सिडा (स्तनधारी वंश) के अंदर एंडोथर्मी की उत्पत्ति स्तनधारी मोरफा के मध्य थी, जो लगभग 233 मिलियन वर्ष पूर्व लेट ट्राइसिक अवधि के समय कैलिब्रेट किया गया नोड था।[2]इसके अतिरिक्त अन्य अध्ययन ने तर्क दिया कि एंडोथर्मी केवल पश्चात में, मध्य जुरासिक क्राउन-समूह स्तनधारियों के मध्य दिखाई दिया।[3]एंडोथर्मी के साक्ष्य बेसल सिनैप्सिड्स (प्लिकोसोर), परियासौर, मीनसरीसृप, प्लेसीओसौर, मोसासौर एवं बेसल आर्कोसौरोमोर्फा में पाए गए हैं।[4][5][6] यहां तक ​​​​कि सबसे प्राथमिक एमनियोट्स भी एंडोथर्म हो सकते हैं।[4]


संरचना

ऊष्मा पैदा करना एवं संरक्षण

कोर तापमान के कार्य के रूप में एक एंडोथर्मिक जानवर (स्तनपायी) एवं एक एक्टोथर्मिक जानवर (सरीसृप) का निरंतर ऊर्जा उत्पादन
यह छवि एंडोथर्म एवं एक्टोथर्म के मध्य अंतर दिखाती है। माउस एंडोथर्मिक है एवं होमोस्टेसिस के माध्यम से अपने शरीर के तापमान को नियंत्रित करता है। छिपकली एक्टोथर्मिक है एवं इसके शरीर का तापमान पर्यावरण पर निर्भर है।

कई एंडोथर्म में एक्टोथर्म की अपेक्षा में प्रति कोशिका (जीव विज्ञान) में माइटोकॉन्ड्रिया की अधिक मात्रा होती है। यह उन्हें वसा और शर्करा के चयापचय की दर को बढ़ाकर गर्मी उत्पन्न करने में सक्षम बनाता है। तदनुसार, अपने उच्च चयापचय को बनाए रखने के लिए, एंडोथर्मिक जानवरों को सामान्यतः एक्टोथर्मिक जानवरों की अपेक्षा में कई गुना अधिक भोजन की आवश्यकता होती है, एवं सामान्यतः चयापचय ईंधन की अधिक निरंतर आपूर्ति की आवश्यकता होती है।

कई एंडोथर्मिक जानवरों में, अल्प तपावस्था की नियंत्रित अस्थायी स्थिति शरीर के तापमान को परिवेशी स्तर तक गिरने की अनुमति देकर ऊर्जा का संरक्षण करती है। ऐसी अवस्थाएँ संक्षिप्त, नियमित सर्कैडियन लय हो सकती हैं जिन्हें टॉरपोर कहा जाता है, या वे बहुत लंबे समय, यहाँ तक कि मौसमी, चक्रों में भी हो सकते हैं जिन्हेंसीतनिद्रा कहा जाता है। कई छोटे पक्षियों (जैसे हमिंगबर्ड) एवं छोटे स्तनधारियों (जैसे टेनरेक्स) के शरीर का तापमान नाटकीय रूप से दैनिक निष्क्रियता के समय कम होता है, जैसे रात में दैनिक जानवरों में या दिन के समय रात में रहने वाले जानवरों में, इस प्रकार शरीर के तापमान को बनाए रखने की ऊर्जा कम हो जाती है। शरीर के तापमान में कम कठोर रुक-रुक कर कमी अन्य बड़े एंडोथर्म में भी होती है; उदाहरण के लिए मानव चयापचय भी नींद के समय धीमा हो जाता है, जिससे मुख्य तापमान में गिरावट आती है, सामान्यतः 1 डिग्री सेल्सियस के क्रम में। तापमान में अन्य बदलाव हो सकते हैं, सामान्यतः छोटे, या तो अंतर्जात या बाहरी परिस्थितियों या जोरदार परिश्रम के जवाब में, एवं या तो वृद्धि या गिरावट।[7] आराम करने वाला मानव शरीर अपनी ऊष्मा का लगभग दो-तिहाई भाग छाती एवं पेट के साथ-साथ मस्तिष्क में आंतरिक अंगों में चयापचय के माध्यम से उत्पन्न करता है। मस्तिष्क शरीर द्वारा उत्पादित कुल ऊष्मा का लगभग 16% उत्पन्न करता है।[8] ऊष्मा का हानि छोटे जीवों के लिए एक बड़ा खतरा है, क्योंकि उनके समीप सतह-क्षेत्र-से-आयतन अनुपात का बड़ा अनुपात है। छोटे गर्म रक्त वाले जानवरों में छाल या पंख के रूप में थर्मल इन्सुलेशन होता है। जलीय गर्म-खून वाले जानवर, जैसे कि पिनिपेड, सामान्यतः त्वचा के नीचे रोना की गहरी परतें होती हैं एवं कोई भी फर जो उनके समीप हो सकता है; दोनों उनके इन्सुलेशन में योगदान करते हैं। पेंगुइन के पंख एवं चर्बी दोनों होते हैं। पेंग्विन पंख स्केल-जैसे होते हैं एवं इन्सुलेशन एवं सुव्यवस्थित करने दोनों के लिए काम करते हैं। एंडोथर्म जो बहुत ठंडी परिस्थितियों में रहते हैं या ऊष्मा के हानि की स्थिति में रहते हैं, जैसे कि ध्रुवीय जल, अद्भुत नेटवर्क होते हैं जो उष्मा का आदान प्रदान करने वाला ्स के रूप में कार्य करते हैं। नसें गर्म रक्त से भरी धमनियों से सटी हुई हैं। कुछ धमनी ऊष्मा ठंडे खून में ले जाती है एवं ट्रंक में वापस पुनर्नवीनीकरण की जाती है। पक्षी, विशेष रूप से waders, प्रायः अपने पैरों में बहुत अच्छी तरह से विकसित रीटे मिराबाइल होते हैं - वे शहंशाह पेंग्विन के पैरों में अनुकूलन का भाग होते हैं जो उन्हें अंटार्कटिक सर्दियों की बर्फ पर महीनों बिताने में सक्षम बनाते हैं।[9][10] ठंड के जवाब में, कई गर्म खून वाले जानवर भी ऊष्मा के हानि को कम करने के लिए वाहिकासंकीर्णन द्वारा त्वचा में रक्त के प्रवाह को कम कर देते हैं। नतीजतन, वे सफेद हो जाते हैं (पीला हो जाते हैं)।

ज़्यादा गरम होने से बचना

उष्णकटिबंधीय वर्षावन जलवायु में एवं समशीतोष्ण जलवायु ग्रीष्मकाल के समय, अतिताप (हाइपरथर्मिया) ठंड के समान ही बड़ा खतरा है। गर्म परिस्थितियों में, कई गर्म खून वाले जानवर हांफने से ऊष्मा के हानि को बढ़ाते हैं, जो सांस में पानी के वाष्पीकरण को बढ़ाकर एवं/या निस्तब्धता से जानवर को ठंडा करता है, जिससे त्वचा में रक्त का प्रवाह बढ़ जाता है जिससे ऊष्मा पर्यावरण में ऊर्जा का संचार करेगी। मनुष्यों एवं घोड़ों सहित बालों रहित एवं छोटे बालों वाले स्तनधारियों को भी पसीना आता है, क्योंकि पसीने में पानी का वाष्पीकरण ऊष्मा को दूर करता है। हाथी अपने विशाल कान जैसे रेडियेटर ्स को ऑटोमोबाइल में इस्तेमाल करके ठंडा रखते हैं। उनके कान पतले होते हैं एवं रक्त वाहिकाएं त्वचा के करीब होती हैं, एवं उनके ऊपर हवा का प्रवाह बढ़ाने के लिए अपने कानों को फड़फड़ाने से रक्त ठंडा हो जाता है, जिससे उनके शरीर का मुख्य तापमान कम हो जाता है जब रक्त संचार प्रणाली के बाकी भागों से निकलता है।

एक एंडोथर्मिक चयापचय के पेशेवरों एवं विपक्ष

एक्टोथर्मी पर एंडोथर्मी का प्रमुख लाभ बाहरी तापमान में उतार-चढ़ाव के प्रति संवेदनशीलता में कमी है। स्थान (एवं इसलिए बाहरी तापमान) के अतिरिक्त, एंडोथर्मी इष्टतम एंजाइम गतिविधि के लिए निरंतर कोर तापमान बनाए रखता है।

एंडोथर्म आंतरिक होमोस्टैटिक संरचना द्वारा शरीर के तापमान को नियंत्रित करते हैं। स्तनधारियों में, दो भिन्न भिन्न होमोस्टैटिक संरचना थर्मोरेग्यूलेशन में सम्मिलित होते हैं संरचना शरीर के तापमान को बढ़ाता है, जबकि दूसरा इसे कम करता है। दो भिन्न भिन्न संरचनाों की उपस्थिति बहुत उच्च स्तर का नियंत्रण प्रदान करती है। यह महत्वपूर्ण है क्योंकि स्तनधारियों के मुख्य तापमान को नियंत्रित किया जा सकता है ताकि एंजाइम गतिविधि के लिए इष्टतम तापमान के करीब हो सके।

जानवर के चयापचय की समग्र दर प्रत्येक के लिए लगभग दो गुना बढ़ जाती है 10 °C (18 °F) तापमान में वृद्धि, अतिताप से बचने की आवश्यकता द्वारा सीमित। एंडोथर्मी एक्टोथर्मी (शीत-रक्तता) की अपेक्षा में आंदोलन में अधिक गति प्रदान नहीं करता है - एक्टोथर्मिक जानवर एक ही आकार के गर्म-खून वाले जानवरों के रूप में तेजी से आगे बढ़ सकते हैं एवं एक्टोथर्म के निकट या उसके इष्टतम तापमान पर निर्माण कर सकते हैं, परन्तु प्रायःउच्च चयापचय को बनाए नहीं रख सकते एंडोथर्म के रूप में लंबे समय तक गतिविधि। एंडोथर्मिक/होमोथर्मिक जानवर दिन एवं रात के मध्य तेज तापमान भिन्नता के स्थानों में दैनिक चक्र के समय अधिक सक्रिय रूप से सक्रिय हो सकते हैं एवं तापमान के महान मौसमी अंतर के स्थानों में वर्ष के समय अधिक सक्रिय हो सकते हैं। यह निरंतर आंतरिक तापमान एवं अधिक भोजन की आवश्यकता को बनाए रखने के लिए अधिक ऊर्जा खर्च करने की आवश्यकता के साथ है।[11] प्रजनन के समय एंडोथर्मी महत्वपूर्ण हो सकता है, उदाहरण के लिए, थर्मल रेंज का विस्तार करने में, जिस पर प्रजातियां पुनरुत्पादन कर सकती हैं, क्योंकि भ्रूण सामान्यतः थर्मल उतार-चढ़ाव के असहिष्णु होते हैं जो वयस्कों द्वारा सरलता से सहन किए जाते हैं।[12][13] एंडोथर्मी फंगल संक्रमण से भी सुरक्षा प्रदान कर सकता है। जबकि हजारों कवक प्रजातियां कीड़ों को संक्रमित करती हैं, केवल कुछ सौ लक्षित स्तनपायी, एवं प्रायःकेवल एक समझौता प्रतिरक्षा प्रणाली वाले। हाल का अध्ययन[14] सुझाव देते हैं कि कवक स्तनधारी तापमान पर पनपने के लिए मौलिक रूप से बीमार हैं। एंडोथर्मी द्वारा वहन किए गए उच्च तापमान ने विकासवादी लाभ प्रदान किया हो सकता है।

एक्टोथर्म अपने शरीर का तापमान ज्यादातर बाहरी ताप स्रोतों जैसे सूर्य के प्रकाश ऊर्जा के माध्यम से बढ़ाते हैं; इसलिए, वे परिचालन शरीर के तापमान तक पहुंचने के लिए पर्यावरणीय परिस्थितियों पर निर्भर करते हैं। एंडोथर्मिक जानवर ज्यादातर चयापचय सक्रिय अंगों एवं ऊतकों (यकृत, गुर्दे, हृदय, मस्तिष्क, मांसपेशियों) या भूरे वसा ऊतक (बीएटी) जैसे विशेष ऊष्मा पैदा करने वाले ऊतकों के माध्यम से आंतरिक ऊष्मा उत्पादन का उपयोग करते हैं। सामान्य तौर पर, किसी दिए गए शरीर द्रव्यमान पर एंडोथर्म में एक्टोथर्म की अपेक्षा में उच्च चयापचय दर होती है। एक परिणाम के रूप में उन्हें उच्च भोजन सेवन दर की भी आवश्यकता होती है, जो एक्टोथर्म की अपेक्षा में एंडोथर्म की प्रचुरता को सीमित कर सकती है।

क्योंकि एक्टोथर्म शरीर के तापमान के नियमन के लिए पर्यावरणीय परिस्थितियों पर निर्भर करते हैं, वे सामान्यतः रात में एवं सुबह में अधिक सुस्त होते हैं जब वे पहली धूप में गर्म होने के लिए अपने आश्रय से निकलते हैं। इसलिए अधिकांश कशेरुकी एक्टोथर्म में खाने की गतिविधि दिन के समय (दैनिक गतिविधि पैटर्न) तक ही सीमित है। छिपकलियों में, उदाहरण के लिए, केवल कुछ प्रजातियों को निशाचर (जैसे कई जेकॉस) के रूप में जाना जाता है एवं वे ज्यादातर 'सिट एंड वेट' फोर्जिंग रणनीतियों का उपयोग करते हैं जिन्हें सक्रिय फोर्जिंग के लिए आवश्यक शरीर के तापमान की आवश्यकता नहीं हो सकती है। एंडोथर्मिक कशेरुक प्रजातियां, इसलिए, पर्यावरणीय परिस्थितियों पर कम निर्भर हैं एवं उन्होंने अपने दैनिक गतिविधि पैटर्न में एक उच्च परिवर्तनशीलता (प्रजातियों के अंदर एवं दोनों के मध्य) विकसित की है।[15] ऐसा माना जाता है कि मेसोज़ोइक काल में स्वसंरचनाता स्तनधारी प्रजातियों की विविधता के विकास में एंडोथर्मिया का विकास महत्वपूर्ण था। एंडोथर्मिया ने शुरुआती स्तनधारियों को छोटे शरीर के आकार को बनाए रखते हुए रात के समय सक्रिय रहने की क्षमता प्रदान की। photoreception में अनुकूलन एवं आधुनिक यूथेरियन स्तनधारियों की विशेषता वाले यूवी संरक्षण के हानि को मूल रूप से निशाचर जीवन शैली के अनुकूलन के रूप में समझा जाता है, यह सुझाव देते हुए कि समूह एक विकासवादी अड़चन (निशाचर अड़चन) से गुजरा है। यह दैनिक सरीसृपों एवं डायनासोरों के शिकारी दबाव से बचा जा सकता था, चूँकि कुछ शिकारी डायनासोर, समान रूप से एंडोथर्मिक होने के कारण, उन स्तनधारियों का शिकार करने के लिए निशाचर जीवन शैली को अपना सकते थे।[15][16]


ऐच्छिक एंडोथर्मी

कई कीट प्रजातियां व्यायाम का उपयोग करके परिवेश के तापमान के ऊपर वक्षीय तापमान बनाए रखने में सक्षम हैं। इन्हें वैकल्पिक या व्यायाम एंडोथर्म के रूप में जाना जाता है।[17] उदाहरण के लिए, मधुमक्खी अपने पंखों को हिलाए बिना प्रतिपक्षी उड़ान की मांसपेशियों को अनुबंधित करके ऐसा करती है (कीट थर्मोरेग्यूलेशन देखें)।[18][19][20] थर्मोजेनेसिस का यह रूप, चूँकि, केवल एक निश्चित तापमान सीमा से ऊपर एवं नीचे के विषय में कुशल है 9–14 °C (48–57 °F), मधुमक्खी एक्टोथर्मी में बदल जाती है।[19][20][21] वैकल्पिक एंडोथर्मी को कई सांप प्रजातियों में भी देखा जा सकता है जो अपने अंडों को गर्म करने के लिए अपनी चयापचय ऊष्मा का उपयोग करते हैं। अजगर मोलुरस एवं मोरेलिया स्पिलोटा दो अजगर प्रजातियां हैं जहां मादा अपने अंडों को घेर लेती हैं एवं उन्हें सेने के लिए कांपती हैं।[22]


क्षेत्रीय एंडोथर्मी

मछली एवं सरीसृप की कई प्रजातियों सहित कुछ बाह्यउष्मीय , क्षेत्रीय एंडोथर्मी का उपयोग करने के लिए दिखाए गए हैं, जहां मांसपेशियों की गतिविधि शरीर के कुछ भागों को शरीर के बाकी भागों की अपेक्षा में उच्च तापमान पर रहने का कारण बनती है।[23] यह ठंडे वातावरण में बेहतर गति एवं इंद्रियों के उपयोग की अनुमति देता है।[23]


थर्मोडायनामिक एवं जैविक शब्दावली के मध्य अंतर

ऐतिहासिक दुर्घटना के कारण,[citation needed] छात्र भौतिकी एवं जीव विज्ञान की शब्दावली के मध्य संभावित भ्रम के स्रोत का सामना करते हैं। जबकि उष्मागतिक शब्द एक्ज़ोथिर्मिक एवं एन्दोठेर्मिक क्रमशः उन प्रक्रियाओं को संदर्भित करते हैं जो ऊष्मा ऊर्जा देते हैं एवं ऐसी प्रक्रियाएँ जो उष्मा ऊर्जा को अवशोषित करती हैं, जीव विज्ञान में अर्थ प्रभावी रूप से उलट जाता है। मेटाबोलिज्म शब्द एक्टोथर्म एवं एंडोथर्म क्रमशः उन जीवों को संदर्भित करते हैं जो एक पूर्ण कार्य तापमान प्राप्त करने के लिए बाहरी ऊष्मा पर काफी हद तक निर्भर करते हैं, एवं ऐसे जीवों के लिए जो अपने शरीर के तापमान को नियंत्रित करने में एक प्रमुख कारक के रूप में अंदर से ऊष्मा पैदा करते हैं।[24]


यह भी देखें

  • गर्म खून वाले

संदर्भ

  1. Rey K, Amiot R, Fourel F, Abdala F, Fluteau F, Jalil NE, et al. (July 2017). "ऑक्सीजन समस्थानिक कई Permo-Triassic therapsid clades के भीतर उन्नत थर्मोमेटाबोलिज्म का सुझाव देते हैं". eLife. 6. doi:10.7554/eLife.28589. PMC 5515572. PMID 28716184.
  2. Araújo R, David R, Benoit J, Lungmus JK, Stoessel A, Barrett PM, et al. (July 2022). "इनर ईयर बायोमैकेनिक्स से स्तनधारी एंडोथर्मी के लिए लेट ट्राइसिक मूल का पता चलता है". Nature. 607 (7920): 726–731. doi:10.1038/s41586-022-04963-z. PMID 35859179.
  3. Newham, Elis; Gill, Pamela G.; Corfe, Ian J. (16 February 2022). "नए उपकरण स्तनधारी एंडोथर्मी के लिए मध्य जुरासिक उत्पत्ति का सुझाव देते हैं". BioEssays. 44 (4): 1–16. doi:10.1002/bies.202100060. Retrieved 3 April 2023.
  4. 4.0 4.1 Grigg G, Nowack J, Bicudo JE, Bal NC, Woodward HN, Seymour RS (April 2022). "Whole-body endothermy: ancient, homologous and widespread among the ancestors of mammals, birds and crocodylians". Biological Reviews of the Cambridge Philosophical Society. 97 (2): 766–801. doi:10.1111/brv.12822. PMC 9300183. PMID 34894040.
  5. Legendre LJ, Guénard G, Botha-Brink J, Cubo J (November 2016). "आर्कोसॉरस में पैतृक उच्च चयापचय दर के लिए पुरापाषाणकालीन साक्ष्य". Systematic Biology. 65 (6): 989–996. doi:10.1093/sysbio/syw033. PMID 27073251.
  6. Benton MJ (December 2021). "ट्रायसिक में सिनैप्सिड्स और आर्कोसॉरस और हथियारों की दौड़ में एंडोथर्मी की उत्पत्ति". Gondwana Research (in English). 100: 261–289. doi:10.1016/j.gr.2020.08.003. S2CID 222247711.
  7. Refinetti R (January 2010). "शरीर के तापमान की सर्कैडियन लय". Frontiers in Bioscience. 15 (2): 564–594. doi:10.2741/3634. PMID 20036834.
  8. Kimball JW (25 June 2014). "गर्मी का परिवहन". Kimball's Biology Pages – via www.biology-pages.info.
  9. Thomas DB, Fordyce RE (2008). "पेंग्विन द्वारा शोषित विषमतापीय खामी". Australian Journal of Zoology. 55 (5): 317–321. doi:10.1071/ZO07053.
  10. Thomas DB, Ksepka DT, Fordyce RE (June 2011). "पेंगुइन हीट-रिटेंशन संरचनाएं ग्रीनहाउस अर्थ में विकसित हुईं". Biology Letters. 7 (3): 461–464. doi:10.1098/rsbl.2010.0993. PMC 3097858. PMID 21177693.
  11. Campbell NA, Reece JB (2002). जीवविज्ञान (6th ed.). Benjamin/Cummings. p. 845. ISBN 978-0-8053-6624-2.
  12. Farmer CG (March 2000). "Parental Care: The Key to Understanding Endothermy and Other Convergent Features in Birds and Mammals". The American Naturalist. 155 (3): 326–334. doi:10.1086/303323. PMID 10718729. S2CID 17932602.
  13. Farmer CG (December 2003). "Reproduction: the adaptive significance of endothermy". The American Naturalist. 162 (6): 826–840. doi:10.1086/380922. PMID 14737720. S2CID 15356891.
  14. Robert VA, Casadevall A (November 2009). "कशेरुकी एंडोथर्मी अधिकांश कवक को संभावित रोगजनकों के रूप में प्रतिबंधित करता है". The Journal of Infectious Diseases. 200 (10): 1623–1626. doi:10.1086/644642. PMID 19827944.
  15. 15.0 15.1 Hut RA, Kronfeld-Schor N, van der Vinne V, De la Iglesia H (2012). In search of a temporal niche: environmental factors. Progress in Brain Research. Vol. 199. pp. 281–304. doi:10.1016/B978-0-444-59427-3.00017-4. ISBN 978-0-444-59427-3. PMID 22877672.
  16. Gerkema MP, Davies WI, Foster RG, Menaker M, Hut RA (August 2013). "निशाचर अड़चन और स्तनधारियों में गतिविधि के पैटर्न का विकास". Proceedings. Biological Sciences. 280 (1765): 20130508. doi:10.1098/rspb.2013.0508. PMC 3712437. PMID 23825205.
  17. Davenport J (1992). कम तापमान पर पशु जीवन. London: Chapman & Hall. ISBN 978-0-412-40350-7.
  18. Kammer AE, Heinrich B (August 1974). "भौंरों में मांसपेशियों की गतिविधि से संबंधित चयापचय दर". The Journal of Experimental Biology. 61 (1): 219–227. doi:10.1242/jeb.61.1.219. PMID 4414648.
  19. 19.0 19.1 Lighton JR, Lovegrove BG (1990). "हनीबी में डिफ्यूसिव से कन्वेक्टिव वेंटिलेशन के लिए एक तापमान-प्रेरित स्विच". Journal of Experimental Biology. 154 (1): 509–516. doi:10.1242/jeb.154.1.509.
  20. 20.0 20.1 Kovac H, Stabentheiner A, Hetz SK, Petz M, Crailsheim K (December 2007). "आराम करने वाली मधुमक्खियों का श्वसन". Journal of Insect Physiology. 53 (12): 1250–1261. doi:10.1016/j.jinsphys.2007.06.019. PMC 3227735. PMID 17707395.
  21. Southwick EE, Heldmaier G (1987). "मधुमक्खी कालोनियों में तापमान नियंत्रण". BioScience. 37 (6): 395–399. doi:10.2307/1310562. JSTOR 1310562.
  22. Stahlschmidt ZR, Denardo DF (September 2009). "बच्चों के अजगरों में अंडे-ब्रूडिंग गतिकी पर घोंसले के तापमान का प्रभाव". Physiology & Behavior. 98 (3): 302–306. doi:10.1016/j.physbeh.2009.06.004. PMID 19538977. S2CID 7670440.
  23. 23.0 23.1 Willmer P, Stone G, Johnston I (2009). जानवरों की पर्यावरणीय फिजियोलॉजी. Wiley. pp. 190. ISBN 978-1-4051-0724-2.
  24. Humphries MH (2010-11-01). "एंडोथर्म मेटाबॉलिज्म हैंडल करने के लिए बहुत गर्म है". Journal of Experimental Biology. 213 (21): iv. doi:10.1242/jeb.051300.


बाहरी संबंध